JPS6238480Y2 - - Google Patents

Info

Publication number
JPS6238480Y2
JPS6238480Y2 JP19502982U JP19502982U JPS6238480Y2 JP S6238480 Y2 JPS6238480 Y2 JP S6238480Y2 JP 19502982 U JP19502982 U JP 19502982U JP 19502982 U JP19502982 U JP 19502982U JP S6238480 Y2 JPS6238480 Y2 JP S6238480Y2
Authority
JP
Japan
Prior art keywords
sun
spacecraft
heat
tube
heat absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19502982U
Other languages
Japanese (ja)
Other versions
JPS5999899U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19502982U priority Critical patent/JPS5999899U/en
Publication of JPS5999899U publication Critical patent/JPS5999899U/en
Application granted granted Critical
Publication of JPS6238480Y2 publication Critical patent/JPS6238480Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【考案の詳細な説明】 本考案は、宇宙船用補助発電装置に関するもの
である。
[Detailed Description of the Invention] The present invention relates to an auxiliary power generation device for a spacecraft.

静止軌道上に打上げる宇宙船には、三軸姿勢制
御方式によつて宇宙船の一定の側面が常に太陽に
向く様に指向制御を行ない、この太陽に向いた側
面に太陽電池(ソーラーパドル等)を設けて、太
陽光のエネルギーを直接電力に変換して宇宙船の
主電力としているものがある。
For a spacecraft launched into a geostationary orbit, a three-axis attitude control system is used to control the orientation so that a certain side of the spacecraft always faces the sun, and a solar battery (solar paddle, etc.) is installed on the side facing the sun. ) to directly convert sunlight energy into electricity and use it as the main power source for spacecraft.

この様に三軸姿勢制御方式で太陽に対して指向
制御されている非スピン形の宇宙船では、太陽に
照射されて高温になる高温側面と太陽の影となる
低温側面とでは100度以上の温度差を生じる。し
かし、従来の宇宙船では、熱対策に注意を払つて
はいるものの、温度差を有効に利用することは考
えられておらず、電力も太陽電池等で直接得るこ
としか行なわれていなかつた。
In this way, in a non-spin type spacecraft whose orientation is controlled with respect to the sun using a three-axis attitude control method, the temperature difference between the high temperature side that becomes hot when exposed to the sun and the low temperature side that is in the shadow of the sun is more than 100 degrees. Creates a temperature difference. However, while conventional spacecraft have taken precautions against heat, no consideration has been given to effectively utilizing temperature differences, and power has only been obtained directly from solar cells.

本考案の目的は、三軸姿勢制御方式で太陽に対
して指向制御された非スピン形の宇宙船に於て、
太陽に照射され高温となる側面と、太陽の影に入
り低温となる側面との間の温度差を有効に利用し
て発電し起電力を得る事のできる装置を提供する
事にある。
The purpose of this invention is to use a non-spin type spacecraft whose orientation toward the sun is controlled using a three-axis attitude control method.
It is an object of the present invention to provide a device capable of generating electricity and obtaining electromotive force by effectively utilizing the temperature difference between a side surface that is irradiated by the sun and becomes hot and a side surface that is in the shadow of the sun and becomes low temperature.

以下、本考案の一実施例を図により説明する。
装置は、液体ポンプ1、吸熱管2、気化器3、発
電装置4及び放熱管5よりなる。吸熱管2は宇宙
船の太陽に向いた側面に、又放熱管5は太陽に向
いてない側面にそれぞれ設けられている。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.
The device consists of a liquid pump 1, a heat absorption pipe 2, a vaporizer 3, a power generation device 4, and a heat radiation pipe 5. The heat absorbing tube 2 is provided on the side of the spacecraft facing the sun, and the heat dissipating tube 5 is provided on the side facing away from the sun.

三軸姿勢制御された非スピン形の静止宇宙船上
で、液体ポンプ1により送出された液体は、太陽
に向いた高温側面の吸熱管2で熱を吸収し、気化
器3で気化した後、発電装置4のタービンを回転
させて起電力を生じる。発電装置を出た蒸気は、
太陽に向いてない低温側面の放熱管5で冷却され
液化した後、液体ポンプ1へ戻る。
On a non-spin stationary spacecraft with three-axis attitude control, the liquid pumped out by the liquid pump 1 absorbs heat in the heat absorption tube 2 with the high-temperature side facing the sun, vaporizes in the vaporizer 3, and then generates electricity. The turbine of device 4 is rotated to generate an electromotive force. The steam leaving the generator is
After being cooled and liquefied in the heat radiation tube 5 on the low-temperature side facing away from the sun, it returns to the liquid pump 1.

発電された起電力は宇宙船の補助電力として利
用される。
The generated electromotive force is used as auxiliary power for the spacecraft.

本考案の効果は、既存の三軸姿勢制御された非
スピン形の静止宇宙船に於て、宇宙船の太陽を向
いている高温側面と太陽に向いていない低温側面
間の温度差を有効に利用し、宇宙船用の補助電力
を得る事ができるという点にある。
The effect of this invention is that in existing non-spin type stationary spacecraft with three-axis attitude control, the temperature difference between the hot side of the spacecraft facing the sun and the cold side facing away from the sun can be effectively utilized. The point is that it can be used to obtain auxiliary power for spacecraft.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本考案の一実施例の宇宙船用補助発電装置
の模式図である。 1……液体ポンプ、2……吸熱管、3……気化
器、4……発電装置、5……放熱管。
The figure is a schematic diagram of an auxiliary power generator for a spacecraft according to an embodiment of the present invention. 1... Liquid pump, 2... Heat absorption pipe, 3... Vaporizer, 4... Power generator, 5... Heat radiation tube.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 静止軌道上で、三軸姿勢制御方式により一定の
側面が太陽に向く様に指向制御された宇宙船にお
いて、上記宇宙船の太陽に向いた高温側面に設け
られた吸熱管と、太陽に向いてない低温側面に設
けられた放熱管と、上記吸熱管内で熱吸収した液
体を気化する気化器と、上記気化器からの蒸気に
よりタービンを回転し、発電した後、蒸気を上記
放熱管へ送る発電装置と、上記放熱管内で冷却す
る事により液化された液体を上記吸熱管へ再び送
る液体ポンプとを備え、宇宙船の太陽に向いた高
温側面と太陽に向いてない低温側面との温度差を
利用して起電力を得ることを特徴とする宇宙船用
補助発電装置。
In a spacecraft that is in geostationary orbit and whose orientation is controlled using a three-axis attitude control method so that a certain side faces the sun, a heat absorption tube installed on the hot side of the spacecraft facing the sun and a A heat dissipation tube installed on the low temperature side, a vaporizer that vaporizes the liquid that has absorbed heat in the heat absorption tube, and a turbine that is rotated by the steam from the vaporizer to generate electricity, and then the steam is sent to the heat dissipation tube. and a liquid pump that sends the liquid liquefied by cooling in the heat radiation tube back to the heat absorption tube to reduce the temperature difference between the high temperature side of the spacecraft facing the sun and the low temperature side facing away from the sun. An auxiliary power generation device for a spacecraft, which is used to obtain electromotive force.
JP19502982U 1982-12-24 1982-12-24 Auxiliary power generator for spacecraft Granted JPS5999899U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19502982U JPS5999899U (en) 1982-12-24 1982-12-24 Auxiliary power generator for spacecraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19502982U JPS5999899U (en) 1982-12-24 1982-12-24 Auxiliary power generator for spacecraft

Publications (2)

Publication Number Publication Date
JPS5999899U JPS5999899U (en) 1984-07-05
JPS6238480Y2 true JPS6238480Y2 (en) 1987-10-01

Family

ID=30419009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19502982U Granted JPS5999899U (en) 1982-12-24 1982-12-24 Auxiliary power generator for spacecraft

Country Status (1)

Country Link
JP (1) JPS5999899U (en)

Also Published As

Publication number Publication date
JPS5999899U (en) 1984-07-05

Similar Documents

Publication Publication Date Title
US8087245B2 (en) Solar concentrator plant
US20110048502A1 (en) Systems and Methods of Photovoltaic Cogeneration
US3799144A (en) Solar heat source and receiver system
JP2016521534A (en) Low energy nuclear thermoelectric system
WO2013017922A1 (en) Solar power satellite system for transmitting microwave energy to the earth and method of arranging a solar power satellite system about the sun for same
JPS6238480Y2 (en)
RU2724206C1 (en) Autonomous space power plant
Jin et al. Motion analysis and trajectory planning of solar tracking of a class of Space Solar Power Station
JP2526387B2 (en) Solid electrolyte fuel cell power generator
CN109944757A (en) A kind of solar heat power generation system and working method applied in the space environment
JP2013233906A (en) Spacecraft
Slone et al. Electric Power Generation Systems for Use in Space
CN113776869A (en) Non-nuclear on-orbit verification method for space nuclear power platform
JPH01216580A (en) Solar cell device
Stone et al. On-sun test results of McDonnell Douglas' prototype solar thermophotovoltaic power system
JPS55142979A (en) Light collecting tower
RU2141606C1 (en) Solar power plant
Dawson et al. Space-Station Power Systems
JP2001144316A (en) Reflection solar power-generation device
JP2000216420A (en) Solar battery power generation system
FR2313645A1 (en) Heat engine using solar energy - having black body solar radiation absorber as evaporator with turbine generator
Blake Solar Augmentation of Hydroelectric Power Systems∗
Orosco Simulation results of an efficient and innovative sun engine for solar to electrical energy conversion
English Alternative power-generation systems
JPS5642056A (en) Focusing type water heater