JPS623867B2 - - Google Patents

Info

Publication number
JPS623867B2
JPS623867B2 JP52159135A JP15913577A JPS623867B2 JP S623867 B2 JPS623867 B2 JP S623867B2 JP 52159135 A JP52159135 A JP 52159135A JP 15913577 A JP15913577 A JP 15913577A JP S623867 B2 JPS623867 B2 JP S623867B2
Authority
JP
Japan
Prior art keywords
weight
pmma
physical properties
pet
talc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52159135A
Other languages
Japanese (ja)
Other versions
JPS5488955A (en
Inventor
Kazumasa Kamata
Isao Sasaki
Hiroshi Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP15913577A priority Critical patent/JPS5488955A/en
Publication of JPS5488955A publication Critical patent/JPS5488955A/en
Publication of JPS623867B2 publication Critical patent/JPS623867B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は成形加工性に優れ、且つ成形品の均一
性、外観および寸法安定性に優れた成形品を製造
しうる強化熱可塑性樹脂組成物に関するものであ
る。 ポリエチレンテレフタレート(以下PETと略
記する)は耐熱性、耐薬品性、耐水性等の優れた
熱可塑性ポリマーであるが、結晶化速度が遅いた
め通常の成形方法による場合到達結晶化度に限界
があり成形加工性、物性に難点があり成形材料と
しての適用が限定されている。この点を改良する
ためにガライ繊維(以下GFと略記する)などの
繊維状充填材を添加し剛性を上げることによつて
成形加工性、物性を改良する方法が試みられてい
るが充分満足すべきものは得られていない。即ち
かかる方法による場合にはある程度成形加工性、
物性は改良されるが成形品の物性、外観の金型温
度依存性が大きく通常使用されている100℃以下
の金型温度では結晶化が不十分で結晶化して不透
明な内部と不定形に近い透明な外部からなる不均
一な外観と物性を有する成形品しか得られないと
いう欠点を有する。さらには繊維状充填材を添加
することによつて得られる成形品の強度や収縮率
等の物性に異方性が生じ、且つ寸法安定性が低下
するという欠点を有する。 一方ポリメチルメタクリレート(以下PMMA
と略記する)は耐候性、成形性共に良好な熱可塑
性材料であるが、いわゆる非晶性ポリマーである
ため繊維状充填材による補強効果が低く例えば
GFを充填しても耐熱性の低いものしか得られな
いという欠点を有する。 ところで通常強化熱可塑性樹脂に関して結晶性
ポリマーの異方性を改良するため非晶性ポリマー
をブレンドする方法が知られているが、この場合
成形品の異方性改良の反面で強度物性や耐熱性が
大巾に低下するという欠点を有する。 本発明者らは上述した如き現状に鑑み成形加工
性に優れしかも外観、均一性および寸法安定性に
優れた成形品を製造しうる樹脂組成物を得るべく
鋭意検討の結果PETに対する非晶性ポリマーと
してPMMAをブレンドしたものは他の非晶性ポ
リマーに比較してブレンド量あたりの物性低下率
が特異的に小さくしかもPETとPMMAおよびガ
ラス繊維を特定割合で組合わせることによつて上
述した如き欠点のない樹脂組成物としうること、
さらにこれにタルクあるいはガラス箔を配合せし
めることによりGFによる補強効果を阻害するこ
となく成形品の寸法安定性や耐熱性、剛性等の物
性を一層向上せしめうる樹脂組成物とすることを
見出し本発明を完成した。 即ち本発明の要旨とするところはポリエチレン
テレフタレート10〜90重量%、ポリメチルメタク
リレート5〜70重量%およびガラス繊維5〜50重
量%を配合してなる強化熱可塑性樹脂組成物なる
第1の発明とポリエチレンテレフタレート10〜90
重量%、ポリメチルメタクリレート5〜70重量
%、ガラス繊維5〜50重量%およびタルクあるい
はガラス箔30重量%以下を配合したものであり
且つガラス繊維およびタルクあるいはガラス箔の
総配合量が5〜60重量%である強化熱可塑性樹脂
組成物なる第2の発明とからなるものである。 本発明はPETとPMMAを溶融状態において
種々の割合で均一に混練し、さらにGFを配合す
ることによつてPETの成形加工性、外観および
寸法安定性を改良すると共にPMMAの強度物性
並びに耐熱性を改良した新規の強化熱可塑性樹脂
組成物を提供するものであり、本発明の樹脂組成
物から得られる成形品は白色不透明で均一な外観
と物性を有し、これらの金型温度依存性は極めて
小さい。さらに強度、収縮率の異方性が小さく寸
法安定性に優れ、且つ強度物性や耐熱性の良好な
バランスのとれたものとすることができる。 本発明において用いられるPETとはエチレン
テレフタレート単位を構成単位とする線状ポリエ
チレンテレフタレートポリマー、これに他の少量
の共重合しうる成分を共重合したポリマーであ
る。 一般に熱可塑性樹脂にGFを配合したものはGF
の集束剤が原因となつて形成時に熱着色するが
PETは成形温度が比較的高いために熱着色が一
層著しく、白着色をするためには二酸化チタン等
の顔料を多量に配合することが必要となり、その
結果成形品の物性低下を生ぜしめる。しかるに
PMMAをブレンドしたものは白度が極めて高
く、しかもブレンド量あたりの物性低下率が特異
的に小さい。このようなPMMAのブレンド効果
はポリスチレン、ポリアクリロニトリル、ポリカ
ーボネート等の他の非晶性プリマー、さらにはポ
リオレフイン、ポリアミド等の結晶性ポリマーを
ブレンドしても得られない特異的なものである。
さらにPMMAをブレンドして得られる成形品は
GF強化PETの大きな欠点である内外部の透明不
均一性や成形バリ、平滑性が改良され、しかも
100℃以下の低温金型で成形しても充分満足すべ
きものが得られる。 本発明においては上述したPETとPMMAとの
優れたブレンド効果はPETが10〜90重量%、
PMMAが5〜70重量%の範囲で配合されること
により初めて得られるものでありPMMAの配合
量が5重量%未満では不十分となり、またPET
が10重量%未満になると成形品の強度物性や耐熱
性が大巾に低下するため好ましくない。全般的な
物性、外観、成形加工性のバランスから見て
PET/PMMAの重量比が80/20〜40/60の範囲
が特に好ましい結果を与える。なお本発明の樹脂
組成物の特性を阻害しない範囲で耐熱性、強度等
の一部物性の向上を目的としてさらに第3成分ポ
リマーを配合することも可能であり、その一例を
挙げれば第3成分ポリマーとしてナイロン66やポ
リブチレンテレフタレートを配合することにより
強度、耐熱性が向上する。ここで第3成分ポリマ
ーの種類については特に限定されないがその添加
量は全組成物中15重量%以下であることが好まし
い。 本発明において用いられるGFとしては強化熱
可塑性樹脂に通常用いられているガラスロービン
あるいはガラスチヨツプドストランドが挙げられ
るが繊維長が0.5mm以下の粉末状のミルドフアイ
バーは補強性が低いため除外される。GFの配合
量としては5〜50重量%であり、5重量%未満で
は補強効果が不十分であり、また50重量%を超え
ると成形性が低下するので好ましくない。10〜35
重量%の範囲が物性、成形加工性の点から特に好
ましい。 さらに本発明においては上記GFに対してタル
クあるいはガラス箔を併用することによりGFに
よる補強効果を阻害することなく混練や成形加工
性をより一層向上させると共に得られる成形品の
寸法安定性や耐熱性、剛性等の物性をもより一層
向上せしめることができるという優れた特徴を有
する。 従来強化熱可塑性樹脂においては安価な無機粉
末状充填材を多量配合したり、あるいはGFと併
用してコスト低下や寸法安定性の向上を計ること
は知られているが粉末状充填材は補強性が低く
GFと併用すると一般にGFの補強効果をかえつて
低減させる傾向を示し、且つ比重が増大してプラ
スチツク本来の利点である軽量性を阻害するとい
う致命的な欠点がある。 本発明においては比重の小さいPMMAを用い
るため粉末状充填材による比重の増大は相殺され
全体的には上記のような軽量性の阻害は生じな
い。 本発明で使用するタルクあるいはガラス箔は
GFと併用することが重要でありタルクあるいは
ガラス箔単独の使用では上述した如き優れた効果
を発揮しない。そしてGFとタルクあるいはガラ
ス箔を併用する場合には強度、剛性の他にとりわ
け耐熱性の向上が顕著となる。このような効果は
他の粉末状充填材では得られない特異的なもので
ある。即ち通常用いられる炭酸カルシウム、硫酸
カルシウム、ウオラスナイトおよびミルドフアイ
バー等を併用しても耐熱性は特に向上せず引張強
度や衝撃強度等の物性はむしろ若干低下する傾向
を示す。一方PETの核剤として各種金属塩や酸
化物、安息香酸塩、炭素粉等が知られているがこ
れらは多量配合すると一様に強度物性を低下させ
る欠点がある。 本発明において用いられるタルクとしては平均
粒径が0.01〜10μの粉末状のものが好ましく用い
られる。またガラス箔としては平均粒径500μ以
下のフレーク状のものが好ましく用いられる。こ
れらタルクあるいはガラス箔の配合量は30重量%
以下であることが必要であり30重量%を超えると
比重が増大し、また成形加工性の点からしても好
ましくないものである。なおガラス繊維とタルク
あるいはガラス箔とを併用する場合の全樹脂組成
物中のこれら無機充填材の総配合量は5〜60重量
%の範囲であることが必要である。これら無機充
填材の総配合量が上記範囲を逸脱する場合には本
発明の目的とする樹脂組成物とすることができな
い。 本発明の実施態様の一例を示すと所定量のポリ
マー原材料をタンブラー等で混合したものを直接
射出成形に供する他、一度押出機等の適当な混練
機で溶融混練してペレツト化した後射出あるいは
加圧成形に供することにより成形品を得る。 以下実施例により本発明を具体的に説明する。 実施例1〜14、比較例1〜18 表1に示した所定量のポリマーと充填材および
0.1重量部の安息香酸ナトリウムをタンブラー中
で5分間混合した後40mmφのベント型押出機によ
り280℃で溶融混練して押出しペレツト化した。
これらペレツトを5オンス、36mmφのスクリユー
インライン射出成形機によりシリンダー温度280
℃、金型温度80℃又は140℃で、3.2厚1部ダンベ
ル試片、6.4mm厚熱変形温度測定用試片および110
mm×110mm×3mmの平板を成形した。これら試片
を用い引張強度を1号ダンベル試片よりASTM
D638により、アイゾツト衝撃強度を熱変形温度
測定用試片より2.5mmノツチでASTM D256によ
り、また熱変形温度を熱変形温度測定用試片より
ASTM D648に準じて測定した。成形品の外観は
平板について肉眼により比較した。均一性は成形
品の内外部での透明性で比較し、そりの有無は25
℃の恒温室中に48時間放置後の平板で調べた。成
形バリについては各試料共シヨートシヨツト圧+
5Kg/cm2で成形した平板で比較した。 これらの評価結果を表1に示す。 使用したポリマーと充填材は次の通りである。 ポリエチレンテレフタレート(PET):テトラ
クロルエタンとフエノールの等量混合溶媒中25
℃で測定した〔η〕が0.72のもの ポリメチルメタクリレート(PMMA):三菱レ
イヨン社製アクリペツトVH ポリスチレン(PST):旭ダウ社製スタイロン
666 ポリスチレン−アクリロニトリル共重合体
(PAS):菱和化成社製APH 高密度ポリエチレン(HDPE):三井石油化学社
製ハイゼツクス2100GP ナイロン66:宇部興産社製2020B ポリブチレンテレフタレート(PBT):東洋紡
績社製N1100 ガラス繊維(GF):旭フアイバーグラス社製
3mmチヨツプドストランド ガラス箔:日本硝子社製CF−150 タルク:林化成ミクロンホワイト5000A 物性、外観の評価結果と本発明の効果を明白に
する目的で同様な方法により検討した比較例の評
価結果を表2に示す。尚表1、表2中の部は全て
重量部である。 実施例2と比較例1〜5で明らかな様にPET
とPMMAのブレンド系は物性、外観共に良好な
ものが得られる。PMMAのかわりに非晶性ポリ
マーのPST、PASをブレンドしたものはそりと成
形バリでは差がないが白度、均一性の点で劣つて
いる。また結晶性ポリマーであるHDPE、ナイロ
ン66、PBT等をブレンドしたものは、白度、均
一性が劣る上にとりわけそりや成形バリが多く不
適当である。 次に実施例1〜4と比較例6〜9よりPETと
PMMAのブレンド系でもその配合量に適当な範
囲のあることがわかる。即ちPMMAが5重量%
未満(比較例8)では白度、均一性、そり、成形
バリに対する改良効果が小さくPET単独系(比
較例6)と類似のものしか得られない。一方
PETが10重量%未満(比較例9)では外観は良
好な反面、強度やとりわけ耐熱性が低くなり、
PMMA単独系(比較例7)と同水準になつて不
適当である。PET/PMMAの重量比は80/20〜
40/60の範囲が特に好ましく、実施例4のように
PET/PMMAの重量比が29/71とPMMAが多く
なると外観は良好であるが耐熱性が低下する傾向
を示している。なおこの様な場合でも、ナイロン
66やPBTの如き結晶性ポリマーでPMMAの一部
を置換えることによつて耐熱性を向上させること
が可能である(実施例5〜7)。但し第3成分ポ
リマーの添加量が15重量%以上になると外観の点
で本発明の効果を阻害することになり不適当であ
る(比較例10)。 実施例8はGFが10重量%の系であるが、実施
例2のGF30重量%の形に比較すると全般的に物
性が低下しているが外観は一様に良好である。
GFと共にタルク、ガラス箔を併用すると外観を
損なうことなく物性、特に耐熱性が著しく向上す
る(実施例9〜12)。この様な効果はタルクとガ
ラス箔に特異的なもので、比較例12〜16から明ら
かな如く一般に使用される他の無機充填材を任意
に併用しても強度、耐熱性の向上は認められず、
GF単独系(比較例11)より低い値を示してい
る。なおタルクでも30重量%以上(比較例17)に
なると押出作業性が悪くなり衝撃強度も低くなる
ので好ましくない。 実施例13、14は金型温度を140℃で成形したも
のであるが、タルクとGFを併用する方がGF単独
系より熱変形温度の金型温度依存性が小さくなつ
ている。比較例18はPETにGFを10重量%配合し
たものを140℃の金型で成型した結果であるが、
比較例11の80℃金型の場合に比較して強度物性が
低下し耐熱性が向上している。PMMAブレンド
系に比較して強度物性の金型温度依存性が大きく
140℃金型で成形しても均一性以外の白度、そ
り、成形バリ等の外観で劣つたものしか得られな
い。
The present invention relates to a reinforced thermoplastic resin composition that has excellent moldability and can produce molded articles with excellent uniformity, appearance, and dimensional stability. Polyethylene terephthalate (hereinafter abbreviated as PET) is a thermoplastic polymer with excellent heat resistance, chemical resistance, and water resistance, but due to its slow crystallization rate, there is a limit to the degree of crystallinity that can be achieved using normal molding methods. It has difficulties in moldability and physical properties, which limits its application as a molding material. In order to improve this point, attempts have been made to improve moldability and physical properties by adding fibrous fillers such as galai fibers (hereinafter abbreviated as GF) to increase rigidity, but none of them has been fully satisfactory. Kimono has not been obtained. In other words, when using such a method, there is a certain degree of moldability,
Although the physical properties of the molded product are improved, the physical properties and appearance of the molded product are highly dependent on the mold temperature, and at the mold temperature of 100°C or less, which is usually used, crystallization is insufficient and the product becomes crystallized, resulting in an opaque interior and an almost amorphous shape. It has the disadvantage that only molded articles with a transparent exterior and non-uniform appearance and physical properties can be obtained. Furthermore, the addition of fibrous fillers causes anisotropy in the physical properties such as strength and shrinkage rate of the resulting molded product, and also has the drawback that dimensional stability decreases. On the other hand, polymethyl methacrylate (hereinafter referred to as PMMA)
) is a thermoplastic material with good weather resistance and moldability, but because it is a so-called amorphous polymer, the reinforcing effect of fibrous fillers is low, such as
Even if filled with GF, only a product with low heat resistance can be obtained. By the way, a method of blending an amorphous polymer in order to improve the anisotropy of the crystalline polymer in a reinforced thermoplastic resin is known, but in this case, while improving the anisotropy of the molded product, it does not improve the strength properties or heat resistance. It has the disadvantage that the value decreases significantly. In view of the above-mentioned current situation, the present inventors have conducted intensive studies to obtain a resin composition that can produce molded products with excellent molding processability and excellent appearance, uniformity, and dimensional stability. PMMA blends have a uniquely smaller rate of decline in physical properties per blend amount than other amorphous polymers, and also avoid the above-mentioned drawbacks by combining PET, PMMA, and glass fibers in specific proportions. The resin composition can be made without
Furthermore, it was discovered that by blending talc or glass foil with this resin composition, a resin composition can be obtained which can further improve physical properties such as dimensional stability, heat resistance, and rigidity of molded products without inhibiting the reinforcing effect of GF. completed. That is, the gist of the present invention is the first invention, which is a reinforced thermoplastic resin composition comprising 10 to 90% by weight of polyethylene terephthalate, 5 to 70% by weight of polymethyl methacrylate, and 5 to 50% by weight of glass fiber. Polyethylene terephthalate 10~90
5-70% by weight of polymethyl methacrylate, 5-50% by weight of glass fiber, and 30% by weight of talc or glass foil, and the total amount of glass fiber and talc or glass foil is 5-60% by weight. % by weight of the reinforced thermoplastic resin composition. The present invention improves the moldability, appearance, and dimensional stability of PET by uniformly kneading PET and PMMA in various ratios in a molten state, and further blending GF, and improves the strength properties and heat resistance of PMMA. The purpose of the present invention is to provide a new reinforced thermoplastic resin composition with improved properties, and the molded products obtained from the resin composition of the present invention are white, opaque, and have uniform appearance and physical properties, and their mold temperature dependence is Extremely small. Furthermore, the anisotropy of strength and shrinkage rate is small, the dimensional stability is excellent, and the strength and physical properties and heat resistance are well balanced. The PET used in the present invention is a linear polyethylene terephthalate polymer having ethylene terephthalate units as a constituent unit, and a polymer obtained by copolymerizing this with a small amount of other copolymerizable components. Generally, thermoplastic resins containing GF are GF
The sizing agent causes heat coloring during formation.
Because the molding temperature of PET is relatively high, thermal coloring is even more pronounced, and in order to achieve white coloring, it is necessary to incorporate a large amount of pigment such as titanium dioxide, which results in a decrease in the physical properties of the molded product. However,
Products blended with PMMA have extremely high whiteness, and the rate of decline in physical properties per blend amount is uniquely small. Such a blending effect of PMMA is unique and cannot be obtained by blending other amorphous polymers such as polystyrene, polyacrylonitrile, and polycarbonate, or even by blending crystalline polymers such as polyolefin and polyamide.
Furthermore, molded products obtained by blending PMMA are
The major disadvantages of GF-reinforced PET, such as internal and external transparency non-uniformity, molding burrs, and smoothness, have been improved.
Even when molded in a low-temperature mold of 100°C or less, a sufficiently satisfactory product can be obtained. In the present invention, the above-mentioned excellent blending effect of PET and PMMA is achieved when PET is 10 to 90% by weight,
It can only be obtained by blending PMMA in a range of 5 to 70% by weight, and if the blending amount of PMMA is less than 5% by weight, it will be insufficient, and PMMA
If the amount is less than 10% by weight, the strength and heat resistance of the molded product will be significantly reduced, which is undesirable. From the balance of overall physical properties, appearance, and moldability
A PET/PMMA weight ratio in the range of 80/20 to 40/60 gives particularly favorable results. Note that it is also possible to further blend a third component polymer for the purpose of improving some physical properties such as heat resistance and strength within a range that does not impede the properties of the resin composition of the present invention. Strength and heat resistance are improved by blending nylon 66 and polybutylene terephthalate as polymers. The type of the third component polymer is not particularly limited, but the amount added is preferably 15% by weight or less based on the total composition. Examples of the GF used in the present invention include glass lobes or glass chopped strands that are commonly used in reinforced thermoplastic resins, but powdered milled fibers with a fiber length of 0.5 mm or less have low reinforcing properties. Excluded. The blending amount of GF is 5 to 50% by weight; if it is less than 5% by weight, the reinforcing effect will be insufficient, and if it exceeds 50% by weight, the moldability will deteriorate, which is not preferred. 10-35
A range of % by weight is particularly preferable from the viewpoint of physical properties and moldability. Furthermore, in the present invention, by using talc or glass foil in combination with the above-mentioned GF, kneading and molding processability are further improved without inhibiting the reinforcing effect of GF, and the dimensional stability and heat resistance of the resulting molded product are improved. , it has an excellent feature of being able to further improve physical properties such as rigidity. Conventionally, it is known that in reinforced thermoplastic resins, large amounts of inexpensive inorganic powder fillers are blended or used in combination with GF to reduce costs and improve dimensional stability, but powder fillers have poor reinforcing properties. is low
When used in combination with GF, it generally tends to reduce the reinforcing effect of GF, and the specific gravity increases, which is a fatal disadvantage of inhibiting the lightness that is the inherent advantage of plastics. In the present invention, since PMMA having a low specific gravity is used, the increase in specific gravity caused by the powdered filler is offset, and overall, the above-mentioned lightness is not inhibited. The talc or glass foil used in the present invention is
It is important to use it in combination with GF, and the use of talc or glass foil alone will not produce the excellent effects described above. When GF and talc or glass foil are used together, the improvement in heat resistance in addition to strength and rigidity is remarkable. Such an effect is unique and cannot be obtained with other powder fillers. That is, even if commonly used calcium carbonate, calcium sulfate, wallasnite, milled fiber, etc. are used in combination, the heat resistance does not particularly improve, and physical properties such as tensile strength and impact strength tend to deteriorate slightly. On the other hand, various metal salts, oxides, benzoates, carbon powder, etc. are known as nucleating agents for PET, but these have the disadvantage of uniformly lowering the strength and physical properties when added in large amounts. The talc used in the present invention is preferably in powder form with an average particle size of 0.01 to 10 microns. Moreover, as the glass foil, a flake-like glass foil with an average particle size of 500 μm or less is preferably used. The amount of these talc or glass foils is 30% by weight.
If it exceeds 30% by weight, the specific gravity increases and is also unfavorable from the viewpoint of moldability. In addition, when glass fiber and talc or glass foil are used together, the total amount of these inorganic fillers in the entire resin composition must be in the range of 5 to 60% by weight. If the total blending amount of these inorganic fillers deviates from the above range, the resin composition targeted by the present invention cannot be obtained. An example of an embodiment of the present invention is to directly injection mold a predetermined amount of polymer raw materials mixed in a tumbler or the like, or to melt and knead the mixture in an appropriate kneading machine such as an extruder to form pellets, and then inject or A molded article is obtained by subjecting it to pressure molding. The present invention will be specifically explained below using Examples. Examples 1 to 14, Comparative Examples 1 to 18 Predetermined amounts of polymers and fillers shown in Table 1 and
After mixing 0.1 parts by weight of sodium benzoate in a tumbler for 5 minutes, the mixture was melt-kneaded at 280°C using a 40 mm diameter vented extruder and extruded into pellets.
These pellets were molded into 5 ounces using a 36 mmφ screw in-line injection molding machine at a cylinder temperature of 280.
℃, mold temperature 80℃ or 140℃, 3.2 thickness 1 part dumbbell specimen, 6.4mm thickness heat deformation temperature measurement specimen and 110
A flat plate of mm x 110 mm x 3 mm was molded. Using these specimens, the tensile strength was determined from the No. 1 dumbbell specimen by ASTM.
D638 was used to measure the Izot impact strength using a 2.5 mm notch using a heat distortion temperature measurement sample. ASTM D256 was used to measure the heat distortion temperature using a heat distortion temperature measurement sample.
Measured according to ASTM D648. The appearance of the molded products was visually compared using a flat plate. Uniformity is compared by the transparency of the inside and outside of the molded product, and the presence or absence of warpage is determined by 25
The plate was examined after being left in a constant temperature room at ℃ for 48 hours. For molding burrs, shot shot pressure +
A flat plate molded at 5 kg/cm 2 was used for comparison. Table 1 shows these evaluation results. The polymers and fillers used are as follows. Polyethylene terephthalate (PET): 25% in a mixed solvent of equal amounts of tetrachloroethane and phenol
Polymethyl methacrylate (PMMA): Acrypet VH manufactured by Mitsubishi Rayon Co., Ltd. Polystyrene (PST): Styron manufactured by Asahi Dow Co., Ltd.
666 Polystyrene-acrylonitrile copolymer (PAS): Ryowa Kasei Co., Ltd. APH High-density polyethylene (HDPE): Mitsui Petrochemical Co., Ltd. HIZEX 2100GP Nylon 66: Ube Industries, Ltd. 2020B Polybutylene terephthalate (PBT): Toyobo Co., Ltd. N1100 Glass fiber (GF): Manufactured by Asahi Fiberglass Co., Ltd.
3mm chopped strand glass foil: CF-150 manufactured by Nippon Glass Co., Ltd. Talc: Hayashi Kasei Micron White 5000A Evaluation results of physical properties and appearance, and evaluation of comparative examples studied using the same method for the purpose of clarifying the effects of the present invention The results are shown in Table 2. All parts in Tables 1 and 2 are parts by weight. As is clear from Example 2 and Comparative Examples 1 to 5, PET
A blend system of PMMA and PMMA can be obtained with good physical properties and appearance. Blends of amorphous polymers PST and PAS instead of PMMA have no difference in warpage and molding burrs, but are inferior in terms of whiteness and uniformity. Blends of crystalline polymers such as HDPE, nylon 66, and PBT are not suitable for use, as they have poor whiteness and uniformity, and are particularly prone to warping and molding burrs. Next, from Examples 1 to 4 and Comparative Examples 6 to 9, PET and
It can be seen that there is an appropriate range for the blended amount of PMMA. That is, PMMA is 5% by weight.
If it is less than that (Comparative Example 8), the improvement effect on whiteness, uniformity, warpage, and molding burr is small, and only a product similar to that of a PET-only system (Comparative Example 6) can be obtained. on the other hand
When PET is less than 10% by weight (Comparative Example 9), the appearance is good, but the strength and especially the heat resistance are low.
It is at the same level as the PMMA-only system (Comparative Example 7), which is inappropriate. PET/PMMA weight ratio is 80/20 ~
A range of 40/60 is particularly preferred, as in Example 4.
When the PET/PMMA weight ratio is 29/71, which is a large amount of PMMA, the appearance is good, but the heat resistance tends to decrease. In addition, even in such cases, nylon
It is possible to improve heat resistance by substituting a portion of PMMA with a crystalline polymer such as 66 or PBT (Examples 5-7). However, if the amount of the third component polymer added exceeds 15% by weight, the effect of the present invention will be inhibited in terms of appearance, which is inappropriate (Comparative Example 10). Example 8 is a type containing 10% by weight of GF, and although the physical properties are generally lower than that of Example 2 containing 30% by weight of GF, the appearance is uniformly good.
When talc and glass foil are used together with GF, the physical properties, especially the heat resistance, are significantly improved without impairing the appearance (Examples 9 to 12). This effect is specific to talc and glass foil, and as is clear from Comparative Examples 12 to 16, no improvement in strength or heat resistance is observed even when other commonly used inorganic fillers are optionally used in combination. figure,
This value is lower than that of the GF alone system (Comparative Example 11). It should be noted that if talc is 30% by weight or more (Comparative Example 17), extrusion workability will deteriorate and impact strength will also decrease, which is not preferable. Examples 13 and 14 were molded at a mold temperature of 140° C., and when talc and GF were used in combination, the dependence of the heat distortion temperature on mold temperature was smaller than when GF was used alone. Comparative Example 18 is the result of molding PET containing 10% by weight of GF in a mold at 140°C.
Compared to the 80°C mold of Comparative Example 11, the strength properties are lower and the heat resistance is improved. The mold temperature dependence of strength properties is greater than that of PMMA blend systems.
Even when molded in a 140°C mold, the resulting product is inferior in appearance, such as whiteness, warpage, and molding burrs, in addition to uniformity.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 ポリエチレンテレフタレート10〜90重量%、
ポリメチルメタクリレート5〜70重量%およびガ
ラス繊維5〜50重量%を配合してなる強化熱可塑
性樹脂組成物。 2 ポリエチレンテレフタレート10〜90重量%、
ポリメチルメタクリレート5〜70重量%、ガラス
繊維5〜50重量%およびタルクあるいはガラス箔
30重量%以下を配合したものであり且つガラス繊
維およびタルクあるいはガラス箔の総配合量が5
〜60重量%である強化熱可塑性樹脂組成物。
[Claims] 1. 10 to 90% by weight of polyethylene terephthalate,
A reinforced thermoplastic resin composition comprising 5 to 70% by weight of polymethyl methacrylate and 5 to 50% by weight of glass fiber. 2 Polyethylene terephthalate 10-90% by weight,
5-70% by weight of polymethyl methacrylate, 5-50% by weight of glass fiber and talc or glass foil
Contains 30% by weight or less, and the total amount of glass fiber and talc or glass foil is 5% by weight or less.
Reinforced thermoplastic resin composition that is ~60% by weight.
JP15913577A 1977-12-26 1977-12-26 Reinforced thermoplastic resin composition Granted JPS5488955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15913577A JPS5488955A (en) 1977-12-26 1977-12-26 Reinforced thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15913577A JPS5488955A (en) 1977-12-26 1977-12-26 Reinforced thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JPS5488955A JPS5488955A (en) 1979-07-14
JPS623867B2 true JPS623867B2 (en) 1987-01-27

Family

ID=15687002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15913577A Granted JPS5488955A (en) 1977-12-26 1977-12-26 Reinforced thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS5488955A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210038844A (en) * 2019-09-25 2021-04-08 아쏘마 아이엔씨. Three-dimensional plastic impeller manufacturing method and impeller of centrifugal pump

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54103457A (en) * 1978-02-02 1979-08-14 Teijin Ltd Polyester resin composition and its production
DE4138574A1 (en) * 1991-11-23 1993-05-27 Basf Ag THERMOPLASTIC MOLDING MATERIALS BASED ON THERMOPLASTIC POLYESTERS AND METHYLMETHACRYLATE POLYMERISATS

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916742A (en) * 1972-06-02 1974-02-14
JPS50110451A (en) * 1974-02-13 1975-08-30

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916742A (en) * 1972-06-02 1974-02-14
JPS50110451A (en) * 1974-02-13 1975-08-30

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210038844A (en) * 2019-09-25 2021-04-08 아쏘마 아이엔씨. Three-dimensional plastic impeller manufacturing method and impeller of centrifugal pump

Also Published As

Publication number Publication date
JPS5488955A (en) 1979-07-14

Similar Documents

Publication Publication Date Title
US5382628A (en) High impact strength articles from polyester blends
CA1171575A (en) Polyester blends
JPH10152607A (en) Method and composition for reinforcing polyester resin
US5082897A (en) Polymer blends of polycarbonate, pctg and abs
CN111621123A (en) Low-warpage PET/PBT composite material and preparation method thereof
JPS5845253A (en) Polyester resin composition
US4661546A (en) High impact polyethylene terephthalate polyblends
US4845169A (en) High impact polyethylene terephthalate polyblends
JPS604216B2 (en) resin composition
CA1104734A (en) Unfilled thermoplastic molding compositions
JPH04198356A (en) Polyester resin composition
JPS623867B2 (en)
US5068274A (en) Secondary amides in polyethylene terephthalate molding compositions
US4351751A (en) Glass fiber reinforced polyethylene terephthalate resin composition
JPS6019334B2 (en) Reinforced polyethylene terephthalate composition
CN114605741B (en) Polypropylene composite material and preparation method and application thereof
JP3500279B2 (en) Polyester resin composition and molded article thereof
JPH0465103B2 (en)
US5223564A (en) Reinforced polyarylene sulfide resin composition and molded product thereof
JP2918283B2 (en) Reinforced resin composition
JPH041028B2 (en)
JPH0395265A (en) Resin composition
JP2788083B2 (en) Resin composition
JPS63264659A (en) Thermoplastic resin composition
US4908407A (en) Resin compositions