JPS6238525B2 - - Google Patents

Info

Publication number
JPS6238525B2
JPS6238525B2 JP56172107A JP17210781A JPS6238525B2 JP S6238525 B2 JPS6238525 B2 JP S6238525B2 JP 56172107 A JP56172107 A JP 56172107A JP 17210781 A JP17210781 A JP 17210781A JP S6238525 B2 JPS6238525 B2 JP S6238525B2
Authority
JP
Japan
Prior art keywords
gas turbine
generator
steam turbine
turbine
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56172107A
Other languages
Japanese (ja)
Other versions
JPS5874809A (en
Inventor
Ryoichiro Araki
Hideo Higuchi
Kanemichi Hashiguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP17210781A priority Critical patent/JPS5874809A/en
Publication of JPS5874809A publication Critical patent/JPS5874809A/en
Publication of JPS6238525B2 publication Critical patent/JPS6238525B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/12Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
    • F01K23/16Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled all the engines being turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Description

【発明の詳細な説明】 本発明は、同軸コンバインドプラント殊にその
主機回転体である発電機、ガスタービン及び蒸気
タービンの配列方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coaxial combined plant, particularly to an arrangement system for a generator, a gas turbine, and a steam turbine, which are the main rotating bodies of the coaxial combined plant.

第1図は従来の主機回転体配列方式を示し、発
電機1を中央に設置し、その両側にガスタービン
2及び蒸気タービン3を設置していわゆるC(ガ
スタービン)−G(発電機)−S(蒸気タービン)
配列としている。
Fig. 1 shows a conventional main engine rotating body arrangement system, in which a generator 1 is installed in the center, and a gas turbine 2 and a steam turbine 3 are installed on both sides of it, so-called C (gas turbine)-G (generator)- S (steam turbine)
It is an array.

このような従来のC−G−S配列方式は、しか
し、次のような欠点がある。
However, the conventional C-G-S arrangement method has the following drawbacks.

(1) 発電機の保守点検時(特にロータ引抜時)、
蒸気タービン又はガスタービンを分解する必要
がある。さらに、場合によつては、発電機ステ
ータのジヤツキアツプも必要となるため、開放
点検に要する期間がその分だけ長くなる。
(1) During maintenance and inspection of the generator (especially when removing the rotor),
It is necessary to disassemble the steam or gas turbine. Furthermore, in some cases, it may be necessary to jack up the generator stator, which lengthens the period required for overhaul inspection.

(2) 発電機が蒸気タービンとガスタービンとの中
間に位置するため、発電機ステータリード線の
引出スペースが横に張出し、その分だけ据付面
積を広く必要とする(この点従来の蒸気タービ
ン又はガスタービン単独プラントでは、発電機
基礎下空間を利用しそのまま軸方向に引出すこ
とができた)。
(2) Since the generator is located between the steam turbine and the gas turbine, the extraction space for the generator stator lead wires extends laterally, requiring a larger installation area (in this respect, compared to conventional steam turbines or In plants with a single gas turbine, it was possible to use the space under the generator foundation and pull it out in the axial direction).

(3) 蒸気タービン及びガスタービンのそれぞれに
スラスト軸受4の設置が必要であり、従つて相
互のロータの軸位置の移動および熱伸び差を吸
収するため上記スラスト軸受4の中間にフレキ
シブルカツプリング5を設置する必要がある。
しかして、このフレキシブルカツプリングは、
リジツトカツプリングに比して軸系振動特性上
好ましくなく、軸系の信頼性向上に対して不安
要素となつている。
(3) It is necessary to install a thrust bearing 4 in each of the steam turbine and the gas turbine, and therefore, a flexible coupling 5 is installed between the thrust bearings 4 to absorb the movement of the shaft positions of the rotors and the difference in thermal expansion. need to be installed.
However, this flexible coupling ring is
Compared to rigid couplings, it is unfavorable in terms of vibration characteristics of the shaft system, and is a source of concern for improving the reliability of the shaft system.

なお、第1図において、6はガスタービン2の
タービン部、7はその圧縮機部、8は起動装置、
9はリジツトカツプリング、10はスリツプリン
グであり、このスリツプリングは発電機励磁電流
を外部電源より供給するためのものである。
In FIG. 1, 6 is a turbine section of the gas turbine 2, 7 is a compressor section thereof, 8 is a starting device,
9 is a rigid coupling, and 10 is a slip ring, which is used to supply the generator excitation current from an external power source.

本発明は、以上述べた従来の欠点を解消するた
めになされたもので、同軸コンバインドプラント
における従来のC−G−S配列方式を改良したも
のである。
The present invention has been made to eliminate the above-mentioned conventional drawbacks, and is an improvement on the conventional C-G-S arrangement system in coaxial combined plants.

本発明は、同軸コンバインドプラントの主機回
転体の配列をガスタービン、蒸気タービン及び発
電機の順又は蒸気タービン、ガスタービン及び発
電機の順とし、ガスタービンと蒸気タービンとの
間の軸系にスラスト軸受を設置するとともに、各
回転体の結合をすべてリジツトカツプリングとし
たことを特徴とする。
The present invention arranges the main rotating bodies of a coaxial combined plant in the order of gas turbine, steam turbine, and generator, or in the order of steam turbine, gas turbine, and generator, and thrust thrust in the shaft system between the gas turbine and the steam turbine. It is characterized by the installation of bearings and the use of rigid couplings for all connections between the rotating bodies.

以下図面を参照して本発明の実施例について詳
述する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図において、1は発電機、2はガスタービ
ン、3は蒸気タービン、4はスラスト軸受、6は
ガスタービンのタービン部、7はその圧縮機部、
8は起動装置、9はリジツトカツプリング、10
はスリツプリングであり、同軸コンバンドプラン
トの主機回転体の配列はガスタービン2、蒸気タ
ービン3及び発電機1の順いわゆるC−S−G配
列方式となつている。また、この変形として、ガ
スタービン2と蒸気タービン3とを交替し、S−
C−G配列方式とすることもできる。
In FIG. 2, 1 is a generator, 2 is a gas turbine, 3 is a steam turbine, 4 is a thrust bearing, 6 is a turbine section of the gas turbine, 7 is a compressor section thereof,
8 is a starting device, 9 is a rigid coupling, 10
is a slip ring, and the main rotating bodies of the coaxial combined plant are arranged in the order of a gas turbine 2, a steam turbine 3, and a generator 1, which is a so-called C-S-G arrangement. In addition, as a modification of this, the gas turbine 2 and the steam turbine 3 are replaced, and the S-
A C-G arrangement method may also be used.

このようなC−S−G又はS−C−G配列方式
を採ることにより、発電機1は軸系の端に位置す
ることになるので、その電気系と蒸気系とを配置
上分離でき、また1個のスラスト軸受4をガスタ
ービン2と蒸気タービン3との間の軸系に設置す
るだけで各回転体の結合はすべてリジツトカツプ
リング9によりおこなうことができる。
By adopting such a C-S-G or S-C-G arrangement system, the generator 1 is located at the end of the shaft system, so the electrical system and the steam system can be separated in terms of layout. Further, by simply installing one thrust bearing 4 in the shaft system between the gas turbine 2 and the steam turbine 3, all the rotating bodies can be connected by rigid couplings 9.

すなわち、同軸コンバインドプラントにおい
て、全軸系のスラスト力としてガスタービン2及
び蒸気タービン3のスラスト力があるが、C−S
−G又はS−C−G配列にしてこれらガスタービ
ンスラスト力の作用方向と蒸気タービンスラスト
力の作用方向とを相互にキヤンセルさせてこれら
両スラスト力をバランスさせるようにすれば、ス
ラスト軸受4をガスタービン2と蒸気タービン3
との間の軸系にのみ設置し、このスラスト軸受に
より残りのスラスト力(これら両スラスト力を完
全に相殺することはできないことから残りのスラ
スト力が生じる)を受けるようにし、この残りの
スラスト力は十分に小さくすることができるので
スラスト軸受を共用することができるものであ
る。これにより、ガスタービン及び蒸気タービン
のそれぞれにスラスト軸受を設置する必要はなく
なり、したがつてフレキシブルカツプリングを設
ける必要性もなく、各回転体の結合をすべてリジ
ツトカツプリングによることができることにな
る。
That is, in a coaxial combined plant, the thrust force of the gas turbine 2 and the steam turbine 3 is the thrust force of the entire shaft system, but the C-S
-G or S-C-G arrangement so that the direction of action of the gas turbine thrust force and the direction of action of the steam turbine thrust force are mutually canceled and the two thrust forces are balanced, the thrust bearing 4 can be Gas turbine 2 and steam turbine 3
This thrust bearing is installed only in the shaft system between the Since the force can be made sufficiently small, the thrust bearing can be shared. This eliminates the need to install thrust bearings in each of the gas turbine and steam turbine, and therefore eliminates the need to provide flexible couplings, making it possible to connect all rotating bodies using rigid couplings. .

しかして、第2図においては、スラスト軸受4
は前述した如くガスタービン2と蒸気タービン3
との間の軸系(第2軸受11と第3軸受12との
中間)に設置されているとともに、各回転体1,
2,3の結合はすべてリジツトカツプリング9に
より行なわれているので、結合後は各ロータはこ
のスラスト軸受4を起点として運転中左、右に熱
伸びする。
Therefore, in FIG. 2, the thrust bearing 4
As mentioned above, the gas turbine 2 and the steam turbine 3
(intermediate between the second bearing 11 and the third bearing 12), and each rotating body 1,
2 and 3 are all connected by rigid couplings 9, so after they are connected, each rotor thermally expands from the thrust bearing 4 to the left and right during operation.

すなわち、ガスタービン2の車室は、スラスト
軸受4の近傍にて基礎に固定されているため、こ
の点を起点として左側に熱伸びするのでガスター
ビンの車室及びロータ間の熱伸びは問題なく吸収
できる。一方、蒸気タービン2の車室も、このス
ラスト軸受近傍にて基礎に固定されているため、
この点を起点として右側に熱伸びするので蒸気タ
ービンの車室及びロータの熱伸びが同一方向とな
り、熱伸差は容易に吸収可能となる。
In other words, since the casing of the gas turbine 2 is fixed to the foundation near the thrust bearing 4, thermal expansion occurs to the left from this point, so there is no problem with thermal expansion between the gas turbine casing and the rotor. It can be absorbed. On the other hand, since the casing of the steam turbine 2 is also fixed to the foundation near this thrust bearing,
Since the thermal expansion starts from this point to the right, the thermal expansion of the casing of the steam turbine and the rotor are in the same direction, and the difference in thermal expansion can be easily absorbed.

なお、スラスト軸受4をガスタービン2と蒸気
タービン3との間の軸系に設置する代りに蒸気タ
ービン3と発電機1との間の軸系に設置すると、
ガスタービン内にてロータの熱伸び量が大きくな
るので(ロータの熱伸びに蒸気タービン部の熱伸
びが加算されるため)、車室と接触する可能性が
あり、また接触しないように車室とロータとのク
リアランスを大きくとると性能低下が大きくなる
問題があり、したがつてこの方式は採用できない
ものである。
Note that if the thrust bearing 4 is installed in the shaft system between the steam turbine 3 and the generator 1 instead of installing it in the shaft system between the gas turbine 2 and the steam turbine 3,
Since the amount of thermal expansion of the rotor in the gas turbine increases (because the thermal expansion of the steam turbine section is added to the thermal expansion of the rotor), there is a possibility that it will come into contact with the casing, and the casing must be If the clearance between the rotor and the rotor is large, there is a problem in that the performance deteriorates significantly, and therefore this method cannot be adopted.

以上述べたように、本発明によれば、同軸コン
バインドの主機回転体の配列をガスタービン、蒸
気タービン及び発電機の順(C−S−G配列)又
は蒸気タービン、ガスタービン及び発電機の順
(S−C−G配列)にすることにより、発電機の
保守点検(特にロータの引抜)は他の主機回転体
を分解することなく行なうことができるので従来
よりも容易となり、またその電気系と蒸気系を配
置上分離できるので同軸コンバインドプラントの
全体配置に必要なスペースを小さくできるととも
にその配置(特に発電機のステータリード線の引
出し)が容易となる。しかも、このようなC−S
−G又はS−C−G配列を採ることにより、全軸
系に一個のスラスト軸受を設置するだけですなわ
ちスラスト軸受をガスタービンと蒸気タービンと
の間の軸系にのみ設置するだけで、各回転体の結
合をすべてリジツトカツプリングにより行なうこ
とができ、したがつて従来の如きフレキシブルカ
ツプリングを使用する必要性がないので軸系の振
動に関して信頼性の向上化を計ることができる。
As described above, according to the present invention, the main rotating bodies of a coaxial combined are arranged in the order of gas turbine, steam turbine, and generator (C-S-G arrangement) or in the order of steam turbine, gas turbine, and generator. (S-C-G arrangement) allows maintenance and inspection of the generator (particularly removing the rotor) to be performed without disassembling the other main rotating bodies, making it easier than before. Since the system and the steam system can be separated in terms of layout, the space required for the overall layout of the coaxial combined plant can be reduced, and the layout (especially drawing out the stator lead wires of the generator) becomes easier. Moreover, such C-S
By adopting the -G or S-C-G arrangement, it is possible to install only one thrust bearing in the entire shaft system, that is, to install the thrust bearing only in the shaft system between the gas turbine and the steam turbine, and each Since all of the rotating bodies can be connected by rigid couplings, there is no need to use conventional flexible couplings, and reliability can be improved with respect to vibrations of the shaft system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の同軸コンバインドプラントにお
ける主機回転体の配列方式を示す図、第2図は本
発明による同軸コンバインドプラントにおける主
機回転体の配列方式の一例を示す図である。 1……発電機、2……ガスタービン、3……蒸
気タービン、4……スラスト軸受、9……リジツ
トカツプリング。
FIG. 1 is a diagram showing an arrangement method of main engine rotating bodies in a conventional coaxial combined plant, and FIG. 2 is a diagram showing an example of an arrangement method of main engine rotating bodies in a coaxial combined plant according to the present invention. 1... Generator, 2... Gas turbine, 3... Steam turbine, 4... Thrust bearing, 9... Rigid coupling.

Claims (1)

【特許請求の範囲】[Claims] 1 主機回転体の配列をガスタービン、蒸気ター
ビン及び発電機の順又は蒸気タービン、ガスター
ビン及び発電機の順とし、ガスタービンと蒸気タ
ービンとの間の軸系にスラスト軸受を設置すると
ともに、各回転体の結合をすべてリジツトカツプ
リングとしたことを特徴とする同軸コンバインド
プラント。
1 The main engine rotating bodies are arranged in the order of gas turbine, steam turbine, and generator, or steam turbine, gas turbine, and generator, and a thrust bearing is installed in the shaft system between the gas turbine and the steam turbine, and each A coaxial combined plant characterized by using rigid couplings for all connections between rotating bodies.
JP17210781A 1981-10-29 1981-10-29 Coaxial combined plant Granted JPS5874809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17210781A JPS5874809A (en) 1981-10-29 1981-10-29 Coaxial combined plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17210781A JPS5874809A (en) 1981-10-29 1981-10-29 Coaxial combined plant

Publications (2)

Publication Number Publication Date
JPS5874809A JPS5874809A (en) 1983-05-06
JPS6238525B2 true JPS6238525B2 (en) 1987-08-18

Family

ID=15935673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17210781A Granted JPS5874809A (en) 1981-10-29 1981-10-29 Coaxial combined plant

Country Status (1)

Country Link
JP (1) JPS5874809A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6413438U (en) * 1987-07-10 1989-01-24
JP2004332722A (en) * 2003-05-10 2004-11-25 Atlas Copco Energas Gmbh Turbo-machine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5199256A (en) * 1989-01-26 1993-04-06 General Electric Company Overspeed protection for a gas turbine/steam turbine combined cycle
US5042247A (en) * 1989-01-26 1991-08-27 General Electric Company Overspeed protection method for a gas turbine/steam turbine combined cycle
US5099643A (en) * 1989-01-26 1992-03-31 General Electric Company Overspeed protection for a gas turbine/steam turbine combined cycle
US5069030A (en) * 1989-01-26 1991-12-03 General Electric Company Overspeed protection for a gas turbine/steam turbine combined cycle
US5042246A (en) * 1989-11-06 1991-08-27 General Electric Company Control system for single shaft combined cycle gas and steam turbine unit
US5301499A (en) * 1990-06-28 1994-04-12 General Electric Company Overspeed anticipation and control system for single shaft combined cycle gas and steam turbine unit
FR2719627B1 (en) * 1994-05-03 1996-06-14 Gec Alsthom Electromec Combined cycle electrical energy production unit comprising a gas turbine and a multi-module steam turbine.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AN ASME PUBLICTION=1963 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6413438U (en) * 1987-07-10 1989-01-24
JP2004332722A (en) * 2003-05-10 2004-11-25 Atlas Copco Energas Gmbh Turbo-machine
JP4557584B2 (en) * 2003-05-10 2010-10-06 アトラス・コプコ・エネルガス・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Turbo machine

Also Published As

Publication number Publication date
JPS5874809A (en) 1983-05-06

Similar Documents

Publication Publication Date Title
US6491497B1 (en) Method and apparatus for supporting rotor assemblies during unbalances
US4961310A (en) Single shaft combined cycle turbine
JP5128397B2 (en) Turbo machine
US8167531B2 (en) Method and apparatus for supporting rotor assemblies during unbalances
US5074109A (en) Low pressure turbine rotor suspension in a twin hub turbo-engine
EP0608266B1 (en) Gas turbine engine arrangement
EP1008726A3 (en) Fan decoupler system for a gas turbine engine
US20030210979A1 (en) Method and apparatus for supporting rotor assemblies during unbalances
US20050089392A1 (en) Rotor and bearing system for a turbomachine
GB2079402A (en) System for supporting a rotor in conditions of dynamic imbalance
US8545171B2 (en) Rotor for a gas turbine
JP3529137B2 (en) A power generation unit having a combined cycle and including a gas turbine and a steam turbine having a plurality of modules
US4487014A (en) Gas generator and turbine unit
CN101886574A (en) Stator casing having improved running clearance under thermal load
JP2019019751A (en) Gas turbine rotor and gas turbine generator
JPS6238525B2 (en)
JP2008519580A (en) Electromechanical equipment
RU2214514C2 (en) Cylindrical support for gas-turbine engine stator unit and stator unit of gas-turbine engine
US6259166B1 (en) Generator with double driving machinery
US5447025A (en) Combined gas turbine and steam turbine power plant
US10352326B2 (en) Assembly for an engine which can define a blade break-off test device
US8667772B2 (en) Clutched turbine wheels
RU195196U1 (en) GAS TURBINE ROTARY ASSEMBLY
US8388314B2 (en) Turbine inlet casing with integral bearing housing
JP3564441B2 (en) Single shaft combined cycle power plant