JPS5874809A - Coaxial combined plant - Google Patents

Coaxial combined plant

Info

Publication number
JPS5874809A
JPS5874809A JP17210781A JP17210781A JPS5874809A JP S5874809 A JPS5874809 A JP S5874809A JP 17210781 A JP17210781 A JP 17210781A JP 17210781 A JP17210781 A JP 17210781A JP S5874809 A JPS5874809 A JP S5874809A
Authority
JP
Japan
Prior art keywords
generator
gas turbine
turbine
steam turbine
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17210781A
Other languages
Japanese (ja)
Other versions
JPS6238525B2 (en
Inventor
Ryoichiro Araki
荒木 良一郎
Hideo Higuchi
樋口 英雄
Kanemichi Hashiguchi
橋口 兼道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP17210781A priority Critical patent/JPS5874809A/en
Publication of JPS5874809A publication Critical patent/JPS5874809A/en
Publication of JPS6238525B2 publication Critical patent/JPS6238525B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/12Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
    • F01K23/16Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled all the engines being turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

PURPOSE:To make it possible to easily carry out maintenance and management of a generator by disposing rotary bodies of the main engine of the titled plant into an arrangement in which a gas and steam turbines are provided on one side of the generator and rigid couplings are used in coupling rotary bodies respectively. CONSTITUTION:In the titled palnt, a generator E1, a gas turbine GT and a steam turbine ST3 which are rotary bodies of the main engine in the order of GT2-ST3-E1 or ST3-ST2-E1. Further, the generator E1 is coupled to a starting device 8 through a slip ring 10. A thrust bearing 4 is installed in the shaft system between the turbines GT2 and ST3, while the respective rotary systems 1-3 are coupled by rigid couplings 9. By this arrangement, at the time of maintenance and inspection of the generator E1, particularly at the time of drawing out the rotor, the operation is carried out without dismantling the turbines GT2 and ST3.

Description

【発明の詳細な説明】 本発明は、同軸コンバインドプラント殊にその主機回転
体である発電機、ガースタービン及び蒸気タービンの配
列方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coaxial combined plant, particularly to an arrangement system of a generator, a gar turbine, and a steam turbine, which are the main rotating bodies of the coaxial combined plant.

第1図は従来の主機回転体配列方式を示し1発電機1を
中央に設置し、その両側にガスタービン2及び蒸気ター
ビ/3を設置していわゆるC(ガス11−ヒフ)−G 
(発を機)−8(蒸気タービン)配列としている。
Figure 1 shows a conventional main engine rotating body arrangement system, in which a generator 1 is installed in the center, and gas turbines 2 and steam turbines 3 are installed on both sides of the generator 1, so-called C (gas 11-hi)-G
(from the start) -8 (steam turbine) arrangement.

このような従来のC−G−8配列方式は、しがし1次の
ような欠点がある。
Such a conventional CG-8 arrangement method has drawbacks such as first order.

(1) 発電機の保守点検時(IJI!jにロータ引抜
時)。
(1) During maintenance and inspection of the generator (when removing the rotor at IJI!j).

蒸気タービン又はガスタービンを分解する必要がある。It is necessary to disassemble the steam or gas turbine.

さらに−9,牛舎によっては1発電機ステータのジヤツ
キアップも必要となるため、開放点検に袈する期間がそ
の分だけ長くなる。
Furthermore, depending on the barn, it may be necessary to jack up the stator of the generator, which lengthens the period for overhaul inspection.

(2)  発電機が蒸気タービンとガスタービ/との中
間に位置するため1発電機ステータリード線の引出スペ
ースが横に張出し、その分だけ据付面体 積を広く必要とする(この点蕨来の蒸気タービン又はガ
スタービン単独プラントでは、発電機基礎工空間を利用
しそのまま軸方向に引出すことかできた)。
(2) Since the generator is located between the steam turbine and the gas turbine, the space for drawing out the stator lead wires of each generator extends laterally, requiring a larger installation surface area. In plants with a turbine or gas turbine alone, it was possible to use the generator foundation work space and pull it out in the axial direction).

(3)  蒸気タービン及びガスタービンのそれぞれに
スラスト軸受4の設置が必要であり、従って相互のロー
タの軸位置の移動および熱伸び差を吸収するため上記ス
ラスト軸受4の中間にフレキシブルカップリング5を設
置する必要がある。
(3) It is necessary to install a thrust bearing 4 in each of the steam turbine and the gas turbine. Therefore, a flexible coupling 5 is installed between the thrust bearings 4 to absorb the movement of the shaft positions of the rotors and the difference in thermal expansion. It is necessary to install it.

しかして、このフレキシブルカップリングは。But what about this flexible coupling?

リジットカップリングに比して軸系振動特性上好ましく
なく、軸系の信頼性向上に対して不安要素となっている
Compared to rigid couplings, this is unfavorable in terms of vibration characteristics of the shaft system, and is a cause for concern in improving the reliability of the shaft system.

なお、第1図において%6はガスタービン2のタービン
部、7をスその圧縮機部、8は起動装置、9はリジット
カップリング、10はスリップリングであり、このスリ
ップリングは発電機励磁電流を外部電源より供給するた
めのものである。
In Fig. 1, %6 is the turbine section of the gas turbine 2, 7 is the compressor section thereof, 8 is the starting device, 9 is the rigid coupling, and 10 is the slip ring, which is connected to the generator excitation current. This is to supply power from an external power source.

本発明は1以上述べた従来の欠点を解消するためになさ
れたもので、同軸コンバインドプラントにおける従来の
C−G−8配列方式を改良したものである。
The present invention has been devised to overcome one or more of the disadvantages of the prior art and is an improvement over the conventional C-G-8 arrangement in coaxial combined plants.

本発明は、同軸コンバインドプラントの主機同転体の配
列をガスタービン、蒸気タービン及び発電機の順又は蒸
気タービン、ガスタービン及び発電機の順とし、ガスタ
ービンと蒸気タービンとの間の軸系にスラスト軸受を設
置するとともに、各回転体の結合をすべてリジットカッ
プリングとしたことを特徴とする。
The present invention arranges the main rotors of a coaxial combined plant in the order of a gas turbine, a steam turbine, and a generator, or in the order of a steam turbine, a gas turbine, and a generator, and in a shaft system between the gas turbine and the steam turbine. It is characterized by the installation of thrust bearings and the use of rigid couplings for all connections between the rotating bodies.

以下図面を参照して本発明の実施例について詳述する。Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図において、1は発電機、2はガスタービン、3は
蒸気タービン、4はスラスト軸受、6はガスタービンの
タービン部、7はその圧縮機部、8は起動装置、9はリ
ジットカップリング、10はスリップリングであり、同
軸コンバンドグラフトの主機回転体の配列はガスタービ
ン2、蒸気タービン3及び発電機1の順いわゆるC−8
−G配列方式となっている。また、この変形として、ガ
スタービン2と蒸気タービン3とを交替し、5−C−G
配列方式とすることもできる。
In Fig. 2, 1 is a generator, 2 is a gas turbine, 3 is a steam turbine, 4 is a thrust bearing, 6 is a turbine section of the gas turbine, 7 is a compressor section thereof, 8 is a starting device, and 9 is a rigid coupling. , 10 is a slip ring, and the main rotating bodies of the coaxial combined graft are arranged in the order of gas turbine 2, steam turbine 3, and generator 1, so-called C-8.
-G arrangement method. In addition, as a modification of this, the gas turbine 2 and the steam turbine 3 are replaced, and the 5-C-G
An array method may also be used.

このよ5なC−8−Q又ハS −C−G配列方式を採る
ことにより、発電機りは軸系の端に位置することになる
ので、その電気系と蒸気系とを配置上分離でき、また1
個のスラスト軸受4をガスタービン2と蒸気タービン3
との間の軸系に設置するだけで各回転体の結合はすべて
リジットカップリング9によりおこなうことができる。
By adopting this type of C-8-Q or S-C-G arrangement, the generator is located at the end of the shaft system, so the electrical system and steam system are separated in terms of layout. I can do it again 1
The thrust bearings 4 are connected to the gas turbine 2 and the steam turbine 3.
All the rotating bodies can be connected by rigid couplings 9 by simply installing them in the shaft system between them.

すなわち、同軸コンバインドプラントにおいて、全4!
Il系のスラスト力としてガスタービン2及び蒸気ター
ビン3のスラスト力があるが、C−8−G又は5−C−
G配列にしてこれらガスタービンスラスト力の作用方向
と蒸気タービンスラスト力の作用方向とを相互にキャン
セルさせてこれら両スラストカをバランスさせるように
すれば、スラスト軸受4をガスタービン2と蒸気タービ
ン3との間の軸系にのみ設置し、このスラスト軸受によ
り残りのスラスト力(これら両スラストカを完全に相殺
することはできないことから残りのスラスト力が生じる
ンを受けるようにし、この残りのスラスト力は十分に小
さくすることができるのでスラスト軸受を共用すること
ができるものである。これにより、ガスタービン及び蒸
気タービンのそれぞれにスラスト軸受を設置する必要は
な(なり。
In other words, in a coaxial combined plant, all 4!
The Il-based thrust force includes the thrust force of the gas turbine 2 and the steam turbine 3, but C-8-G or 5-C-
If the direction of action of the gas turbine thrust force and the direction of action of the steam turbine thrust force are mutually canceled in a G arrangement and the two thrust forces are balanced, the thrust bearing 4 can be used for the gas turbine 2 and the steam turbine 3. This thrust bearing is installed only on the shaft system between the Since it can be made sufficiently small, the thrust bearing can be shared.This eliminates the need to install a thrust bearing in each of the gas turbine and steam turbine.

したがってフレキシブルカップリングを設ける必要性も
なく、各回転体の結合をすべてリジットカップリングに
よることができることになる。
Therefore, there is no need to provide a flexible coupling, and the rotating bodies can all be connected by rigid couplings.

しかして、第2図においては、スラスト軸受4は前述し
た如くガスタービン2と蒸気タービン3との間の軸系(
第2軸受11と第3軸受12との中間)に設置されてい
るとともに、各回転体l。
Therefore, in FIG. 2, the thrust bearing 4 is connected to the shaft system between the gas turbine 2 and the steam turbine 3 (
The rotary bodies l are installed between the second bearing 11 and the third bearing 12).

2.3の結合はすべてリジットカップリング9により行
なわれているので、結合後は各ロータはこのスラスト軸
受4を起点として運転中圧、右に熱伸びする。
Since all of the connections in 2.3 are performed by rigid couplings 9, each rotor thermally expands to the right from the thrust bearing 4 during operation under pressure after being connected.

すなわち、ガスタービン2の単室は、スラスト軸受4の
近傍にて基礎に固定されているため、この点を起点とし
て左側に熱伸びするのでガスタービンの単室及びロータ
間の熱伸びは問題な(吸収できる。−万、蒸気タービン
2の単室も、このスラスト軸受近傍にて基礎に固定され
ているため。
In other words, since the single chamber of the gas turbine 2 is fixed to the foundation near the thrust bearing 4, thermal expansion occurs to the left from this point, so thermal expansion between the single chamber of the gas turbine and the rotor is not a problem. (This can be absorbed. - This is because the single chamber of the steam turbine 2 is also fixed to the foundation near this thrust bearing.

この点を起点として右側に熱伸びするので蒸気タービン
の単室及びロータの熱伸びが同一方向となり、熱伸差は
容易に吸収可能となる。
Since the thermal expansion starts from this point to the right, the thermal expansion of the single chamber of the steam turbine and the rotor are in the same direction, and the difference in thermal expansion can be easily absorbed.

なお、スラスト軸受4をガスタービン2と蒸気タービン
3との間の軸系に設置する代りに蒸気タービン3と発電
機lとの間の軸系に設置すると。
Note that instead of installing the thrust bearing 4 in the shaft system between the gas turbine 2 and the steam turbine 3, it is installed in the shaft system between the steam turbine 3 and the generator l.

ガスタービン内にてロータの熱伸び量が大きくなるので
(ロータの熱伸びに蒸気タービン部の熱伸びが加算され
るため)、車室と接触する可能性があり、また接触しな
いよ5に車室とロータとのりリアランスを大きくとると
性能低下が大きくなる問題があり、したがってこの方式
は採用できないものである。
Since the amount of thermal expansion of the rotor in the gas turbine increases (because the thermal expansion of the steam turbine section is added to the thermal expansion of the rotor), there is a possibility that it will come into contact with the casing, and there is a possibility that the rotor will come into contact with the casing. If the gap between the chamber and the rotor is large, there is a problem that the performance will deteriorate significantly, so this method cannot be adopted.

以上述べたように、本発明によれば、同軸コンバインド
の主機回転体の配列をガスタービン、蒸気タービン及び
発電機の順(C−8−G配列)又は蒸気タービン、ガス
タービン及び発電機の順(S−C−G配列)にすること
により、発電機の保守点検(特にロータの引抜)は他の
主機回転体を分解することなく行なうことができるので
従来よりも容易となり、またその電気系と蒸気系を配置
上分離できるので同軸コンバインドプラントの全体配置
に必要なスペースを小さくできるとともにその配置(特
に発電機のステータリード線の引出し)が容易となる。
As described above, according to the present invention, the main rotating bodies of a coaxial combined are arranged in the order of gas turbine, steam turbine, and generator (C-8-G arrangement) or in the order of steam turbine, gas turbine, and generator. (S-C-G arrangement) allows maintenance and inspection of the generator (particularly removing the rotor) to be performed without disassembling the other main rotating bodies, making it easier than before. Since the system and the steam system can be separated in terms of layout, the space required for the overall layout of the coaxial combined plant can be reduced, and the layout (especially drawing out the stator lead wires of the generator) becomes easier.

しかも、このようなC−5−G又は5−C−G配列を採
ることにより、全軸系に一個のスラスト軸受を設置する
だけですなわちスラスト軸受をガス、タービンと蒸気タ
ービンとの間の軸系にのみ設置するだけで、各回転体の
結合をすべてリジットカップリングにより行なうことが
でき、したがって従来の如きフレキシブルカップリング
を使用する必要性がないので軸系の振動に関して信頼性
の向上化を計ることができる。
Moreover, by adopting such a C-5-G or 5-C-G arrangement, it is possible to install only one thrust bearing in the entire shaft system, that is, to install the thrust bearing in the shaft between the gas turbine and the steam turbine. By simply installing it in the shaft system, all rotating bodies can be connected using rigid couplings.Therefore, there is no need to use conventional flexible couplings, which improves reliability regarding shaft system vibration. It can be measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の同軸コンバインドプラントにおける主機
回転体の配列方式を示す図、第2図は本発明による同軸
コンバインドプラントにおける主機回転体の配列方式の
一例を示す図である。 l・・発電機、2・・ガスタービン1.3・・蒸気ター
ビン、4・・スラスト軸受、9・・リジットカップリン
グ。
FIG. 1 is a diagram showing an arrangement method of main engine rotating bodies in a conventional coaxial combined plant, and FIG. 2 is a diagram showing an example of an arrangement method of main engine rotating bodies in a coaxial combined plant according to the present invention. l... Generator, 2... Gas turbine 1.3... Steam turbine, 4... Thrust bearing, 9... Rigid coupling.

Claims (1)

【特許請求の範囲】[Claims] 主機回転体の配列をガスタービン、蒸気タービン及び発
電機の順又は蒸気タービン、ガスタービン及び発電機の
順とし、ガスタービンと蒸気タービンとの間の軸系にス
ラスト軸受を設置するとともに、各回転体の結合をすべ
てリジットカップリングとしたことを特徴とする同軸コ
ンバインド7゜ラント。
The main engine rotating bodies are arranged in the order of gas turbine, steam turbine, and generator, or in the order of steam turbine, gas turbine, and generator, and a thrust bearing is installed in the shaft system between the gas turbine and the steam turbine, and each rotation A coaxial combined 7° runt characterized by all body connections being rigid couplings.
JP17210781A 1981-10-29 1981-10-29 Coaxial combined plant Granted JPS5874809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17210781A JPS5874809A (en) 1981-10-29 1981-10-29 Coaxial combined plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17210781A JPS5874809A (en) 1981-10-29 1981-10-29 Coaxial combined plant

Publications (2)

Publication Number Publication Date
JPS5874809A true JPS5874809A (en) 1983-05-06
JPS6238525B2 JPS6238525B2 (en) 1987-08-18

Family

ID=15935673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17210781A Granted JPS5874809A (en) 1981-10-29 1981-10-29 Coaxial combined plant

Country Status (1)

Country Link
JP (1) JPS5874809A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5042247A (en) * 1989-01-26 1991-08-27 General Electric Company Overspeed protection method for a gas turbine/steam turbine combined cycle
US5042246A (en) * 1989-11-06 1991-08-27 General Electric Company Control system for single shaft combined cycle gas and steam turbine unit
US5069030A (en) * 1989-01-26 1991-12-03 General Electric Company Overspeed protection for a gas turbine/steam turbine combined cycle
US5099643A (en) * 1989-01-26 1992-03-31 General Electric Company Overspeed protection for a gas turbine/steam turbine combined cycle
US5199256A (en) * 1989-01-26 1993-04-06 General Electric Company Overspeed protection for a gas turbine/steam turbine combined cycle
US5301499A (en) * 1990-06-28 1994-04-12 General Electric Company Overspeed anticipation and control system for single shaft combined cycle gas and steam turbine unit
EP0681091A1 (en) * 1994-05-03 1995-11-08 Gec Alsthom Electromecanique Sa Combined cycle power plant with a gas turbine and a steam turbine having a plurality of modules

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6413438U (en) * 1987-07-10 1989-01-24
DE10321026A1 (en) * 2003-05-10 2004-11-25 Atlas Copco Energas Gmbh turbomachinery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AN ASME PUBLICTION=1963 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5042247A (en) * 1989-01-26 1991-08-27 General Electric Company Overspeed protection method for a gas turbine/steam turbine combined cycle
US5069030A (en) * 1989-01-26 1991-12-03 General Electric Company Overspeed protection for a gas turbine/steam turbine combined cycle
US5099643A (en) * 1989-01-26 1992-03-31 General Electric Company Overspeed protection for a gas turbine/steam turbine combined cycle
US5199256A (en) * 1989-01-26 1993-04-06 General Electric Company Overspeed protection for a gas turbine/steam turbine combined cycle
US5042246A (en) * 1989-11-06 1991-08-27 General Electric Company Control system for single shaft combined cycle gas and steam turbine unit
US5301499A (en) * 1990-06-28 1994-04-12 General Electric Company Overspeed anticipation and control system for single shaft combined cycle gas and steam turbine unit
EP0681091A1 (en) * 1994-05-03 1995-11-08 Gec Alsthom Electromecanique Sa Combined cycle power plant with a gas turbine and a steam turbine having a plurality of modules
WO1995030078A1 (en) * 1994-05-03 1995-11-09 Gec Alsthom Electromecanique S.A. Combined cycle electric power generation unit with a gas turbine and a multimodule steam turbine
FR2719627A1 (en) * 1994-05-03 1995-11-10 Gec Alsthom Electromec Combined cycle electrical energy production unit comprising a gas turbine and a multi-module steam turbine.

Also Published As

Publication number Publication date
JPS6238525B2 (en) 1987-08-18

Similar Documents

Publication Publication Date Title
US2634375A (en) Combined turbine and generator unit
US20100284794A1 (en) Low pressure turbine rotor disk
JP5128397B2 (en) Turbo machine
EP0407132A1 (en) Single shaft combined cycle turbine
US7855483B2 (en) Turbomachine with integral generator/starter
EP1008726A3 (en) Fan decoupler system for a gas turbine engine
EP1239121B1 (en) An air-cooled gas turbine exhaust casing
EP0608266B1 (en) Gas turbine engine arrangement
US20030210979A1 (en) Method and apparatus for supporting rotor assemblies during unbalances
CN101886574B (en) Stator casing having improved running clearance under thermal load
JP2008175206A (en) Turbine rotor supporter and system
JP3529137B2 (en) A power generation unit having a combined cycle and including a gas turbine and a steam turbine having a plurality of modules
US4487014A (en) Gas generator and turbine unit
JPS5874809A (en) Coaxial combined plant
RU2214514C2 (en) Cylindrical support for gas-turbine engine stator unit and stator unit of gas-turbine engine
JP2008519580A (en) Electromechanical equipment
US6259166B1 (en) Generator with double driving machinery
US9464537B2 (en) Clutched turbine wheels
US20160341205A1 (en) Assembly for an engine which can define a blade break-off test device
US11867075B2 (en) Radial outward bearing support for a rotating structure of a turbine engine
RU195196U1 (en) GAS TURBINE ROTARY ASSEMBLY
JP4088163B2 (en) gas turbine
CN113623071A (en) Magnetic suspension outer rotor starting integrated motor for gas turbine
CN113728156A (en) Improved structure of turbine engine with counter-rotating turbine
EP2514928A2 (en) Compressor inlet casing with integral bearing housing