JPS6238753B2 - - Google Patents

Info

Publication number
JPS6238753B2
JPS6238753B2 JP55079670A JP7967080A JPS6238753B2 JP S6238753 B2 JPS6238753 B2 JP S6238753B2 JP 55079670 A JP55079670 A JP 55079670A JP 7967080 A JP7967080 A JP 7967080A JP S6238753 B2 JPS6238753 B2 JP S6238753B2
Authority
JP
Japan
Prior art keywords
character pattern
input character
pattern
standard
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55079670A
Other languages
English (en)
Other versions
JPS575182A (en
Inventor
Atsuhito Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP7967080A priority Critical patent/JPS575182A/ja
Publication of JPS575182A publication Critical patent/JPS575182A/ja
Publication of JPS6238753B2 publication Critical patent/JPS6238753B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/75Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
    • G06V10/751Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
    • G06V10/7515Shifting the patterns to accommodate for positional errors

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Databases & Information Systems (AREA)
  • Artificial Intelligence (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Character Discrimination (AREA)

Description

【発明の詳細な説明】
本発明は、文字認識処理方式、特に認識対象と
なる文字パターンの幾つかを標準文字パターンと
して記憶部にあらかじめ格納しておき、標準文字
パターンと入力文字パターンとの特徴点対応から
解析写像関数を決定し、この解析写像関数を用い
て入力文字パターンを変形操作し、解析写像関数
で写像された入力文字パターンと標準文字パター
ンとを2次元平面上でマツチングし、その2つの
パターンの類似度により認識の成否を決定し文字
認識をするようにした文字認識処理方式に関する
ものである。 従来の文字認識処理方式としては、構造解析法
等に代表される特徴空間上でのマツチング方式と
2次元平面上での直接マツチング方式とが存在す
る。そして前者の構造解析法等に代表される特徴
空間上でのマツチング方式はその文字パターンの
情報損失が生じ易い特徴空間でのマツチングであ
り、文字構成要素の接続関係を利用しすぎている
ため2次元図形として見れば問題にならないよう
な接続関係の乱れにも大きな影響を受ける。また
後者の2次元平面上での直接マツチング方式は文
字パターンの変形に弱く、従がつて手書き文字や
低品質の印刷文字には適用できない欠点がある。 本発明は、文字パターンの変形に弱いという欠
点をもつ直接マツチング法に解析写像関数を導入
し、入力文字パターンに該解析写像関数を用いて
写像を行ない入力文字の変形に対して対処できる
ようにするとともに認識率の向上をはかることが
可能となる文字認識処理方式を提供することを目
的としている。そしてそのため本発明の文字認識
処理方式は標準文字パターンをあらかじめ記憶部
に格納しておき、入力文字のパターンが前処理
部、特徴抽出部、認識照合部の各処理過程を経て
上記記憶部の内容と照合されて上記入力文字パタ
ーンに相当する標準文字を判定認識する文字認識
処理装置において、上記入力文字パターンと標準
文字パターンとの特徴点を対応させ、その特徴点
対応づけ処理から解析写像関数を決定する解析写
像関数計算部をそなえるとともに、該解析写像関
数を用いて上記入力文字パターンを変形する入力
文字パターン変形操作部をそなえ、該入力文字パ
ターンと標準文字パターンとを2次元平面上でマ
ツチングをとり、当該マツチングにおける類似度
を計算する類似度計算部の計算結果に基づいて入
力文字の認識を行なうようにしたことを特徴とし
ている。以下図面を参照しつつ説明する。 第1図は入力文字を一般的に2値化されたビツ
ト・パターンの配列をもつて表わした配列例、第
2図は第1図の配列を複素平面Zに変換する座標
系を示す複素平面図、第3図は複素平面上での移
動に対応する解析写像関数を定義するための説明
図、第4図は2値化された入力文字のビツト・パ
ターン配列の複素平面における文字パターンの一
例、第5図は第4図の文字に相当する複素平面に
おける標準文字パターン、第6図イないしニは文
字パターンに特徴を表わしている特徴点の例、第
7図は入力文字パターンの変形操作後の変形文字
パターンと標準文字パターンとのマツチングを説
明する説明図、第8図は本発明の文字認識処理方
式の一実施例構成を示す。 今説明を簡単にするため切り出された入力文字
の2値化パターンについて例えば所定の4個の点
を選び出し、標準文字パターンについても標準文
字パターン枠の中のそれに対する点をあらかじめ
決めておき、これらの各対応点(特徴点)を対応
づけて認識処理を行なうものとして説明する。 入力文字パターンは第1図に示す如き配列で表
わすことができ、一般に次の式のN×N次元の配
列で表わされる。 次にこのN×N次元の配例A(I、J)を配列
要素((N+1)/2、(N+1)/2)に原点座
標をもつ第2図の複素平面Zに変換する即ち重心
位置の変換を行なうとともに上記入力文字パター
ン(骨格線で表わされている)について複素平面
Zに変換する。複素平面Zに変換することによ
り、実座標系で直接パターン・マツチング方式で
行ないにくい文字の変形例えば平行移動、拡大と
縮小、文字の回転等の変形操作が可能となる。 配列要素(I、J)〓(I、J)
……(式2) 配列A(I、J)は上記重心位置を原点とする
ように変換され、配列A(I、J)の各要素は次
式で与えられる複素平面上の座標Z(I、Z)に
変換される。 〓=(I、J)={(I−N+1/2)+(J−N+1/2)i}/i ……(式3) ここでiで割つたのは第1図における配列
(I、J)と第2図における複素平面の座標軸と
を一致させるためである。このようにして入力文
字パターンは複素平面上に変換される。 なお、逆変換は次式で定義する。 次に複素平面上において解析写像関数f(Z)
を次の如く定義する。即ち第3図における複素平
面上Z1がZ2に移動したときの移動量をf(Z)と
おき (式5)で定義された解析写像関数f(Z)は
一般に良く知られている如く例えば定数項は平行
移動の作用を有し、また1次項は回転移動の作用
をもつものである。そこで(式5)で定義された
複数多項式を用いて例えば第4図の入力文字パタ
ーンと第5図の標準文字パターンとをパターン・
マツチングさせたときの移動量を求める。ここで
第4図の入力パターンと第5図の標準文字パター
ンとを対応させる点を見出し、これらの対応する
点即ちその文字が有する特有の特徴点を一致させ
パターン・マツチングを行なう。そして入力文字
パターンと標準文字パターンとの特徴点は の様に1:1に対応するものとする。またこの特
徴点は文字パターンにおいて安定的な特徴である
ことが望れ、例えば第6図イないしニの如き特徴
点が用いられる。第6図においてイの場合は端点
を示し第4図で示されているパターン「い」はこ
の端点が特徴点として使用されている。ロの場合
は十字点、ハの場合はT字点、ニの場合はホール
点をそれぞれ表わしている。従がつてパターン
「は」などにおいてはイの端点、ロの十字点、ニ
のホール点が特徴点として用いることができる。 上記ZIKとZSKが1対1に対応するとの仮定の
下で、入力文字パターンの特徴点ZIKを標準文字
パターンの対応する特徴点ZSKに一致させること
から次式の連立多項式が成立する。 IK、ZSK(K=1、……4)は複素定数であ
るから実際には(式6)は連立1次複素方程式と
なり、この連立複素方程式を解くことによつて解
析写像関数f(Z)の係数ar(r=1、……
4)が決定される。 このようにして入力文字パターンの各特徴点を
標準文字パターンの各特徴点に一致させるような
解析写像関数
【式】が求められ る。この解析写像関数f(Z)を入力文字パター
ンの文字線構成要素すべてに適用することにより
写像が行なわれ、入力文字パターンの上記各特徴
点を標準文字パターンの対応する特徴点にいわば
強引に合致せしめた結果のパターン即ち入力文字
パターンの変形操作後の変形パターンが得られ
る。 第7図は入力文字パターンの変形操作後の変形
文字パターンと標準文字パターンとのマツチング
を説明する説明図で、図中実線は標準文字パター
ンを表わし、破線は第4図の入力文字パターンの
変形操作後の変形文字パターンを表わしている。 第7図において特徴点は標準文字パターン、入
力文字パターンの変形操作後の変形文字パターン
の両方とも一致するようにとられているからこれ
らの特徴点は一致している。そして入力文字が比
較対象にされている標準文字に相当するか否かの
照合として類似度を定量化する距離の概念を導入
する。即ち上記入力文字パターンの変形操作後の
変形文字パターンと標準文字パターンとの距離を
計算する。該距離を求めるため上記変形文字パタ
ーンと標準文字パターンとを該複素平面から上記
(式4)を用いて配列要素に逆変換する。逆変換
された配列要素の文字線に対し例えば3×3メツ
シユのマスクを用い例えば中央メツシユ以外の8
個のメツシユにおける配列要素の2値化の「1」
の数をかぞえて当該中央メツシユの値とするよう
にして全画素に対してそれぞれ値を求めてゆくよ
うにする。このような各配列要素の8近傍からの
ぼかしを行なうぼかし操作を上記変形文字パター
ンと標準文字パターンとの逆変換された配列要素
の各パターンに適用した上で次式の一般距離計算
式を用いて距離計算を行なう。 (式7)を用いて得られた距離の値に閾値をあ
らかじめ設定しておき、該距離の値で文字認識の
成否を決定する。なお、A(I、J)は入力文字
パターンに対応するものであり、B(I、J)は
標準文字パターンに対応するものであると考えて
よい。 第8図は本発明に係る文字認識処理方式の一実
施例構成で、図中符号1は前処理部、2は入力文
字パターンの記憶部、3は特徴点抽出決定部、4
は解析写像関数計算部、5は標準文字パターン群
の記憶部、6は入力文字パターン変形操作部、7
はぼかし操作部、8は類似度計算部、9は判定部
を表わしている。 第8図において入力文字パターンは前処理部1
で2値化、細線化処理または骨格線抽出を行なつ
て入力文字の骨格線化した入力文字パターンを得
る。該入力文字の骨格線化された入力文字パター
ンは入力文字パターンの記憶部2に記憶される。
そして該入力文字パターンから特徴点抽出決定部
3で特徴点抽出操作が行なわれる。一方標準文字
パターン群が各標準文字のどの特徴点を複素平面
上で対応させるかを前もつて定められた上でその
特徴点と一緒に標準文字パターン群の記憶部5に
記憶されており、特徴点抽出決定部3で得られた
入力文字パターンの特徴点と上記標準文字パター
ン群の記憶部5の標準文字パターンの特徴点とか
ら解析写像関数計算部4で解析写像関数を求める
(式6による処理を行なつて)。該解析写像関数を
用いて上記入力文字パターンの記憶部2に記憶さ
れている入力文字パターンにその写像を入力文字
パターン変形操作部6でほどこし変形操作がなさ
れる。該変形操作が行なわれた変形入力文字パタ
ーンと標準文字パターン群の記憶部5からの標準
文字パターンとはぼかし操作部7でそれぞれぼか
されたパターンとされ、入力文字パターンと標準
文字パターンとの類似度を定量的に計算する距離
が類似度計算部8で計算され、あらかじめ設定さ
れた閾値を有する判定部9で上記距離が判定され
る。上記距離が小さいとき認識判定の結果が判定
部9から出力される。上記距離が大きいとき非類
似との判定が出力され、解析写像関数計算部4か
らの各処理が行なわれる。 なお上記においては、第4図図示のZIKと第5
図図示のZSKとの対応づけが定まつているものと
して説明したが、ZIKとZSKとが予め固定的に定
められた座標位置の点として定められているもの
としてもよい。 以上説明した如く、本発明によれば、標準文字
パターンと入力文字パターンとの特徴点対応から
解析写像関数を決定し、該解析写像関数を用いて
上記入力文字パターンを変形操作するとともに解
析写像関数で写像された入力文字パターンと標準
文字パターンとを2次元平面上で直接的にマツチ
ングさせ、その距離を定量化して閾値と比較する
ようにしている。このため、文字の変形に影響さ
れることの少ない認識処理を行なうことが可能と
なる。
【図面の簡単な説明】
第1図は入力文字が2値化されたビツト・パタ
ーンの配列を示すことになる一般表示による配列
図、第2図は第1図の配列を複素平面に変換する
座標系を示す複素平面図、第3図は解析写像関数
を定義するための複素平面図形、第4図は2値化
された入力文字のビツト・パターン配列の複素平
面における文字パターンの一例、第5図は第4図
の文字に相当する複素平面における標準パター
ン、第6図イないしニは文字パターンにおける特
徴点を表わしている特徴点の一例、第7図は入力
文字パターンの変形操作後の変形文字パターンと
標準文字パターンとのマツチングを説明する説明
図、第8図は本発明の文字認識処理方式における
処理動作を説明する一実施例構成を示す。 図中1は前処理部、2は入力文字パターンの記
憶部、3は特徴点抽出決定部、4は解析写像関数
計算部、5は標準文字パターン群の記憶部、6は
入力文字パターン変形操作部、7はぼかし操作
部、8は類似度計算部、9は判定部をそれぞれ表
わす。

Claims (1)

    【特許請求の範囲】
  1. 1 標準文字パターンをあらかじめ記憶部に格納
    しておき、入力文字のパターンが前処理部、特徴
    抽出部、認識照合部の各処理過程を経て上記記憶
    部の内容と照合されて上記入力文字パターンに相
    当する標準文字を判定認識する文字認識処理装置
    において、上記入力文字パターンと標準文字パタ
    ーンとの特徴点を対応させ、その特徴点対応づけ
    処理から解析写像関数を決定する解析写像関数計
    算部をそなえるとともに、該解析写像関数を用い
    て上記入力文字パターンを変形する入力文字パタ
    ーン変形操作部をそなえ、該入力文字パターンと
    標準文字パターンとを2次元平面上でマツチング
    をとり、当該マツチングにおける類似度を計算す
    る類似度計算部の計算結果に基づいて入力文字の
    認識を行なうようにしたことを特徴とする文字認
    識処理方式。
JP7967080A 1980-06-13 1980-06-13 Character recognition processing system Granted JPS575182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7967080A JPS575182A (en) 1980-06-13 1980-06-13 Character recognition processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7967080A JPS575182A (en) 1980-06-13 1980-06-13 Character recognition processing system

Publications (2)

Publication Number Publication Date
JPS575182A JPS575182A (en) 1982-01-11
JPS6238753B2 true JPS6238753B2 (ja) 1987-08-19

Family

ID=13696606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7967080A Granted JPS575182A (en) 1980-06-13 1980-06-13 Character recognition processing system

Country Status (1)

Country Link
JP (1) JPS575182A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106503696B (zh) * 2016-12-05 2019-08-13 电子科技大学 一种针对视觉映射目标值的增强编码方法

Also Published As

Publication number Publication date
JPS575182A (en) 1982-01-11

Similar Documents

Publication Publication Date Title
CN107944020B (zh) 人脸图像查找方法及装置、计算机装置和存储介质
CN107784321B (zh) 数字绘本快速识别方法、系统及计算机可读存储介质
JP2010134957A (ja) パターン認識方法
Musavi et al. A vision based method to automate map processing
CN113486752B (zh) 基于心电信号的情感识别方法及系统
CN108805833A (zh) 基于条件对抗网络的字帖二值化背景噪声杂点去除方法
CN113920516B (zh) 一种基于孪生神经网络的书法字骨架匹配方法及系统
CN112749606A (zh) 一种文本定位方法和装置
CN108876776B (zh) 一种分类模型生成方法、眼底图像分类方法及装置
CN111986117A (zh) 一种算术作业批改系统及方法
CN112966685A (zh) 用于场景文本识别的攻击网络训练方法、装置及相关设备
CN110287911A (zh) 一种发票的内容识别方法、装置、设备及存储介质
EP0604687B1 (en) Method for deriving character features in a character recognition system
CN110414516B (zh) 一种基于深度学习的单个汉字识别方法
CN113628113A (zh) 一种图像拼接方法及其相关设备
CN112200789A (zh) 一种图像识别的方法及装置、电子设备和存储介质
CN111126160A (zh) 基于五笔输入法构建的智能汉字结构评价方法及系统
JPS6238753B2 (ja)
JP2702307B2 (ja) 指紋特徴修正システム
CN111797921A (zh) 一种图像数据对比方法及装置
CN112489687A (zh) 一种基于序列卷积的语音情感识别方法及装置
CN113591743B (zh) 书法视频识别方法、系统、存储介质及计算设备
CN110334667B (zh) 基于ircnn和mtcnn的具有尺度旋转不变性的静脉识别方法及系统
Ustenko et al. Geometric recognition method of rectangular areas on images
JPS5835674A (ja) オンライン手書文字特徴抽出方法