JPS6238515A - Production of 'sendust(r)' alloy magnetic head core - Google Patents

Production of 'sendust(r)' alloy magnetic head core

Info

Publication number
JPS6238515A
JPS6238515A JP17903185A JP17903185A JPS6238515A JP S6238515 A JPS6238515 A JP S6238515A JP 17903185 A JP17903185 A JP 17903185A JP 17903185 A JP17903185 A JP 17903185A JP S6238515 A JPS6238515 A JP S6238515A
Authority
JP
Japan
Prior art keywords
groove
block
front part
magnetic head
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17903185A
Other languages
Japanese (ja)
Inventor
Kazuo Yoshikawa
一男 吉川
Akifumi Kanbe
神戸 章史
Suguru Motonishi
本西 英
Shigeo Isoda
磯田 繁雄
Masanori Azuma
東 正則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP17903185A priority Critical patent/JPS6238515A/en
Publication of JPS6238515A publication Critical patent/JPS6238515A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To find gap defects in the early stage by subjecting a front part to head grooving after the width of a front surface is set and dividing a junction block in the direction crossing a linear groove by cutting after a reinforcing material is filled in the head groove. CONSTITUTION:A linear groove 3 is formed on the surface of one block plate 2a to divide this surface to a front part 4 and a back part 5. The front part 4 is subjected to non-adhesion work 4a like silica vapor-deposition, and faces to be laminated and joined of both block plates 2a and 2b are subjected to adhesion work 5a and 5b of a silver solder or the like. Both block plates 2a and 2b are allowed to face each other, and the silver solder on joint surfaces is fused with about 1kg/mm<2> pressure and about 1,000 deg.C temperature to join both block plates, and front side faces of both laminated blocks are ground along the linear groove to adjust the width of the front face to 0.03-0.6mm. After the front part is subjected to heat grooving in the direction orthogonal to the linear groove so that a track width T is left, a reinforcing material 13 is filled in a head groove 12.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はVTR等の高密度磁気記録装欝の記録・再生部
に用いられる磁気ヘッドコアの製造方法に関し、詳細に
はセンタスト系合金を素材とする磁気ヘッドコアの製造
において磁気ヘッドの機部を大きく左右するギャップへ
の異物混入等を早期に発見することができ、その結果製
造工程上の無駄をできる限り少なくした磁気ヘッドコア
の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a magnetic head core used in the recording/reproducing section of a high-density magnetic recording device such as a VTR, and more specifically, the present invention relates to a method for manufacturing a magnetic head core using a centast alloy as a material. This invention relates to a method of manufacturing a magnetic head core that can detect at an early stage the presence of foreign matter in the gap that greatly affects the mechanical part of the magnetic head, and as a result, reduces waste in the manufacturing process as much as possible. be.

[従来の技術] VTRや音声記録等の分野で使用される磁気ヘッドにお
いては、高信頼性と共に高密度化への要望が強く、磁気
ヘッド材料もパーマロイやフェライトからセンタスト系
合金へと移行しつつあり、又狭ギヤツプ幅且つ狭トラツ
ク幅の磁気ヘッドコアが提供される様になってきている
。センタスト系合金で代表される金属磁性材料は、従来
のフェライト系材料に比べて飽和磁束密度が高いという
特性がありその面で注目されているが、フエライト系材
料において確立されている製造手法をそのままセンタス
ト系合金製ヘッドの製造に転用できない面があり、その
為例えばブロー、り板の回前用として新たに銀ろうを用
いる方法等が開発されている。
[Prior Art] There is a strong demand for high reliability and high density in magnetic heads used in fields such as VTRs and audio recording, and magnetic head materials are shifting from permalloy and ferrite to centast alloys. In addition, magnetic head cores with narrow gap widths and narrow track widths are becoming available. Metallic magnetic materials, represented by Centast alloys, have the property of having a higher saturation magnetic flux density than conventional ferrite-based materials, and are attracting attention for this reason. There are some aspects that cannot be applied to the manufacture of centast alloy heads, and for this reason, new methods have been developed for using silver solder, for example, for blowing and cutting plates.

第4図はセンタスト系合金(以下本明細書では単にセン
タストという)を材料とする磁気ヘッドコアの従来の製
造手順を示す説明図であり、まず(A)工程ではセンタ
ストの矩形ブロック1からブロック板2を!/J出す。
FIG. 4 is an explanatory diagram showing the conventional manufacturing procedure of a magnetic head core made of a Centast alloy (hereinafter simply referred to as Centast). of! /J out.

次に(B)工程(一般にウェハ加工と称している)では
、ブロック板を溝加工用ブロック板2aと非溝加工用ブ
ロック板2bに分け、前者2aの板面(特に片側面)に
直線溝3を形成する。直線溝3は後述のコイル巻回窓W
[第4図(H)参照]を形成する為のものであり、溝加
工用ブロック板2aの片側に寄せると共に側縁Sと平行
に形成するのが一般的である。
Next, in step (B) (generally referred to as wafer processing), the block plate is divided into a block plate 2a for groove processing and a block plate 2b for non-groove processing, and a straight groove is formed on the plate surface (especially one side surface) of the former 2a. form 3. The straight groove 3 is a coil winding window W which will be described later.
[See FIG. 4(H)], and is generally formed near one side of the groove processing block plate 2a and parallel to the side edge S.

そして直線溝3を挟んで狭い方の堤をフロント部4と称
し、広い方の堤をバック部5と称している。そして(C
)工程ではフロント部4の表面に非接着性加工(磁性を
もたない物質をQ膜状に被着させる工程であり、非磁性
膜被着加工ともいう)4aを施し、非溝加工用ブロック
板2bには、フロント部4aと対面[第4図(E)参照
コする面に、直線溝3と直交する方向のくし削り加工を
施して狭いトラック幅Tのくし刃6を形成する。そして
CD)工程では、前出のトラック幅Tが完全に一致する
様なくし刃7をフロント部に形成する。
The narrower bank with the straight groove 3 in between is called the front part 4, and the wider bank is called the back part 5. And (C
) process, the surface of the front part 4 is subjected to non-adhesive processing (a process of depositing a non-magnetic substance in the form of a Q film, also referred to as non-magnetic film deposition process) 4a, and a block for non-groove processing is applied. On the surface of the plate 2b facing the front part 4a (see FIG. 4(E)), a comb blade 6 with a narrow track width T is formed by cutting in a direction perpendicular to the straight groove 3. In step CD), the comb blades 7 are formed on the front part so that the track widths T mentioned above are completely matched.

次に(E)工程では、2枚のブロック板2a。Next, in step (E), two block plates 2a are formed.

2bを向き合わせる様に積層し、両者を接合する。接合
にちたっては、バック部5の表面と、これに対向するブ
ロック2bの表面との間に銀ろう等を介在させているが
、フロント部4については前述の如き非接着性加工(例
えばシリカ蒸着膜の形成)を行なっているので、バック
部5のみが接合され、フロント部4は単に対向当接して
いるだけである。但しこの対向当接についてはトラック
幅Tが狭い点を考慮して極めて高精度であることが要求
されている。しかしながらこのトラック幅Tは一般に2
0〜30gm程度であり極めて細いものであるから、如
何にa精密切断機を使用したとしてもばりの発生は回避
し難く(参考写真)、対向島接面のギャップ精度向上に
とって重大な障害となっている。また両ブロック板2a
、2bの積層接合に当たっての位置ずれ(特にトラック
幅方向の位置ずれ)は絶対に回避しなければならないが
、位置決め精度を保証する作業治具が不十分である為し
ばしば位置ずれを起こし、磁気ヘッドとしての再生力を
低下させる原因となっている。
2b are stacked so as to face each other, and both are joined. When joining, silver solder or the like is interposed between the surface of the back part 5 and the surface of the block 2b facing it, but the front part 4 is treated with non-adhesive processing (for example, silica) as described above. (formation of a vapor deposited film), only the back part 5 is joined, and the front part 4 is simply in opposing contact. However, this opposing abutment is required to be extremely accurate considering the narrow track width T. However, this track width T is generally 2
Since it is extremely thin with a thickness of approximately 0 to 30 gm, it is difficult to avoid the occurrence of burrs no matter how much precision cutting machine you use (reference photo), which is a serious obstacle to improving the gap accuracy of the opposing island contact surface. ing. Also, both block plates 2a
, 2b must be avoided at all costs when stacking and bonding (particularly in the track width direction); however, due to insufficient work jigs to guarantee positioning accuracy, misalignment often occurs and the magnetic head This causes a decrease in the regenerative power of the product.

磁気ヘッドコアは、引続き(F)工程で補強材8の充填
、(G)工程での切断分割[切断線(F)工程中に破線
で示しており、角度αのことをアジマス角度と称してい
る]  、(H)工程でのフロント部の研磨加工を経て
製造されるが、(C)  、  (1))工程におけろ
くし削り加工で発生するぼり、並びに(E)工程で生じ
る位置ずれ等に基づく精度不良は結局のところ最後迄持
越されてしまう。
The magnetic head core is then filled with reinforcing material 8 in the step (F), and cut and divided in the step (G) [the cutting line is shown by a broken line in the step (F), and the angle α is called the azimuth angle. ] It is manufactured through polishing of the front part in the (H) process, but there are burrs that occur during the comb cutting process in the (C) and (1)) processes, as well as misalignment that occurs in the (E) process. In the end, the poor accuracy based on this will be carried over to the end.

[発明が解決しようとする問題点] 未発明者等はこうした・IS態を′O!慮し、前記位置
ずれ欠陥を解フ))すべく検3・iを重ね、第3図に示
される様な磁気ヘッドコアの製造方法を先に提案した。
[Problems to be solved by the invention] Non-inventors etc. should ignore this IS situation! Taking this into consideration, we have repeatedly conducted tests 3-i to solve the above-mentioned misalignment defects, and have previously proposed a method of manufacturing a magnetic head core as shown in FIG.

即ち上記方法は、くし削りによってばりの発生した面同
士を31F後的に対向当接させるという従来技術を改め
、予め対向当接させたフロント部に対してくし削り加工
を施すことにより、ぼりによるギャップ精度の悪化を阻
止したものである。即ち第3図に示す様に、矩形ブロッ
クから切り出した直線溝3を有するブロック板2aのフ
ロント部4に直線1+1!3と略平行で且つブロック板
の側縁角部を切り欠く様な連続した切欠き段9を形成し
た後、切欠段9を形成したブロック2aとブロック2b
を積層接合し、該切欠ブロック2aと他方のブロック板
2bの対面する側縁角部で囲まれる腔部10に低融点ろ
う材11を充填接合した後、接合ブロック板のフロント
部に前記切欠段を横断する方向で且つトラック幅Tを残
す様にヘッド溝加工を施す、こうして形成されたヘッド
t+lI 12に補強材13を充填した後接合ブロック
を前記の様に切断分割し、研磨加工により前記低融点ろ
う材による接合部を切除すると、第3図CG)に示す如
き磁気ヘッドコアが得られる。上記方法の完成により、
くし削り加工時のぼり並びにくし削り加工部突き合せ時
の位置ずれ等に基づくギャップ精度不良は解消すること
ができた。
That is, the above method is a modification of the conventional technique in which the surfaces on which burrs have been generated by comb shaving are made to come into contact with each other after 31F, and by performing comb shaving on the front parts that have been brought into facing contact in advance, the burrs are removed. This prevents deterioration of gap accuracy. That is, as shown in FIG. 3, the front part 4 of the block plate 2a, which has a straight groove 3 cut out from a rectangular block, has a continuous groove that is approximately parallel to the straight line 1+1!3 and cuts out the side edge corners of the block plate. After forming the notch step 9, the block 2a and block 2b with the notch step 9 formed therein.
are laminated and bonded, and a low melting point brazing material 11 is filled and bonded into the cavity 10 surrounded by the facing side edge corners of the notch block 2a and the other block plate 2b, and then the notch step is formed in the front part of the bonded block plate. A head groove is machined in the direction transverse to the track width T, and after filling the thus formed head t+lI 12 with a reinforcing material 13, the joint block is cut and divided as described above, and the groove is cut by polishing. When the joint made of the melting point brazing material is removed, a magnetic head core as shown in FIG. 3 (CG) is obtained. With the completion of the above method,
It was possible to eliminate poor gap accuracy due to curvature during comb machining and positional deviations when the comb machining parts were butted together.

しかるにこの方法では、ヘッド溝加工時のトラックの引
きちぎれやトラックの位置ずれを防止する為に低融点ろ
う材による切欠き部の充填接合という新たな工程が必要
であり、製造工程の増加をまねくだけでなく、磁気ヘッ
ドコアの製造過程において必須的に行なわれるフロント
部ギャップ幅の検査が、切断分割の後低融点ろう材を研
磨除去するまでは行なうことができず、最終工程を終っ
た後でないとギャップ不良が確認されないという不具合
が生ずる。
However, this method requires a new process of filling and bonding the notch with a low melting point brazing filler metal in order to prevent track tearing and track misalignment during head groove machining, which only increases the number of manufacturing steps. However, the front gap width inspection, which is essential in the manufacturing process of magnetic head cores, cannot be performed until the low melting point brazing material is polished away after cutting and dividing, and cannot be performed until after the final process. A problem arises in that gap defects are not confirmed.

本発明はこうした事情に着目してなされたものであって
、製造工程の合理化をはかりつつ、ギャップ不良の早期
発見をはかることのできる様な磁気ヘッドコアの製造方
法を提供しようとするものである。
The present invention has been made in view of these circumstances, and it is an object of the present invention to provide a method for manufacturing a magnetic head core that allows early detection of gap defects while streamlining the manufacturing process.

[問題点を解決するための手段] しかして1記目的を達成した本発明方法とは、センタス
ト製ブロックを材料として磁気ヘッドコアを製造するに
当たり、両ブロックを積層した後にフロント側4面を直
線溝に沿う方向に研磨し、フロント面の幅を0.03〜
0.8層厘とした後、フロント部に直線溝方向と直角の
方向で且つトラック幅を残す様にヘッド溝加工を施し、
形成されたヘッド溝に補強材を充填した後接合ブロック
を直線溝と交差する方向に切断分割する点に要旨が存在
する。
[Means for Solving the Problems] The method of the present invention that achieves the first object is that when manufacturing a magnetic head core using blocks manufactured by Centast, after laminating both blocks, the four front sides are formed with straight grooves. Polish in the direction along the front surface to a width of 0.03~
After making it 0.8 layer thick, we processed the head groove in the front part in a direction perpendicular to the straight groove direction and leaving the track width.
The gist is that after filling the formed head groove with reinforcing material, the joint block is cut and divided in a direction intersecting the straight groove.

[作用] 第3図に示す方法において、低融点ろう材による接合と
いう手段を採用していたのは、前述した通りへラド溝加
丁時のトラック引きちぎれやトラックの位置ずれを防止
する為であった。しかるに上記手段を採用した場合には
、低融点ろう竹材を充填する為の切欠段の形成や低融点
ろう竹材充填操作等が必要となり工程が煩雑になるだけ
でなく、フロント部のギャップ検査が低融点ろう竹材充
填部の研磨・切除まで行なうことができない為、不良品
発見までに工数がかかりすぎ、その為不良品の廃棄に伴
ない多大の工数が無駄となる。
[Function] In the method shown in Fig. 3, the reason why bonding using a low melting point brazing material was adopted was to prevent track tearing and track position shift when cutting the rad grooves, as described above. Ta. However, when the above-mentioned method is adopted, not only does the process become complicated as it becomes necessary to form a notch step for filling the low-melting point brazing bamboo material and filling the low-melting point brazing bamboo material, but also makes it difficult to inspect the gap at the front section. Since it is not possible to polish and cut out the part filled with the melting point brazing bamboo material, it takes too many man-hours to find a defective product, and therefore a large amount of man-hours is wasted as the defective product is discarded.

この様に低融点ろう竹材による補強はトラックの引きち
ぎれ等を防止する上では有効な手段であるが、問題点も
多い手段であった。そこで本発明者等はヘッド溝加工に
際し低融点ろう竹材による補強を行なわなくともトラッ
クの引きちぎれ等を回避することができる様な手段を提
供すべく種々検討を重ねた結果、前記構成に到達した。
As described above, reinforcing with low melting point brazed bamboo material is an effective means for preventing tracks from tearing off, etc., but it is also a method that has many problems. Therefore, the inventors of the present invention have conducted various studies in order to provide a means to avoid track tearing, etc. without reinforcing the head groove with low-melting wax bamboo material, and as a result, they have arrived at the above structure.

即ちトラックの引きちぎれ等の原因は、ヘッド加工時弱
いという点にあり、それ故に前記の如く補強手段が発案
された訳であるが1本発明者等はくしの歯状トラックの
形状を工夫すれば上記問題を解決することができるので
はないかと考え種々検討した。即ちくしの歯状トラック
は、長さくブロック2枚の合計厚さに相当)や深さに比
べて幅がかなり小さな形状を呈し、幅方向の強度が小さ
い、その為ヘッド加工時に幅方向の力が加わると幅方向
への曲がりやゆがみを生じてトラックの位置ずれを起こ
し易く、またヘッド加工用切削工具による引きちぎれも
生じ易い、従って幅方向強度を改善することを主眼とす
る場合はトラック幅を増大させれば一応の目的は達成さ
れるはずであるが、トラック幅を大きくすると磁気ヘッ
ドの性能が低下するので実際問題としてはトラック幅を
余り増大させることができない、一方くしの歯状トラッ
クの長さは該トラックの強度にあまり影響がなく長さを
増大させても強度のアップにはつながらない、これらに
対しくしの尚状トラックの深さは最終製品形状[第3図
(G)参照]に必要な長さだけ確保できればよく、従来
は上記深さが必要以上に大きく設計されていたと考えら
れる。即ちくしの歯状トラックの深さを0.03〜0.
6■と従来に比べて短くすることによって、くしの歯状
トラックの幅方向強度は必要十分に大きくすることがで
き、その結果補強なしにヘッド溝加工を行なうことがで
きる。尚上記深さが0.033層厘満の場合には磁気ヘ
ッド製品に必要なトラック長さく深さ)を確保すること
ができない、一方玉記深さが0.8鳳履を超えるとトラ
ックの幅方向強度が低下してヘッド溝加工時にトラック
の曲がり等が生じ、著しい場合にはトラックが引きちぎ
れる。
In other words, the cause of track tearing is that the head is weak during machining, and that is why the above-mentioned reinforcing means were devised.1 The inventors believe that by devising the shape of the comb-like track, the above-mentioned problem can be solved. I thought that it might be possible to solve the problem, and I considered various things. In other words, the tooth-like track of the comb has a shape whose width is considerably smaller than its length (which corresponds to the total thickness of two blocks) and depth, and its strength in the width direction is small, so the force in the width direction is reduced during head processing. If this is applied, the tracks tend to bend or distort in the width direction, causing track misalignment, and are also likely to be torn off by cutting tools for head processing. Therefore, if the main objective is to improve the strength in the width direction, the track width However, as the track width increases, the performance of the magnetic head deteriorates, so in practice it is not possible to increase the track width that much. The length has little effect on the strength of the track, and increasing the length will not lead to an increase in strength.On the other hand, the depth of the comb's concave track will affect the final product shape [see Figure 3 (G)] It is sufficient to secure only the length necessary for this, and it is thought that in the past, the above depth was designed to be larger than necessary. That is, the depth of the tooth-like tracks of the comb is 0.03-0.
By making the width of the comb-tooth track shorter than the conventional one, the strength in the width direction of the comb-like track can be made sufficiently large, and as a result, the head groove can be processed without reinforcement. If the above depth is 0.033 layers, it will not be possible to secure the track length and depth required for magnetic head products.On the other hand, if the depth exceeds 0.8 layers, the track length and depth required for magnetic head products will not be secured. The strength in the width direction decreases, causing bending of the track during head groove machining, and in severe cases, the track may be torn off.

本発明によって磁気ヘッドコアを製造するに当たっては
、両ブロックを積層した後にフロント側4面を直線溝に
沿う方向に研癖することによってフロント面の幅を前述
の如< 0.03〜0.8mmとし、次いでフロント部
に直線溝方向と直角の方向にヘッド溝加工を施す、その
後形成されたヘッド溝に補強材を充填し、更に接合ブロ
ックを直線溝と交是する方向に切断分割すればよい、尚
上記加工に際しては例えば外周刃方式の精密切断機が使
用され、ボラゾン磁石を約0.4mta/secの速度
で送り出すことによって切削を行なえばよい。
In manufacturing the magnetic head core according to the present invention, after the two blocks are laminated, the width of the front surface is set to <0.03 to 0.8 mm by grinding the four front surfaces in the direction along the straight groove. Then, the front part is machined with a head groove in a direction perpendicular to the straight groove direction, and then the formed head groove is filled with a reinforcing material, and the joint block is further cut and divided in the direction perpendicular to the straight groove. In the above-mentioned processing, for example, a peripheral blade type precision cutting machine is used, and the cutting may be performed by feeding the borazon magnet at a speed of about 0.4 mta/sec.

[実施例] 第1図に沿って本発明方法の製造過程を説明する。(A
)工程においてセンタストの矩形ブロックから切出した
ブロック板の一方2aの板面に直線溝3を形成し、フロ
ント部4とバック部5に分ける0次いで(B)工程にお
いてフロント部4にシリカ蒸着等の非接着加工4aを施
すと共に、両ブロック板2a、2bの積層接合面(パッ
ク部5およびこれに対向するブロック板2bの表面)に
銀ろう等の接着加工5a及び5bを施す、尚5a及び5
bのいずれか一方を省略してもよい6次に(C)工程で
両ブロック板2a、2bを向い合わせ1例えばIKg/
m■2程度の圧力と1000″C程度の温度を加えて接
合面の銀ろうを溶融し両者を接合する。(D)工程にお
いて、積層した両ブロックのフロント側4面を直線溝に
沿う方向に研磨し、フロント面の幅を0.03〜0.6
Hに調製する。尚この時(D a)に示す様にフロント
側4面を最終の曲面形状に調製しておいてもよい0次に
(E)工程においてフロント部を直線溝方向と直角の方
向で且つトラック幅Tを残す様にヘッド溝加工を施した
後、(F)工程に示す如くヘッド溝12に補強材13を
充填する。補強材13の種類については特に限定を受け
ないが、母材のセンタストと同じ様な熱挙動を示すもの
が望ましく、熱膨張係数が(ioo〜200)xlO−
’/”Oの材料が推奨され、例えば低融点銀ろう、ガラ
ス。
[Example] The manufacturing process of the method of the present invention will be explained with reference to FIG. (A
) In the step (B), a straight groove 3 is formed in the plate surface of one side 2a of the block plate cut out from the rectangular block of Centast, dividing it into a front part 4 and a back part 5.Next, in the step (B), the front part 4 is coated with silica vapor deposition, etc. In addition to applying a non-adhesive process 4a, adhesion processes 5a and 5b such as silver solder are applied to the laminated joint surfaces of both block plates 2a and 2b (the surface of the pack part 5 and the block plate 2b facing this).
Either one of b may be omitted.6 Next, in the step (C), both block plates 2a and 2b are faced and 1, for example, IKg/
A pressure of about m2 and a temperature of about 1000"C are applied to melt the silver solder on the joint surfaces and join them together. In the (D) process, the four front sides of both stacked blocks are cut in the direction along the straight groove. Polish the width of the front surface to 0.03 to 0.6.
Prepare to H. At this time, the four front surfaces may be prepared in the final curved shape as shown in (D a). In the 0th order (E) step, the front part is adjusted in a direction perpendicular to the straight groove direction and with a track width. After processing the head groove so as to leave a T, the head groove 12 is filled with reinforcing material 13 as shown in step (F). The type of reinforcing material 13 is not particularly limited, but it is desirable that it exhibits the same thermal behavior as the base material Centast, and has a coefficient of thermal expansion of (ioo~200)xlO-
'/'O materials are recommended, such as low melting point silver solder, glass.

チタン酸バリウム、酸化マンガン−醸化ニッケル型(N
2 Cl型)セラミックス等が上げられる。
Barium titanate, manganese oxide-nucleated nickel type (N
2 Cl type) ceramics, etc.

尚トラック溝12の形状についても特段の制限はないが
、図示の様なU溝形状とするのがもっとも好都合である
0次に(F)図の破線に沿って[一定のアジマス線9通
常士(6〜10)度]接合ブロックを切断分割すると(
G)図に示すコアが得られ、さらにフロント個々縁を特
定の曲面形状をつけて研磨する(H)図に示す磁気ヘッ
ドコアが得られる。尚(D)工程において(D a)図
に示す如く予め曲面加工を施しておけば最終の曲面加工
を省略することができる。
There is no particular restriction on the shape of the track groove 12, but it is most convenient to use a U-groove shape as shown. (6 to 10) degrees] When the joint block is cut and divided (
G) The core shown in the figure is obtained, and the individual front edges are polished to give a specific curved shape. (H) The magnetic head core shown in the figure is obtained. In addition, if the curved surface processing is performed in advance in step (D) as shown in FIG. (Da), the final curved surface processing can be omitted.

実施例1 上記実施例方法に従って磁気ヘッドコアを製造するに当
たり、(D)工程において調製されるフロント部の深さ
を種々変更したところ、フロント部の深さに応じて第2
図に示す如くトラックの引きちされおよびトラックの位
置ずれ等のトラブル発生頻度が変化した。即ちフロント
部の深さ0.8 lIs以下ではトラブルは全く発生し
ないが、0.61を超えると、その値が大きくなるに従
ってトラブルの発生頻度が増大し、特にトラックの引き
ちされの割合が増加している。
Example 1 When manufacturing a magnetic head core according to the method of the above example, the depth of the front part prepared in step (D) was variously changed.
As shown in the figure, the frequency of occurrence of troubles such as track tearing and track misalignment has changed. In other words, if the depth of the front section is less than 0.8 lIs, no trouble will occur at all, but if it exceeds 0.61, the frequency of trouble occurrence will increase as the value increases, and in particular, the rate of track tearing will increase. are doing.

実施例2 第4図に示す方法、第3図に示す方法及び本発明方法に
よって夫々磁気へ7ドコアを製造し、トラックの位置ず
れの発生割合を調べたところij%1表に示す結果が得
られた。
Example 2 Seven magnetic cores were manufactured by the method shown in FIG. 4, the method shown in FIG. 3, and the method of the present invention, and the occurrence rate of track misalignment was investigated. It was done.

第1表 第1表に示す様に、本発明方法では第3図に示す方法と
同等以上の性能を得ることができた。
As shown in Table 1, the method of the present invention was able to obtain performance equivalent to or better than the method shown in FIG.

[発明の効果] 本発明は以上の様に構成されており、以下要約する効果
を得ることができる。
[Effects of the Invention] The present invention is configured as described above, and can obtain the effects summarized below.

(1)低融点ろう封材による補強を施すことなく、第3
図に示す方法と同等の位置ずれ等発生防止効果を得るこ
とができる。即ち低融点ろう付材充填等の操作が不必要
となり製造工程を簡素化することができた。
(1) Without reinforcement with low melting point brazing material, the third
It is possible to obtain the same effect of preventing occurrence of misalignment as the method shown in the figure. In other words, operations such as filling a low melting point brazing material are not necessary, and the manufacturing process can be simplified.

(2)フロント部のギャップの輻は、フロント部に蒸着
されたシリカ等の薄膜のみの±lo%に規定されており
、通常0.2〜0.4ルmと非常に小さい、そして該ギ
ャップに空気中のほこり等がかみ込まれて一般に約40
%の不良品が発生する。このギャップ不良検査は第3図
に示す方法では第3図(H)に示される様にフロント側
4部を研磨した段階で全数検査を行なっていた為多大の
時間を要したが、本発明では第1図(D)に示される様
にヘッド溝加工前の接合ブロックの段階で行なうので一
括して検査することができ検査に要する時間を大幅に低
減することができる。また発生した不良品は加工があま
り加えられていない段階であるので当該不良品の廃棄に
伴ない無駄となる工数を減少することができる。
(2) The radius of the gap in the front part is defined as ±lo% of only the thin film such as silica deposited on the front part, and is usually very small at 0.2 to 0.4 m. In general, about 40
% of defective products occur. In the method shown in Fig. 3, this gap defect inspection required a lot of time because the inspection was carried out after the four parts on the front side were polished as shown in Fig. 3 (H), but in the present invention. As shown in FIG. 1(D), since this is carried out at the stage of joining blocks before the head groove is machined, the inspection can be performed all at once, and the time required for inspection can be significantly reduced. Furthermore, since the defective products that have been generated have not undergone much processing, it is possible to reduce the number of man-hours wasted due to the disposal of the defective products.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の手順を示す斜視説明図、第2図は
フロント部の深さとトラブル発生比率の関係を示すグラ
フ、第3図は改良方法の手順を示す斜視説明図、第4図
は従来の製造手順を示す斜視説明図である。
Fig. 1 is a perspective explanatory view showing the procedure of the method of the present invention, Fig. 2 is a graph showing the relationship between the depth of the front part and the trouble occurrence rate, Fig. 3 is a perspective explanatory view showing the procedure of the improved method, and Fig. 4 FIG. 2 is a perspective explanatory view showing a conventional manufacturing procedure.

Claims (1)

【特許請求の範囲】[Claims] センタスト系合金からなる1対のブロック板を素材とし
、少なくとも一方のブロック板々面に直線溝を形成して
一方側の堤をフロント部、他方側の堤をバック部とした
後、この直線溝を挟み込む様に両ブロック板を積層して
前記バック部を他方のブロック板々面に接合し、得られ
た接合ブロックを前記直線溝と交差する方向に切断分割
する工程を含むセンタスト系合金磁気ヘッドコアの製造
方法において、両ブロックを積層した後にフロント側々
面を直線溝に沿う方向に研磨し、フロント面の幅を0.
03〜0.6mmとした後、フロント部に直線溝方向と
直角の方向で且つトラック幅を残す様にヘッド溝加工を
施し、形成されたヘッド溝に補強材を充填した後接合ブ
ロックを直線溝と交差する方向に切断分割することを特
徴とするセンタスト系合金磁気ヘッドコアの製造方法。
A pair of block plates made of Centast alloy are used as raw materials, and a straight groove is formed on the surface of at least one of the block plates to make the bank on one side the front part and the bank on the other side the back part. A centast alloy magnetic head core comprising the steps of: laminating both block plates so as to sandwich the two block plates; bonding the back portion to the surface of the other block plate; and cutting and dividing the obtained bonded block in a direction intersecting the linear groove. In the manufacturing method, after both blocks are stacked, the front side surfaces are polished in the direction along the straight groove, and the width of the front surface is reduced to 0.
03 to 0.6 mm, a head groove is processed on the front part in a direction perpendicular to the straight groove direction and to leave the track width, and after filling the formed head groove with reinforcing material, the joining block is cut into a straight groove. A method of manufacturing a centast-based alloy magnetic head core characterized by cutting and dividing in a direction intersecting with the .
JP17903185A 1985-08-14 1985-08-14 Production of 'sendust(r)' alloy magnetic head core Pending JPS6238515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17903185A JPS6238515A (en) 1985-08-14 1985-08-14 Production of 'sendust(r)' alloy magnetic head core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17903185A JPS6238515A (en) 1985-08-14 1985-08-14 Production of 'sendust(r)' alloy magnetic head core

Publications (1)

Publication Number Publication Date
JPS6238515A true JPS6238515A (en) 1987-02-19

Family

ID=16058898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17903185A Pending JPS6238515A (en) 1985-08-14 1985-08-14 Production of 'sendust(r)' alloy magnetic head core

Country Status (1)

Country Link
JP (1) JPS6238515A (en)

Similar Documents

Publication Publication Date Title
JPS6374115A (en) Floating type magnetic head and its production
JPS61129716A (en) Magnetic head
JPH0475563B2 (en)
JPS6238515A (en) Production of &#39;sendust(r)&#39; alloy magnetic head core
JPS6214313A (en) Magnetic head
JPH0475564B2 (en)
JPS63102007A (en) Magnetic head
JP2615557B2 (en) Composite magnetic head and method of manufacturing the same
JPS6260108A (en) Production of magnetic head core of &#39;sendust(r)&#39; alloy
JPH0585962B2 (en)
JPS63164010A (en) Manufacture of magnetic head
JPS63104208A (en) Composite magnetic head and its manufacture
JPS61242311A (en) Production of magnetic head
JPS60242508A (en) Manufacture of sendust alloy magnetic head core
JPS62219211A (en) Manufacture of composite type magnetic head
JPS6251009A (en) Magnetic core and its production
JPS62132208A (en) Manufacture for &#39;sendust(r)&#39; type alloy magnetic head core
JPH0562113A (en) Manufacture of magnetic head
JPS61104306A (en) Magnetic head
JPH04167208A (en) Magnetic head and manufacture thereof
JPS6323210A (en) Magnetic head and its production
JPH03168907A (en) Production of magnetic head
JPH07220216A (en) Production of magnetic head
JPH0253215A (en) Manufacture of magnetic head
JPS62270009A (en) Composite magnetic head and its manufacture