JPS6239027B2 - - Google Patents

Info

Publication number
JPS6239027B2
JPS6239027B2 JP57206675A JP20667582A JPS6239027B2 JP S6239027 B2 JPS6239027 B2 JP S6239027B2 JP 57206675 A JP57206675 A JP 57206675A JP 20667582 A JP20667582 A JP 20667582A JP S6239027 B2 JPS6239027 B2 JP S6239027B2
Authority
JP
Japan
Prior art keywords
paint
aqueous solution
water
coating film
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57206675A
Other languages
Japanese (ja)
Other versions
JPS5995971A (en
Inventor
Yoshihiko Kojika
Yoshihiro Kajima
Setsuo Tsuzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP20667582A priority Critical patent/JPS5995971A/en
Publication of JPS5995971A publication Critical patent/JPS5995971A/en
Publication of JPS6239027B2 publication Critical patent/JPS6239027B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は多孔性無機質基材又は金属、ガラス等
の非多孔性鉱物質基材からなる鉱物質基材(これ
らを総称して、鉱物質基材という)面に水溶性ア
ルカリ金属珪酸塩系無機質塗料を化粧塗装仕上げ
する無機質塗膜の形成方法に関するものである。 石綿セメント板や珪酸カルシウム板などの基材
は、不燃性で且つ耐久性に優れているため、広く
建材その他に使われている。通常これらの材料自
体は美粧性に乏しいため、美粧性が要求される場
合には有機質塗料で塗装仕上げされている。とこ
ろがこの有機質塗膜は可燃性であり又耐久性に乏
しい為、基材のもつ特徴を著しく損ねている。そ
こでこれらの基材の特徴を生かすことができる不
燃性の無機質塗料が使われるようになつた。しか
しながら一般に無機質塗料は有機質塗料に比べて
不燃性・耐熱性などには優れているが可とう性、
光沢、平滑性などの点については劣つている。特
に石綿セメント板や珪酸カルシウム板のような基
材は、気中の湿度変化あるいは吸水、乾燥による
膨張、収縮の寸法変化が大きく、無機質塗膜はそ
の寸法変化に充分追従できる可とう性に乏しいた
めクラツクが発生しやすく、またそのクラツクに
汚染物質が浸透付着して耐汚染性が低下する。さ
らにクラツクの発生によつて、基材中の白華成分
が塗膜表面に溶出して白華現象を生起しがちであ
り、塗膜中に白華成分を含有する場合は白華現象
を完全に抑制するのが難しい。 建材等の化粧等に用いられる無機質塗料には加
熱硬化型のものと常温硬化型のものがある。一般
に、加熱硬化型の塗料は約200〜300℃に加熱しな
いと充分に硬化した膜が得られないが、基材とし
て石綿セメント板や珪酸カルシウム板などを用い
た場合、この加熱により基材が強度劣化、変性、
変色を起こしたりする問題がある。常温硬化型の
ものは基材を劣化させることは少ないが、充分な
硬化膜を得るには約1週間以上の硬化期間を要す
る。 上記の諸問題を解決する一方法として、先に本
発明者等は、水溶性アルカリ金属珪酸塩等を含有
する塗料を下塗りし、酸溶液にて処理し、該酸を
除去し、次いで該塗料を上塗りした後、該塗膜を
硬化させる工程を含む方法を発明した(特願昭56
−211612号)。これに対し本発明は、一つの観点
からはこの先行発明を改善した発明であるという
ことができる。 また特公昭49−47249号公報に、アルカリ金属
珪酸塩にかなりの量の無定形シリカを添加し長時
間加熱溶解した高粘性塗料を基材に塗布し、酸等
の強酸性処理液で処理した後に乾燥硬化させる方
法が開示されている。この発明は多量の無定形シ
リカ粉を加熱溶解した塗料を使用したことを特徴
とするものであり、同公報の比較例等に明示され
ているように該シリカを溶解含有しない場合には
効果が発揮されない。この方法は該塗料の製造、
光沢性等に関して、若干の問題が存在し得る。 本発明の主目的は、上記の問題点を改善した新
規な方法を提供することである。すなわち、本発
明は従来の無機質塗膜の持つ不燃性、耐熱性に加
えて、有機質塗料やガラス釉面並の光沢と平滑性
を持ち、且つ無機質塗膜の欠点であつた可とう
性、耐汚染性、耐白華性に優れた塗膜を得るとと
もに、基材の加熱劣化をも生じさせない無機質塗
膜の形成方法を提供するものである。 本発明の代表的な態様を要約すると、鉱物質基
材上に、充填剤、顔料および硬化剤等から選ばれ
る粉体固形分を含有する水溶性アルカリ金属珪酸
塩系水溶液塗料(以下下塗り塗料という)を塗布
して適度に乾燥させ、次に該粉体固形分の含有量
が該下塗り塗料よりも少量ないし零である該珪酸
塩系水溶液塗料(以下上塗り塗料という)を塗布
して適度に乾燥させた塗膜に、PH値約3.5〜約
10.0の酸・アンモニウム塩系水溶液を適用し、水
洗しそして乾燥することを特徴とする、無機質塗
膜の形成方法である。該塗料のうちの少なくとも
下塗り塗料が有効量の硬化剤を含有するのが好ま
しい。必要あれば、上記の二塗料の中間の固形分
含量を有する該珪酸塩系水溶液塗料を両者の塗膜
の間に塗装してなる塗膜を、同様に処理して、本
発明の無機質塗膜を形成することも当然可能であ
る。 上記の方法において、水洗に際して水のかわり
に、残存する該アンモニウム塩等に作用して除去
を促進(例えば化学反応による分解)しかつ該塗
膜に実質的に無影響である強塩基―強酸・塩(例
えばNaClまたはKCl)の希水溶液(例えば0.1〜
5重量%程度)を使用すると、水洗時間が短縮さ
れる。 前記の酸・アンモニウム塩系水溶液のPH値は、
一般に約3.5〜約10.0の範囲であり、好ましくは
約4〜約9の範囲であり、そしてより好ましくは
約4.5〜約8.5そして典型的には約5〜約8の範囲
である。約3.5〜10.0の範囲外では本発明の効果
は一般に達成困難である。 該酸・アンモニウム塩系水溶液としては、酸ま
たは酸性塩とアンモニアまたはアンモニア水また
はアンモニア化合物との反応生成物または反応生
成混合物である塩の水溶液を指称し、代表的に
は、(1)水に該酸・アンモニウム塩を溶解するかま
たは(2)水に酸およびアンモニア水またはアンモニ
アガスを添加する等によつて調製し得る。該水溶
液を所望のPH値に調整するには、例えば該水溶液
にアンモニア水もしくはアンモニアガスまたは該
酸を適度に添加すればよい。必要に応じて、所望
のPH値を効果的に維持するために適当な緩衝剤を
添加することも可能である。なお、酸・アンモニ
ウム塩系水溶液の塩成分は、二種類以上の塩の混
合物であつてもよい。 該酸・アンモニウム塩系水溶液の塩の酸成分と
しては無機酸及び有機酸またはこれらの酸性塩が
使用でき、無機酸系としてはリン酸、塩酸、亜硫
酸、硫酸、硝酸、塩化アルミニウム、硫酸アルミ
ニウム、第1リン酸アルミニウム、第1リン酸カ
ルシウム、硝酸アルミニウム等が、そして有機酸
としてはシユウ酸、クエン酸、酢酸、酒石酸等が
代表的に例示されるが、これらに限定されない。
なお、代表的な酸・アンモニウム塩として、リン
酸アンモニウム、硫酸アンモニウム、硝酸アンモ
ニウム、塩化アンモニウム、酢酸アンモニウム等
が例示できるが、一般に、第一、第二および/ま
たは第三リン酸アンモニウムが特に好適である。
本発明における基材の例には、石綿セメント板、
石綿パーライト板、珪酸カルシウム板、石綿セメ
ント珪酸カルシウム板、石膏ボード、モルタルボ
ード、コンクリートボード、パルプセメント板、
木片セメント板、GRC(ガラス繊維強化セメン
ト)ボード、CFRC(カーボン繊維強化セメン
ト)ボード、SFRC(スチール繊維強化セメン
ト)ボード、ALCボード、ロツクウール無機質
成形体、金属板、ガラス板等が含まれる。 本発明における無機質塗料は、水溶性アルカリ
金属珪酸塩系水溶液、および硬化剤、充填剤、顔
料等の粉体固形分を混合して形成される。前記の
態様における下塗り塗料に含有される該粉体固形
分の量は、該塗料の重量に基き、約10%以上そし
て好ましくは約20%以上から該珪酸塩水溶液ベヒ
クルにて塗料として保持される量(例えば約80重
量%)までの範囲である。一般に約20〜約60重量
%の範囲の量が用いられる。前記の態様における
上塗り塗料の該粉体固形分の量は、約20重量%以
下そして好ましくは約10%以下から零までの範囲
である。 水溶性アルカリ金属珪酸塩は、一般式M2O・
xSiO2・yH2O(但し、Mは周期律表第族に属
するアルカリ金属、x及びyは正の数である。)
で表わされるが、この水溶性アルカリ金属珪酸塩
を多価金属化合物で変性した変性水溶性アルカリ
金属珪酸塩を用いてもよい。水溶性アルカリ金属
珪酸塩には、珪酸ナトリウム、珪酸カリウム、珪
酸リチウム等があり、xの値は特に制限するもの
ではないが、2〜5が造膜性、耐久性等の観点か
ら好ましい。yの値についても特に制限するもの
ではなく、最終的に得られる組成物塗料に適度な
粘性をもたせる範囲、あるいは該組成物を取り扱
う上において支障がない範囲であればよい。変性
水溶性アルカリ金属珪酸塩は、前記水溶性アルカ
リ金属珪酸塩にマグネシウム、アルミニウム、カ
ルシウム、亜鉛、ジルコニウム等の多価金属の酸
化物、水酸化物、弗化物、炭酸塩、リン酸塩等の
化合物の1種あるいは2種以上を溶解反応させた
ものであり、塗膜の耐水性、耐薬品性等の改善に
寄与する。本発明における無機質塗料には、これ
らの水溶性アルカリ金属珪酸塩あるいは変性水溶
性アルカリ金属珪酸塩の1種あるいは2種以上を
混合して用いることができる。実用的には珪酸ナ
トリウムが造膜性、接着性、低コスト性等の点で
優れており、本発明では珪酸ナトリウム1種を用
いても優れた無機質塗膜が得られる。なお、該ア
ルカリ金属珪酸塩の添加量は、該塗料の重量に基
き、約7%以上、好ましくは約10%以上、更に好
ましくは約15%以上、そして典型的には約15%〜
約60%の範囲である。 上記の水溶性アルカリ金属珪酸塩あるいは変性
水溶性アルカリ金属珪酸塩の硬化剤には、酸化亜
鉛、酸化マグネシウム、酸化アルミニウム等の多
価金属酸化物;水酸化マグネシウム、水酸化アル
ミニウム等の多価金属水酸化物;炭酸亜鉛、炭酸
マグネシウム等の多価金属炭酸塩;リン酸マグネ
シウム、リン酸アルミニウム、リン酸亜鉛等の多
価金属リン酸塩;珪弗化亜鉛、珪弗化アルミニウ
ム等の珪弗化物;グリオキザール、シユウ酸アミ
ド等の有機化合物等があり、これらの硬化剤の1
種類あるいは2種以上を用いる。硬化剤の有効量
は、該塗料の重量の約1%以上、好ましくは約3
%以上、典型的には約5%以上である。 充填剤には、珪石、アルミナ、ガラス粉等の粒
状物;粘土、雲母等の偏平状物;石綿、ガラス繊
維粉等の繊維状物等がある。 顔料には、二酸化チタン、ベンガラ、黄鉛、ク
ロムグリーン、群青、マルスバイオレツト、コバ
ルトブルー、カーボンブラツク等がある。 その他の添加剤としては、公知の界面活性剤、
分散剤、消泡剤、増粘剤等があり、必要に応じて
添加する。 次に本発明の無機質塗膜の形成方法について説
明する。本発明において、硬化剤、充填剤、顔料
等を添加した水溶性アルカリ金属珪酸塩系塗料を
塗布して第1層を得、1次乾燥後、硬化剤、充填
剤、顔料等粉体固形分を含まないか、あるいは硬
化剤、充填剤、顔料、増粘剤等を小量含む水溶性
アルカリ金属珪酸塩系塗料を塗布して第2層を
得、2次乾燥後、前記のPH値の酸・アンモニウム
水溶液に浸漬し、さらに水中に浸漬して最後に乾
燥して無機質塗膜が形成できる。 上記の態様において、第1層は硬化剤、充填
剤、顔料等の粉体固形分を比較的多量に含んでい
るために、1次乾燥により比較的ポーラスな塗膜
ができる。この第1層に粉体固形分を含まない
か、あるいは硬化剤、顔料、増粘剤等小量を含む
水溶性アルカリ金属珪酸塩系塗料を塗布すると、
一部分は第1層に浸透して第1層は緻密な層とな
りまた、一部分は第1層の上部表面に粉体固形分
を含まないかあるいは少量含む透明釉薬調の薄膜
を第2層として形成する。その後、第2層が発泡
しない程度の温度で2次乾燥を行ない、さらに前
記のPH値の酸・アンモニウム塩水溶液中に浸漬さ
せて塗膜中のアルカリ金属を酸イオンにより選択
的、強制的に除去して塗膜を硬化させるととも
に、一部分の該酸は塗膜中の成分とも反応して硬
化作用をもたらすものと考えられる。その後、塗
膜を水中に浸漬させることにより、塗膜や基材中
の残留未反応酸・アンモニウム塩等の物質を除去
し、これを乾燥させると塗膜は収縮して微細なク
ラツクが均一に発生する。 本発明の特質を以下に要約すると、 (1) 塗膜の表面が透明釉薬調になり、美観、肌ざ
わりがよい。 (2) 弱酸性から中性付近の酸・アンモニウム塩水
溶液で薬液硬化させて塗膜を製造すると、加熱
硬化法に比べ塗膜の硬化が均一でゆるやかであ
るため、塗膜に均一に微細なクラツクが発生す
る。こうして発生したクラツクは汚染物質が入
り込めないほど微細であり、また基材の吸水膨
張、乾燥収縮等の寸法変化やたわみが発生して
もその均一なクラツクにより応力を分散吸収さ
せてしまうため、もはや耐汚染性の低下をもた
らす大きなクラツクは発生せず耐汚染性がよ
い。 (3) 酸・アンモニウム塩水溶液で処理することに
より白華成分となる塗膜中のアルカリ金属を除
去するので、耐白華性に優れた塗膜ができるこ
と等が挙げられる。更に、本発明の基材として
石綿セメント板や珪酸カルシウム板などのセメ
ント質のものを用いる場合には、高温加熱を必
要とせず比較的低温加熱での乾燥後、前記のPH
値の酸・アンモニウム塩水溶液により硬化させ
るものであるため基材を劣化させることがな
い。また、基材中の白華成分となる遊離Ca成
分を酸により固定することができるので、耐白
華性を向上させることができる。また、補強材
として石綿やガラス繊維が含有されている基材
についても劣化させることはない。 第1層を形成する下塗り塗料は、基材との密着
性や上塗り塗膜の硬化性を向上させるために硬化
剤を添加した方がよく、また塗膜としての強度、
耐久性等の機能を持たせたり、微細なクラツクを
均一に発生させたりするために充填剤等の固形物
を添加した方がよい。この様に下塗り塗膜層は、
塗膜としての機能を備えるとともに、上塗り塗料
を適度に浸透させ、下塗り塗膜層中の未反応の硬
化剤と反応させて上塗り塗膜の硬化を補う役割も
果たすのである。なお、必要に応じて界面活性
剤、消泡剤、増粘剤などを加えてもよい。 第2層を形成する上塗り塗料にも水溶性アルカ
リ金属珪酸塩を用いるが、緻密な膜に仕上げ耐汚
染性、光沢、平滑性、美観性等を付与するため
に、硬化剤や充填剤等の固形物は添加しないか、
あるいは加熱時の発泡防止、着色等のため硬化
剤、顔料等を上記性能の低下をもたらさない程度
の小量を添加する。なお前記の上塗り塗料だけの
態様においては、必要最低量の硬化剤を添加する
のが好ましい。水溶性の硬化剤(グリオキザー
ル)の併用も望ましい。 下塗り塗料の塗装後の1次乾燥は、下塗り塗料
が均一に乾く程度でよく、室温〜約100℃で1分
〜60分間程度保持すればよい。 上塗り塗料の塗装後の2次乾燥は、硬化剤の種
類により異なるが、塗膜を完全硬化させず、次の
薬液処理工程においてアルカリ金属成分が選択的
に効率よく溶出除去でき、且つ上塗り塗膜層が発
泡しない範囲の条件で行なう。通常、室温〜約
150℃で30分〜48時間程度保持すればよい。 酸・アンモニウム水溶液のPH値が約3.5以下で
は、塗膜中のアルカリ金属成分の溶出速度が急激
になつたり、アルカリ金属成分以外の塗膜成分の
溶出も激しくなり、大クラツクの発生や強度、耐
久性、光沢、平滑性、美観性の低下の原因とな
る。また基材としてセメント質のものや補強材と
して石綿などが添加してあるものは侵されやすく
なる。該PH値が約10.0以上になるとアルカリ金属
成分以外の成分の溶出が多くなり、塗膜の光沢、
平滑性、美観性が低下する。通常、薬液処理条件
として酸・アンモニウム塩水溶液濃度は前記のPH
範囲に調整することを条件として約0.2〜約20重
量%そして典型的には約0.5〜約10重量%程度、
処理液温度は室温〜約60℃、処理時間は約1〜24
時間程度が望ましい。要するに、薬液処理条件
は、塗膜中のアルカリ金属成分が適度な溶出速度
で選択的に除去でき、且つ基材成分が侵されにく
いPH値の薬液を使用することが必要である。 酸・アンモニウム塩水溶液による薬液処理後
は、塗膜を水中浸漬させて塗膜や基材中の未反応
の酸・アンモニウム塩等の水可溶性物質を除去す
る。通常、水中浸漬は約1〜24時間行なえばよ
い。なお、水中浸漬を行なう代わりに食塩水等に
浸漬させれば、浸漬除去時間を約半分に短縮する
ことができる。 以下に実施例及び比較例によつて本発明の代表
的な具体例を詳細に説明する。 実施例1 (例) (1) 塗料の調合 下塗り塗料は下記に示す調合の内、珪酸ナトリ
ウム水溶液、界面活性剤、消泡剤以外のものをポ
ツトミルで24時間混合し、さらに残りを加えて15
分間スクリユー攪拌して調製した。 下塗り塗料の調合 珪酸ナトリウム水溶液(40%液)
100[重量部] 酸化亜鉛 30 〃 珪石粉 40 〃 トリポリリン酸ナトリウム 2 〃 チタン白 20 〃 水 90 〃 界面活性剤(5%液) 1 〃 消泡剤(5%液) 1 〃 上塗り塗料は下記に示す調合で混合攪拌により
調製した。 上塗り塗料の調合 珪酸ナトリウム水溶液(40%液)
100[重量部] 水 100 〃 界面活性剤(5%液) 1 〃 消泡剤(5%液) 1 〃 (2) 塗装 下塗り塗料を珪酸カルシウム板(厚さ3mm)に
エアースプレーにより2回に分けて、乾燥膜厚が
約50μmの厚さになるように塗装し、80℃で10分
間1次乾燥を行なつた。次に上塗り塗料を下塗り
した塗装板にエアスプレーにより乾燥膜厚が約5
μmの厚さになるように塗装し、130℃で3時間
2次乾燥を行なつた。これを30℃のリン酸アンモ
ニウム水溶液中(第1リン酸アンモニウム2.5
%、および第2リン酸アンモニウム2.5%、PH
6.5)に8時間浸漬し、さらに水中に12時間浸漬
した後水洗し80℃で乾燥した。 実施例2 (例) (1) 塗料の調合 実施例1の調合を下記のように代え、同様の操
作により調製した。 下塗り塗料の調合 珪酸ナトリウム水溶液(40%) 60[重量部] 珪酸カリウム水溶液(30%液) 40 〃 ポリリン酸アルミニウム 10 〃 酸化亜鉛 10 〃 珪石粉 50 〃 ピロリン酸カリウム 2 〃 アエロジル 0.5 〃 ベンガラ 10 〃 水 80 〃 界面活性剤(5%液) 1 〃 消泡剤(5%液) 1 〃 上塗り塗料は下記に示す調合で混合攪拌により
調製した。 上塗り塗料の調合 珪酸ナトリウム水溶液(40%液)
100[重量部] ベンガラ 10 〃 ピロリン酸カリウム 0.5 〃 水 100 〃 界面活性剤(5%液) 1 〃 消泡剤(5%液) 1 〃 (2) 塗装 下塗り塗料を石綿スレート板(厚さ3mm)にエ
アスプレーにより乾燥膜厚が約40μmの厚さにな
るように塗装し、気中に30分間放置した後、上塗
り塗料を下塗りした塗装板にエアスプレーにより
乾燥膜厚が約10μmの厚さになるように塗装し、
120℃で5時間乾燥を行なつた。これを40℃のリ
ン酸アンモニウム水溶液中(5%リン酸液中にア
ンモニアガスを吹き込みPH値を7.0として調整し
た。)に6時間浸漬し、さらに0.5%食塩水中に5
時間浸漬した後、水洗し、気中乾燥した。 実施例3 (例) (1) 塗料の調合 実施例1の調合を下記のように代え、同様の操
作により調製した。 下塗り塗料の調合 珪酸ナトリウム水溶液(40%液) 65[重量部] 珪酸カリウム水溶液(30%液) 20 〃 珪酸リチウム水溶液(25%液) 15 〃 ポリリン酸マグネシウム 15 〃 ポリリン酸亜鉛 10 〃 アルミナ粉 40 〃 合成雲母 10 〃 ピロリン酸ナトリウム 2 〃 コバルトブルー 10 〃 水 90 〃 界面活性剤(5%液) 1 〃 消泡剤(5%液) 1 〃 上塗り塗料は下記に示す調合で混合攪拌により
調製した。 上塗り塗料の調合 珪酸ナトリウム水溶液(40%液) 50[重量部] 珪酸カリウム水溶液(30%液) 50[重量部] 水 100 〃 界面活性剤(5%液) 1 〃 (2) 塗装 下塗り塗料を珪酸カルシウム板(厚さ4mm)に
エアースプレーにより乾燥膜厚が約50μmの厚さ
になるように塗装し、気中に10分間放置した後、
上塗り塗料を下塗りした塗装板にエアスプレーに
より乾燥膜厚が約10μmの厚さになるように塗装
し、130℃で90分間乾燥した。これを30℃のリン
酸アンモニウム水溶液中(5%リン酸液中に濃ア
ンモニア水を加えてPH値を8.0として調整した。)
に8時間浸漬し、さらに1%食塩水中に4時間浸
漬した後、水洗し、気中乾燥した。 比較例1 (例) (1) 塗料の調合 実施例1と同様 (2) 塗装 実施例1の内、薬処理液として5%リン酸液を
用いて同様の塗装を行なつた。 比較例2 (例) (1) 塗料の調合 実施例1と同様 (2) 塗装 実施例1の内、薬処理液として5%第1リン酸
アンモニウム水溶液(PH値2)を用いて同様の塗
装を行なつた。 比較例3 (例) (1) 塗料の調合 実施例1と同様 (2) 塗装 実施例1の内、薬処理液としてリン酸アンモニ
ウム水溶液(5%リン酸液に濃アンモニア水を加
えPH値10.5に調整)を用いて同様の塗装を行なつ
た。 上記の実施例1〜3および比較例1〜3の塗装
物の塗膜について、後記の試験方法に従つてテス
トした結果を下表に示す。
The present invention relates to a mineral base material (collectively referred to as a mineral base material) consisting of a porous inorganic base material or a non-porous mineral base material such as metal or glass. The present invention relates to a method of forming an inorganic coating film for finishing a paint with a decorative coating. Base materials such as asbestos cement boards and calcium silicate boards are noncombustible and have excellent durability, so they are widely used for building materials and other purposes. Generally, these materials themselves have poor cosmetic properties, so when cosmetic properties are required, they are finished with organic paint. However, since this organic coating film is flammable and has poor durability, it significantly impairs the characteristics of the base material. Therefore, nonflammable inorganic paints that can take advantage of the characteristics of these base materials have come into use. However, in general, inorganic paints are superior in nonflammability and heat resistance compared to organic paints, but they are less flexible and
It is inferior in terms of gloss, smoothness, etc. In particular, base materials such as asbestos cement boards and calcium silicate boards undergo large dimensional changes due to atmospheric humidity changes, water absorption, and expansion and contraction due to drying, and inorganic coatings lack the flexibility to sufficiently follow these dimensional changes. Therefore, cracks are likely to occur, and contaminants penetrate and adhere to the cracks, resulting in a decrease in contamination resistance. Furthermore, due to the occurrence of cracks, the efflorescence component in the base material tends to be eluted onto the surface of the paint film, causing efflorescence. difficult to suppress. Inorganic paints used for decorative purposes such as building materials include heat-curing types and room-temperature curing types. In general, heat-curing paints cannot form a sufficiently cured film unless heated to approximately 200 to 300°C, but when asbestos cement boards or calcium silicate boards are used as the base material, this heating causes the base material to harden. strength deterioration, degeneration,
There is a problem with discoloration. Room-temperature curing types rarely deteriorate the substrate, but require a curing period of about one week or more to obtain a sufficiently cured film. As a method for solving the above problems, the present inventors first coated a paint containing a water-soluble alkali metal silicate, etc., treated it with an acid solution to remove the acid, and then He invented a method that includes the step of curing the coating film after overcoating it (patent application filed in 1983).
−211612). On the other hand, the present invention can be said to be an improvement over this prior invention from one point of view. In addition, in Japanese Patent Publication No. 49-47249, a highly viscous paint made by adding a considerable amount of amorphous silica to an alkali metal silicate and melting it by heating for a long time is applied to the base material, and then treated with a strong acid treatment liquid such as acid. A method for subsequent dry curing is disclosed. This invention is characterized by the use of a coating material in which a large amount of amorphous silica powder is heated and dissolved, and as clearly shown in the comparative examples of the same publication, it is not effective when the silica is not dissolved. Not demonstrated. This method includes the production of the paint,
There may be some problems with gloss etc. The main objective of the present invention is to provide a new method that improves the above problems. In other words, the present invention not only has the nonflammability and heat resistance of conventional inorganic coatings, but also has the gloss and smoothness of organic paints and glass glazes, and has the flexibility and resistance that have been the drawbacks of inorganic coatings. The present invention provides a method for forming an inorganic coating film that provides a coating film with excellent stain resistance and efflorescence resistance, and does not cause heat deterioration of the base material. To summarize a typical embodiment of the present invention, a water-soluble alkali metal silicate-based aqueous solution paint (hereinafter referred to as an undercoat paint) containing powder solids selected from fillers, pigments, hardeners, etc., is applied onto a mineral base material. ) and dry it appropriately, then apply the silicate-based aqueous solution paint (hereinafter referred to as topcoat paint) whose powder solid content is smaller to zero than the undercoat paint and dry it moderately. The applied coating film has a pH value of about 3.5 to approx.
This is a method for forming an inorganic coating film, which is characterized by applying a 10.0 acid/ammonium salt aqueous solution, washing with water, and drying. Preferably, at least the base coat of the paint contains an effective amount of a curing agent. If necessary, a coating film formed by applying the silicate-based aqueous paint having a solid content between the above two coatings between the two coatings may be treated in the same manner to form the inorganic coating film of the present invention. Of course, it is also possible to form . In the above method, in place of water during washing with water, a strong base-strong acid which acts on the remaining ammonium salt etc. to promote removal (for example, decomposition by chemical reaction) and has virtually no effect on the coating film. A dilute aqueous solution of a salt (e.g. NaCl or KCl) (e.g. 0.1~
(approximately 5% by weight), the washing time is shortened. The PH value of the acid/ammonium salt aqueous solution mentioned above is
It generally ranges from about 3.5 to about 10.0, preferably from about 4 to about 9, and more preferably from about 4.5 to about 8.5 and typically from about 5 to about 8. Outside the range of about 3.5 to 10.0, the effects of the present invention are generally difficult to achieve. The acid/ammonium salt aqueous solution refers to an aqueous solution of a salt that is a reaction product or reaction product mixture of an acid or an acidic salt and ammonia, aqueous ammonia, or an ammonia compound, and typically includes (1) It can be prepared by dissolving the acid/ammonium salt or (2) adding an acid and ammonia water or ammonia gas to water. In order to adjust the aqueous solution to a desired pH value, for example, ammonia water, ammonia gas, or the acid may be appropriately added to the aqueous solution. If necessary, it is also possible to add a suitable buffer to effectively maintain the desired PH value. Note that the salt component of the acid/ammonium salt aqueous solution may be a mixture of two or more types of salts. As the acid component of the salt of the acid/ammonium salt aqueous solution, inorganic acids and organic acids or acid salts thereof can be used. Examples of inorganic acids include phosphoric acid, hydrochloric acid, sulfurous acid, sulfuric acid, nitric acid, aluminum chloride, aluminum sulfate, Typical examples include monobasic aluminum phosphate, monobasic calcium phosphate, aluminum nitrate, etc., and examples of organic acids include oxalic acid, citric acid, acetic acid, tartaric acid, etc., but are not limited to these.
Note that representative acid/ammonium salts include ammonium phosphate, ammonium sulfate, ammonium nitrate, ammonium chloride, ammonium acetate, etc., but in general, primary, secondary, and/or tertiary ammonium phosphates are particularly preferred. .
Examples of the base material in the present invention include asbestos cement board,
Asbestos perlite board, calcium silicate board, asbestos cement calcium silicate board, gypsum board, mortar board, concrete board, pulp cement board,
Includes wood chip cement boards, GRC (glass fiber reinforced cement) boards, CFRC (carbon fiber reinforced cement) boards, SFRC (steel fiber reinforced cement) boards, ALC boards, rock wool inorganic moldings, metal plates, glass plates, etc. The inorganic paint in the present invention is formed by mixing a water-soluble alkali metal silicate-based aqueous solution and powder solids such as a hardening agent, filler, and pigment. The amount of powder solids contained in the base coat in the above embodiments is from about 10% or more, and preferably from about 20% or more, based on the weight of the paint, retained as a paint in the aqueous silicate vehicle. (e.g., about 80% by weight). Amounts ranging from about 20 to about 60% by weight are generally used. The amount of powder solids in the topcoat in the embodiments described above ranges from less than about 20% by weight and preferably from less than about 10% to zero. Water-soluble alkali metal silicates have the general formula M 2 O.
xSiO 2 ·yH 2 O (However, M is an alkali metal belonging to Group 1 of the periodic table, and x and y are positive numbers.)
However, a modified water-soluble alkali metal silicate obtained by modifying this water-soluble alkali metal silicate with a polyvalent metal compound may also be used. Water-soluble alkali metal silicates include sodium silicate, potassium silicate, lithium silicate, etc. The value of x is not particularly limited, but is preferably from 2 to 5 from the viewpoint of film-forming properties, durability, etc. The value of y is not particularly limited either, as long as it is within a range that provides appropriate viscosity to the final composition paint, or within a range that does not cause any trouble in handling the composition. The modified water-soluble alkali metal silicate is produced by adding oxides, hydroxides, fluorides, carbonates, phosphates, etc. of polyvalent metals such as magnesium, aluminum, calcium, zinc, and zirconium to the water-soluble alkali metal silicate. It is made by dissolving and reacting one or more compounds, and contributes to improving the water resistance, chemical resistance, etc. of the coating film. In the inorganic coating material of the present invention, one type or a mixture of two or more of these water-soluble alkali metal silicates or modified water-soluble alkali metal silicates can be used. Practically speaking, sodium silicate is excellent in terms of film-forming properties, adhesion, low cost, etc., and in the present invention, even when one type of sodium silicate is used, an excellent inorganic coating film can be obtained. The amount of the alkali metal silicate added is about 7% or more, preferably about 10% or more, more preferably about 15% or more, and typically about 15% or more, based on the weight of the paint.
The range is approximately 60%. The curing agent for the above-mentioned water-soluble alkali metal silicate or modified water-soluble alkali metal silicate includes polyvalent metal oxides such as zinc oxide, magnesium oxide, and aluminum oxide; polyvalent metals such as magnesium hydroxide and aluminum hydroxide. Hydroxide; Polyvalent metal carbonates such as zinc carbonate and magnesium carbonate; Polyvalent metal phosphates such as magnesium phosphate, aluminum phosphate, and zinc phosphate; Silica fluoride such as zinc silicofluoride and aluminum silicofluoride compounds; organic compounds such as glyoxal and oxalamide; one of these curing agents
Use one type or two or more types. The effective amount of curing agent is about 1% or more, preferably about 3% by weight of the coating.
% or more, typically about 5% or more. Examples of fillers include granular materials such as silica stone, alumina, and glass powder; flat materials such as clay and mica; and fibrous materials such as asbestos and glass fiber powder. Pigments include titanium dioxide, red iron, yellow lead, chrome green, ultramarine blue, mars violet, cobalt blue, and carbon black. Other additives include known surfactants,
There are dispersants, antifoaming agents, thickeners, etc., which are added as necessary. Next, a method for forming an inorganic coating film according to the present invention will be explained. In the present invention, the first layer is obtained by applying a water-soluble alkali metal silicate paint containing a hardening agent, filler, pigment, etc., and after primary drying, the powder solid content of the hardening agent, filler, pigment, etc. A second layer is obtained by applying a water-soluble alkali metal silicate paint that does not contain or contains small amounts of hardeners, fillers, pigments, thickeners, etc., and after secondary drying, An inorganic coating film can be formed by immersing it in an acid/ammonium aqueous solution, then immersing it in water, and finally drying it. In the above embodiment, since the first layer contains a relatively large amount of solid powder such as a curing agent, filler, and pigment, a relatively porous coating film can be formed by primary drying. When this first layer is coated with a water-soluble alkali metal silicate paint that does not contain powder solids or contains small amounts of hardeners, pigments, thickeners, etc.
A part of it penetrates into the first layer, making the first layer a dense layer, and a part of it forms a transparent glaze-like thin film on the upper surface of the first layer that does not contain powder solids or contains a small amount of powder solids as a second layer. do. After that, secondary drying is performed at a temperature that does not cause foaming of the second layer, and the alkali metals in the coating film are selectively and forcibly removed by acid ions by immersion in an acid/ammonium salt aqueous solution with the above-mentioned PH value. In addition to curing the coating film by removing it, it is thought that a portion of the acid also reacts with components in the coating film to bring about a curing effect. After that, by immersing the paint film in water, residual unreacted acids, ammonium salts, and other substances in the paint film and base material are removed, and when this is dried, the paint film shrinks and fine cracks are uniformly removed. Occur. The characteristics of the present invention can be summarized as follows: (1) The surface of the coating film has a transparent glaze-like appearance, and has a good appearance and texture. (2) If a coating film is manufactured by chemically curing with a weakly acidic to neutral acid/ammonium salt aqueous solution, the coating film will harden more uniformly and slowly compared to the heat curing method, so fine particles will be uniformly formed on the coating film. A crack occurs. The cracks generated in this way are so fine that contaminants cannot penetrate, and even if the base material undergoes dimensional changes or deflections due to water absorption expansion, drying shrinkage, etc., the uniform cracks will disperse and absorb stress. Large cracks that cause a decrease in stain resistance no longer occur, and stain resistance is good. (3) Treatment with an acid/ammonium salt aqueous solution removes alkali metals in the coating film that become efflorescence components, resulting in a coating film with excellent efflorescence resistance. Furthermore, when using a cement material such as an asbestos-cement board or a calcium silicate board as the base material of the present invention, high-temperature heating is not required, and after drying at a relatively low temperature, the above-mentioned PH
Because it is cured with aqueous acid/ammonium salt solution, it does not cause deterioration of the base material. Furthermore, since the free Ca component that becomes the efflorescence component in the base material can be fixed with acid, the efflorescence resistance can be improved. Furthermore, base materials containing asbestos or glass fiber as reinforcing materials will not be deteriorated. It is better to add a curing agent to the undercoat paint forming the first layer in order to improve the adhesion with the base material and the curing properties of the topcoat film, and also to improve the strength of the paint film.
It is better to add solid substances such as fillers to provide functions such as durability and to uniformly generate fine cracks. In this way, the undercoat film layer is
In addition to having the function of a coating film, it also plays the role of allowing the top coat to penetrate appropriately and reacting with the unreacted curing agent in the undercoat layer to supplement the hardening of the top coat. In addition, a surfactant, an antifoaming agent, a thickener, etc. may be added as necessary. Water-soluble alkali metal silicate is also used for the top coat that forms the second layer, but in order to give the dense film stain resistance, gloss, smoothness, aesthetics, etc., hardeners, fillers, etc. Do not add solids or
Alternatively, a hardening agent, a pigment, etc. may be added in small amounts to prevent foaming during heating, coloring, etc. so as not to cause a decrease in the above-mentioned performance. In addition, in the above embodiment where only the top coating is used, it is preferable to add the minimum necessary amount of curing agent. It is also desirable to use a water-soluble curing agent (glyoxal) in combination. The primary drying of the undercoat after application is sufficient as long as the undercoat dries uniformly, and may be maintained at room temperature to about 100° C. for about 1 minute to 60 minutes. The secondary drying of the top coat after application differs depending on the type of curing agent, but it does not completely cure the paint film and allows the alkali metal components to be selectively and efficiently eluted and removed in the next chemical treatment process, and the top coat does not completely cure. The conditions are such that the layer does not foam. Typically room temperature to approx.
It may be kept at 150°C for about 30 minutes to 48 hours. If the PH value of the acid/ammonium aqueous solution is about 3.5 or less, the elution rate of the alkali metal components in the coating film becomes rapid, and the elution of coating film components other than the alkali metal components becomes intense, leading to the occurrence of large cracks, strength loss, etc. It causes a decrease in durability, gloss, smoothness, and aesthetics. In addition, cement-based base materials and materials to which asbestos or the like is added as a reinforcing material are more likely to be eroded. When the PH value is about 10.0 or more, components other than alkali metal components will elute more and the gloss of the coating film will decrease.
Smoothness and aesthetics deteriorate. Normally, as a chemical treatment condition, the concentration of acid/ammonium salt aqueous solution is the above-mentioned PH.
from about 0.2 to about 20% by weight and typically from about 0.5 to about 10% by weight, subject to adjustment to a range.
Processing liquid temperature is room temperature to approximately 60℃, processing time is approximately 1 to 24
About an hour is desirable. In short, regarding the chemical treatment conditions, it is necessary to use a chemical solution that can selectively remove the alkali metal components in the coating film at an appropriate elution rate and has a pH value that does not easily attack the base material components. After the chemical treatment with the acid/ammonium salt aqueous solution, the coating film is immersed in water to remove unreacted water-soluble substances such as the acid/ammonium salt in the coating film and the base material. Generally, immersion in water can be carried out for about 1 to 24 hours. Note that, if the material is immersed in saline solution or the like instead of immersed in water, the immersion and removal time can be reduced to about half. Hereinafter, typical examples of the present invention will be explained in detail using Examples and Comparative Examples. Example 1 (Example) (1) Preparation of paint For the undercoat paint, ingredients other than the sodium silicate aqueous solution, surfactant, and antifoaming agent were mixed in a pot mill for 24 hours from the formulation shown below, and the remaining ingredients were added to the mixture for 15 hours.
It was prepared by stirring the screw for a minute. Preparation of undercoat paint Sodium silicate aqueous solution (40% liquid)
100 [parts by weight] Zinc oxide 30 〃 Silica stone powder 40 〃 Sodium tripolyphosphate 2 〃 Titanium white 20 〃 Water 90 〃 Surfactant (5% liquid) 1 〃 Antifoaming agent (5% liquid) 1 〃 Top coat is as below The formulation shown was prepared by mixing and stirring. Preparation of top coat paint Sodium silicate aqueous solution (40% liquid)
100 [parts by weight] Water 100 〃 Surfactant (5% liquid) 1 〃 Antifoaming agent (5% liquid) 1 〃 (2) Painting Apply the undercoat to a calcium silicate board (thickness 3 mm) twice by air spraying. The film was coated separately to a dry film thickness of approximately 50 μm, and primary drying was performed at 80° C. for 10 minutes. Next, the coated board with the top coat is air sprayed to a dry film thickness of approximately 5.
It was coated to a thickness of μm, and secondary drying was performed at 130°C for 3 hours. This was added to an aqueous ammonium phosphate solution at 30°C (monohydric ammonium phosphate 2.5
%, and diammonium phosphate 2.5%, PH
6.5) for 8 hours, further immersed in water for 12 hours, washed with water, and dried at 80°C. Example 2 (Example) (1) Preparation of paint A paint was prepared in the same manner as in Example 1 except that the formulation was changed as shown below. Preparation of undercoat paint Sodium silicate aqueous solution (40%) 60 [parts by weight] Potassium silicate aqueous solution (30% liquid) 40 〃 Aluminum polyphosphate 10 〃 Zinc oxide 10 〃 Silica powder 50 〃 Potassium pyrophosphate 2 〃 Aerosil 0.5 〃 Red iron 10 〃 Water 80 〃 Surfactant (5% liquid) 1 〃 Antifoaming agent (5% liquid) 1 〃 Top coat paint was prepared by mixing and stirring using the formulation shown below. Preparation of top coat paint Sodium silicate aqueous solution (40% liquid)
100 [parts by weight] Red iron 10 〃 Potassium pyrophosphate 0.5 〃 Water 100 〃 Surfactant (5% liquid) 1 〃 Antifoaming agent (5% liquid) 1 〃 (2) Painting Apply the undercoat paint to an asbestos slate board (3 mm thick) ) with air spray to a dry film thickness of approximately 40 μm, leave it in the air for 30 minutes, and then apply air spray to a painted board that has been primed with top coat paint to a dry film thickness of approximately 10 μm. Paint it so that
Drying was carried out at 120°C for 5 hours. This was immersed for 6 hours in an ammonium phosphate aqueous solution at 40°C (adjusted the pH value to 7.0 by blowing ammonia gas into a 5% phosphoric acid solution), and then immersed in a 0.5% saline solution for 5 hours.
After soaking for an hour, it was washed with water and dried in the air. Example 3 (Example) (1) Preparation of paint A coating material was prepared in the same manner as in Example 1 except that the formulation was changed as shown below. Preparation of undercoat paint Sodium silicate aqueous solution (40% liquid) 65 [parts by weight] Potassium silicate aqueous solution (30% liquid) 20 〃 Lithium silicate aqueous solution (25% liquid) 15 〃 Magnesium polyphosphate 15 〃 Zinc polyphosphate 10 〃 Alumina powder 40 〃 Synthetic mica 10 〃 Sodium pyrophosphate 2 〃 Cobalt blue 10 〃 Water 90 〃 Surfactant (5% liquid) 1 〃 Antifoaming agent (5% liquid) 1 〃 Top coat paint was prepared by mixing and stirring using the formulation shown below. . Preparation of topcoat paint Sodium silicate aqueous solution (40% liquid) 50 [parts by weight] Potassium silicate aqueous solution (30% liquid) 50 [parts by weight] Water 100 〃 Surfactant (5% liquid) 1 〃 (2) Painting Undercoat paint The coating was applied to a calcium silicate plate (4 mm thick) using air spray so that the dry film thickness was approximately 50 μm, and after being left in the air for 10 minutes,
The top coat was applied to a primed painted board by air spraying to a dry film thickness of approximately 10 μm, and dried at 130°C for 90 minutes. This was placed in an ammonium phosphate aqueous solution at 30°C (the pH value was adjusted to 8.0 by adding concentrated ammonia water to a 5% phosphoric acid solution).
After being immersed in water for 8 hours, and further immersed in 1% saline for 4 hours, it was washed with water and dried in the air. Comparative Example 1 (Example) (1) Preparation of paint Same as Example 1 (2) Painting The same painting as in Example 1 was carried out using a 5% phosphoric acid solution as the chemical treatment liquid. Comparative Example 2 (Example) (1) Preparation of paint Same as Example 1 (2) Painting Same painting as in Example 1 using 5% monoammonium phosphate aqueous solution (PH value 2) as the chemical treatment liquid I did this. Comparative Example 3 (Example) (1) Preparation of paint Same as Example 1 (2) Painting In Example 1, ammonium phosphate aqueous solution (concentrated ammonia water was added to 5% phosphoric acid solution and the pH value was 10.5) was used as the chemical treatment liquid. A similar coating was performed using The coating films of the above-mentioned Examples 1 to 3 and Comparative Examples 1 to 3 were tested according to the test method described later, and the results are shown in the table below.

【表】 ○:良い、△:やや悪い、×:悪い
なお上記の塗膜性能の試験方法は次の通りであ
る。 (1) 耐水性:20℃の水中に240時間浸漬。 (2) 促進耐候性:サンシヤインウエザーメーター
で500時間照射。 (3) 耐沸騰水性:100℃の沸騰した水中に5時間
浸漬。 (4) 耐白華性:試料の裏面を湿潤下において1日
放置した後1日風乾させることを1サイクルと
し、10サイクルを行なう。 (5) 耐汚染性:カーボンブラツクを10%混合した
ワセリンを塗り、1日放置後セツケン水を浸し
たガーゼでふきとる。 (6) 光沢:目視 (7) 耐酸性:10%HCl水溶液を15分間密着。 (8) 対アルカリ性:10%NaOH水溶液を15分間密
着。 (9) 密着性:ゴバン目試験(目数は2×2mmのも
のを100個) (10) 最大クラツク幅:3ケ月気中放置後、電子顕
微鏡により測定。 実施例 4 実施例1におけるリン酸アンモニウム水溶液の
かわりに、(1)硫酸アンモニウム、(2)硝酸アンモニ
ウム、(3)塩化アンモニウム、または(4)酢酸アンモ
ニウムの5重量%水溶液にアンモニアガスを吹き
込みPH値を7に調整した30℃の水溶液をそれぞれ
使用して10時間浸漬し、他は同様にして実施例1
の工程を繰り返した。得られた各塗装物の塗膜に
ついて、耐沸騰水性、耐白華性、耐汚染性および
光沢に関してテストした結果、いずれも異常なく
そして光沢は良好であつた。
[Table] ○: Good, △: Slightly bad, ×: Bad
The test method for the above coating film performance is as follows. (1) Water resistance: Immersed in water at 20℃ for 240 hours. (2) Accelerated weather resistance: Irradiated for 500 hours with a sunshine weather meter. (3) Boiling water resistance: Immersed in boiling water at 100℃ for 5 hours. (4) Efflorescence resistance: One cycle consists of leaving the back side of the sample in a humid environment for one day and then air-drying it for one day, and perform 10 cycles. (5) Stain resistance: Apply Vaseline mixed with 10% carbon black, leave it for a day, then wipe it off with gauze soaked in soapy water. (6) Gloss: Visual inspection (7) Acid resistance: Apply 10% HCl aqueous solution for 15 minutes. (8) Against alkalinity: Apply 10% NaOH aqueous solution for 15 minutes. (9) Adhesion: Goban test (100 pieces of 2 x 2 mm) (10) Maximum crack width: Measured using an electron microscope after being left in the air for 3 months. Example 4 Instead of the ammonium phosphate aqueous solution in Example 1, ammonia gas was blown into a 5% by weight aqueous solution of (1) ammonium sulfate, (2) ammonium nitrate, (3) ammonium chloride, or (4) ammonium acetate to adjust the PH value. Example 1 was immersed in a 30°C aqueous solution adjusted to 7 for 10 hours, and the other conditions were the same.
The process was repeated. The coating films of each of the obtained coatings were tested for boiling water resistance, efflorescence resistance, stain resistance, and gloss, and as a result, there were no abnormalities in all of them, and the gloss was good.

Claims (1)

【特許請求の範囲】 1 鉱物質基材上に、粉体固形分を含有する下塗
り用の水溶性アルカリ金属珪酸塩系水溶液塗料を
塗布して適度に乾燥させ、そして次に該下塗り用
塗料よりも該粉体固形分の含有量が実質的に小量
ないし零である水溶性アルカリ金属珪酸塩系水溶
液塗料を塗布して適度に乾燥した塗膜に、PH値が
3.5〜10.0の酸・アンモニウム塩系の水溶液を適
用し、水洗しそして乾燥することを特徴とする無
機質塗膜の形成方法。 2 該塗料の少なくとも下塗り用塗料が有効量の
硬化剤を含有する、特許請求の範囲第1項の塗膜
の形成方法。 3 該酸・アンモニウム塩系水溶液のPHが4〜9
の範囲である、特許請求の範囲第1または第2項
の塗膜の形成方法。 4 該下塗り用塗料に含有される該粉体固形分の
量が20重量%以上から該珪酸塩水溶液ベヒクルに
て塗料として保持される量までの範囲である、特
許請求の範囲第1、第2または第3項の塗膜の形
成方法。 5 水洗に使用する水が強塩基/強酸塩の希水溶
液である、特許請求の範囲第1〜4項のいずれか
の塗膜の形成方法。
[Claims] 1. A water-soluble alkali metal silicate-based aqueous solution paint for undercoat containing powder solids is applied onto a mineral substrate, dried appropriately, and then the undercoat paint is The PH value of a coated film coated with a water-soluble alkali metal silicate-based aqueous paint containing substantially little to no powder solids and dried appropriately.
A method for forming an inorganic coating film, which comprises applying an aqueous solution of an acid/ammonium salt of 3.5 to 10.0, washing with water, and drying. 2. The method of forming a coating film according to claim 1, wherein at least the undercoating coating material of the coating material contains an effective amount of a curing agent. 3 The pH of the acid/ammonium salt aqueous solution is 4 to 9.
A method for forming a coating film according to claim 1 or 2, which is within the range of. 4. Claims 1 and 2, wherein the amount of the powder solid content contained in the undercoating paint ranges from 20% by weight or more to the amount retained as a paint in the silicate aqueous solution vehicle. Or the method for forming a coating film according to Section 3. 5. The method for forming a coating film according to any one of claims 1 to 4, wherein the water used for washing is a dilute aqueous solution of a strong base/strong acid salt.
JP20667582A 1982-11-24 1982-11-24 Formation of inorganic paint coated film Granted JPS5995971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20667582A JPS5995971A (en) 1982-11-24 1982-11-24 Formation of inorganic paint coated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20667582A JPS5995971A (en) 1982-11-24 1982-11-24 Formation of inorganic paint coated film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6494887A Division JPH0236311B2 (en) 1987-03-19 1987-03-19 MUKISHITSUTOMAKUNOKEISEIHO

Publications (2)

Publication Number Publication Date
JPS5995971A JPS5995971A (en) 1984-06-02
JPS6239027B2 true JPS6239027B2 (en) 1987-08-20

Family

ID=16527251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20667582A Granted JPS5995971A (en) 1982-11-24 1982-11-24 Formation of inorganic paint coated film

Country Status (1)

Country Link
JP (1) JPS5995971A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287477A (en) * 1985-06-13 1986-12-17 Inax Corp Formation of inorganic coating film
JP5207575B2 (en) * 2000-09-13 2013-06-12 アクゾ ノーベル ナムローゼ フェンノートシャップ Steel primer coating
JP2020138882A (en) * 2019-02-28 2020-09-03 株式会社グリーンドゥ Surface protective and decorative construction method for cement-based structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947249A (en) * 1972-09-02 1974-05-07
JPS5137167A (en) * 1974-09-25 1976-03-29 Marukei Motsuko Kk KOKYUTEKIRITSUTAICHOKOKUMOYONOFUKEISARETA KESHOBANNOSEIZOHOHO

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947249A (en) * 1972-09-02 1974-05-07
JPS5137167A (en) * 1974-09-25 1976-03-29 Marukei Motsuko Kk KOKYUTEKIRITSUTAICHOKOKUMOYONOFUKEISARETA KESHOBANNOSEIZOHOHO

Also Published As

Publication number Publication date
JPS5995971A (en) 1984-06-02

Similar Documents

Publication Publication Date Title
US3977888A (en) Inorganic coating compositions with alkali silicate
JPH0318514B2 (en)
JPS648593B2 (en)
JPS6239027B2 (en)
KR101045699B1 (en) Method for waterproofing and antifouling of red bricks
US2354350A (en) Coated structural material
US3345194A (en) Organic ammonium silicate coating compositions
JPH0236311B2 (en) MUKISHITSUTOMAKUNOKEISEIHO
US3663290A (en) Temperature resistant coating and method
JPS6351998B2 (en)
JP2866923B2 (en) Transparent glassy forming composition and method for forming coating film
KR20110012682A (en) Inorganic paint composition, article using the same and usages of the same
JPS5896876A (en) Formation of wear and corrosion resistant film on metallic material
JPH10225659A (en) Formation of inorganic coating film
JPH0450183A (en) Formed cement product and production thereof
JP2004298875A (en) Building material with coating film and production method thereof
JP2001058378A (en) Building material having coating film and production thereof
JP2001059290A (en) Wall panel and unit bathroom
JPH09239314A (en) Formation of inorganic coating film
RU2118975C1 (en) Method of silicate facade coating producing
US20010027735A1 (en) Methods of producing a water-repellent product, and product and method for waterproofing a surface of a building material
JP2002239451A (en) Building material and coating film forming method
JPS5829154B2 (en) Mukitoriyoutomakunoatoshiyorihou
JPH09234423A (en) Formation of inorganic coating film
JP3417397B2 (en) Inorganic paint