JPS6238392A - Fuel spacer - Google Patents

Fuel spacer

Info

Publication number
JPS6238392A
JPS6238392A JP60177570A JP17757085A JPS6238392A JP S6238392 A JPS6238392 A JP S6238392A JP 60177570 A JP60177570 A JP 60177570A JP 17757085 A JP17757085 A JP 17757085A JP S6238392 A JPS6238392 A JP S6238392A
Authority
JP
Japan
Prior art keywords
spring
cylindrical member
fuel
fuel rod
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60177570A
Other languages
Japanese (ja)
Other versions
JPH0376879B2 (en
Inventor
金野 睦夫
松浦 哲明
賢二 山田
川田 能成
平川 博将
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP60177570A priority Critical patent/JPS6238392A/en
Publication of JPS6238392A publication Critical patent/JPS6238392A/en
Publication of JPH0376879B2 publication Critical patent/JPH0376879B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子炉において使用する燃料集合体用の燃料
スペーサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fuel spacer for a fuel assembly used in a nuclear reactor.

〔発明の背景〕[Background of the invention]

原子炉において使用される燃料集合体用の独立セル型燃
料スペーサとしては、例えば特開昭59−65287号
公報の第2A図や特公昭55−38638号公報の第1
図に示すように構造の燃料スペーサなどが提案されてい
る。
As an independent cell type fuel spacer for a fuel assembly used in a nuclear reactor, for example, Fig. 2A of Japanese Patent Application Laid-open No. 59-65287 and No. 1 of Japanese Patent Publication No. 55-38638 are examples.
A fuel spacer with the structure shown in the figure has been proposed.

第22図は、上記特開昭59−65287号公報にて提
案された燃料スペーサを示すものである。この燃料スペ
ーサ1は、内部に燃料棒6が挿入される多数の円筒部材
(独立セル)3を格子状に配列し、隣接する相互の円筒
部材どうしを溶接部Wsで溶接して結合して形成した円
筒部材の束の外周を帯状のサイドバンド2で取囲み、円
筒部材との接点(溶接部W2)を溶接にて結合して構成
したものである。なお、第22図における4及び5は、
各各燃料捧6(第22図及び以下に述べる各図では、燃
料棒内に装填された核反応物質は示していない)を支持
するためのばねと円筒部材の突起である。
FIG. 22 shows a fuel spacer proposed in the above-mentioned Japanese Patent Laid-Open No. 59-65287. This fuel spacer 1 is formed by arranging a large number of cylindrical members (independent cells) 3 into which fuel rods 6 are inserted in a lattice pattern, and joining adjacent cylindrical members by welding them together at welds Ws. The outer periphery of a bundle of cylindrical members is surrounded by a band-shaped side band 2, and the contact points (welded portions W2) with the cylindrical members are welded together. Note that 4 and 5 in FIG. 22 are
These are springs and protrusions of the cylindrical member for supporting each fuel rod 6 (in FIG. 22 and the figures described below, the nuclear reactant loaded in the fuel rod is not shown).

円筒部材3の円筒面には、第23図及び第24図に示す
ようにばね4を支持するためのC字形の切欠き7Aと突
起5を形成するための切込み(第23図及び第24図で
は、切込みは示していない)が各々設けられている。
As shown in FIGS. 23 and 24, the cylindrical surface of the cylindrical member 3 has a C-shaped notch 7A for supporting the spring 4, and notches for forming the protrusion 5 (FIGS. 23 and 24). (notches not shown) are provided in each case.

本燃料スペーサ1で用いるばね4は、1個の円輪から形
成された連続ループ型のばねである。円筒部材3にばね
4を取付ける場合には、まず、ばね4の片側のばね部材
を円筒部材3のC字形の切欠き7Aを通過させて円筒部
材3の中へ突入させた状態で円筒部材3を回転させ、C
字形の切欠き7Aによって形成された突片8Aがループ
型のばね4の一方の入口から入れる(すなわち、突片8
Aをばね4で覆う)ようにする。次に、もう1個の円筒
部材3の上下の向きを前述のばね4が係合された円筒部
材のそれと逆にして(切欠き7Aがコ字形に見える状態
にして)、この円筒部材3を回転させることにより、突
片8Aをばね4の他方の入口から入れ、ばね4の片側ず
つのばね部材を円筒部材内に突入させた状態で円筒部材
どうしの上下を溶接により結合して、ばね4を保持する
The spring 4 used in the present fuel spacer 1 is a continuous loop type spring formed from one circular ring. When attaching the spring 4 to the cylindrical member 3, first, the spring member on one side of the spring 4 is inserted into the cylindrical member 3 through the C-shaped notch 7A of the cylindrical member 3. Rotate C
The protruding piece 8A formed by the letter-shaped notch 7A is inserted from one entrance of the loop-shaped spring 4 (that is, the protruding piece 8
Cover A with spring 4). Next, the vertical direction of another cylindrical member 3 is reversed to that of the cylindrical member with which the spring 4 is engaged (so that the notch 7A looks U-shaped), and this cylindrical member 3 is By rotating, the protruding piece 8A is inserted from the other entrance of the spring 4, and with the spring members of each side of the spring 4 protruding into the cylindrical member, the upper and lower parts of the cylindrical members are joined by welding, and the spring 4 is hold.

第25図は、第22図に示した燃料スペーサ3の一部を
拡大図示したものである。第26図及び第27図は、第
25図の5sz−81x断面図及びSss  Sls断
面図であり、各々円筒部材3に燃料棒6が挿入された状
態での燃料棒6のばね4及び円筒部材の突起5による支
持状況を表している。
FIG. 25 is an enlarged view of a part of the fuel spacer 3 shown in FIG. 22. 26 and 27 are a 5sz-81x cross-sectional view and a Sss Sls cross-sectional view of FIG. 25, respectively, showing the spring 4 of the fuel rod 6 and the cylindrical member when the fuel rod 6 is inserted into the cylindrical member 3. The state of support by the protrusion 5 is shown.

これらの図における符号のうち、4Aは、ばね4の長手
方向中央部に設けられて凸部を、4Bは、ばね4の上部
と下部に設けられた凸部を表している。また、9は1円
筒部材3の内側に突出した突起5を形成するための切込
みを表しており、他の符合は、前述の第22図。第23
図及び第24図と同一である。
Among the symbols in these figures, 4A represents a convex portion provided at the center in the longitudinal direction of the spring 4, and 4B represents a convex portion provided at the upper and lower portions of the spring 4. Further, numeral 9 represents a notch for forming a protrusion 5 protruding inside the cylindrical member 3, and other reference numerals refer to the above-mentioned FIG. 22. 23rd
It is the same as FIG.

以上述べたような構造の独立セル型燃料スペーサは5例
えば、これまで沸騰水型原子炉用燃料集合体に適用され
てきている格子型の燃料スペーサに比べて構造強度が高
いため、部材を薄肉化することによって圧損の低減と中
性子経済性の向上が図られている。また、この燃料スペ
ーサは、燃料棒の熱的限界が向上することも実験により
確認されている。しかし、これまで述べた独立セル型燃
料スペーサは、第26図にも示したように、ばね4の中
を円筒部材3の突片8Aが2枚通過する構造となってい
るので、突片8Aとばね4との間隙やばねの上下の凸部
4Bと燃料棒6との間隙が、例えば本燃料スペーサ1と
同様に連続したループ型のばねを有する格子型の燃料ス
ペーサ(特開昭59−63589号公報参照、この燃料
スペーサでは、ばねの中を1枚の格子部材が通過する)
に比べて少なくとも突片8Aの肉厚分だけ小さい。この
ため、独立セル型燃料スペーサにおいては、極く限られ
たスペースの範囲内で所定のばね力を発揮し、かつ燃料
棒挿入時(燃料集合体組立時)や地震時など、ばね4に
極めて大きな荷重が負荷される場合にもばね4が損傷又
は塑性変形によって弾性体としての機能を喪失しないよ
うに設計するためには燃料棒挿入時(M立時)や地震時
にばね4にどのような不具合が生じる可能性があるかを
予め把握しておき、そのような不具合が生じないように
設計する必要がある。
The independent cell fuel spacer with the structure described above has higher structural strength than the lattice-type fuel spacer that has been applied to fuel assemblies for boiling water reactors. This is intended to reduce pressure loss and improve neutron economy. It has also been experimentally confirmed that this fuel spacer improves the thermal limit of the fuel rod. However, as shown in FIG. 26, the independent cell fuel spacer described so far has a structure in which two protruding pieces 8A of the cylindrical member 3 pass through the spring 4. The gap between the spring and the spring 4 and the gap between the upper and lower convex portions 4B of the spring and the fuel rod 6 are, for example, a lattice-type fuel spacer (Japanese Unexamined Patent Application Publication No. 1983-1973) having a continuous loop-shaped spring similar to the present fuel spacer 1. (Refer to Publication No. 63589, in this fuel spacer, one grid member passes through the spring)
It is smaller than that by at least the thickness of the protruding piece 8A. For this reason, the independent cell fuel spacer exerts a predetermined spring force within an extremely limited space, and when inserting a fuel rod (when assembling a fuel assembly) or during an earthquake, the spring 4 In order to design the spring 4 so that it does not lose its function as an elastic body due to damage or plastic deformation even when a large load is applied, it is necessary to consider what kind of problems the spring 4 may have during fuel rod insertion (M standing) or during an earthquake. It is necessary to understand in advance whether there is a possibility that such problems may occur, and to design the system to prevent such problems from occurring.

第28図、第29図、第30図、第31図、第32図、
第33図及び第34図は、各々燃料集合体組合時に燃料
棒6を燃料スペーサの円筒部材3に挿入する際に発生す
る可能性のある不具合を示したものである。これらの図
において、6Aは燃料棒6の管部を、6Cは下部端栓を
、また、6Bは燃料棒下部の溶接ビード部を各々表して
おり、他の符号は、前述の第22図や第23図などと同
一である。
Figure 28, Figure 29, Figure 30, Figure 31, Figure 32,
FIGS. 33 and 34 each illustrate a problem that may occur when inserting the fuel rod 6 into the cylindrical member 3 of the fuel spacer when assembling the fuel assembly. In these figures, 6A represents the tube part of the fuel rod 6, 6C represents the lower end plug, and 6B represents the weld bead at the lower part of the fuel rod, and the other symbols refer to the above-mentioned FIG. This is the same as in FIG. 23, etc.

第28図は、燃料棒6を円筒部材3に挿入する際に燃料
棒の溶接ビード部6Bがばねの上部の凸部4Bと干渉す
る場合を示したものであり、第29図は、第28図の5
14−814断面図である。
FIG. 28 shows a case where the weld bead 6B of the fuel rod interferes with the convex part 4B on the upper part of the spring when the fuel rod 6 is inserted into the cylindrical member 3, and FIG. Figure 5
14-814 sectional view.

この場合、燃料棒の管部6Aは、第29図から分かるよ
うに円筒部材の上側の突起5と接しており。
In this case, the tube portion 6A of the fuel rod is in contact with the projection 5 on the upper side of the cylindrical member, as can be seen from FIG.

ばね4の内側は、円筒部材3に接触しているので強制的
に燃料棒挿入しようとすると、ばね上部の凸部4Bとそ
の近傍が塑性変形したり、円筒部材の突起5や燃料棒管
部6Aら損傷が生じたりすることになる。
The inside of the spring 4 is in contact with the cylindrical member 3, so if you try to forcefully insert the fuel rod, the protrusion 4B on the upper part of the spring and its vicinity may be plastically deformed, or the protrusion 5 of the cylindrical member or the fuel rod tube may be deformed. 6A etc. may be damaged.

第30図は、燃料棒挿入時に溶接ビード部6Bがばねの
中央部の凸部4Aと干渉する場合を示したものであり、
第31図は、第30図の815−8L11断面図である
。この場合にも燃料棒をさらに挿入しようとすると、第
28図の場合と同様な不具合が生じることになる。
FIG. 30 shows a case where the weld bead portion 6B interferes with the convex portion 4A at the center of the spring when the fuel rod is inserted.
FIG. 31 is a sectional view 815-8L11 of FIG. 30. In this case as well, if an attempt is made to insert more fuel rods, the same problem as in the case of FIG. 28 will occur.

第32図は、燃料棒の溶接ビード部6Bと円筒部材の下
側の突起5とが干渉する場合を示したものであり、第3
3図は、第32図の81B  SIB断面図、第34図
は、第33図の■−■矢視ての破断側面回である。この
場合には、これらの図にも示したようにばねの中央部と
その近傍でばねの内側が円筒部材の突片8Aと接触し、
外側が燃料棒の管部6Aと接触しているので、燃料棒6
を更に挿入しようとすると、円筒部材の下側の突起5だ
けでなく、ばねの中央部の凸部4Aとその近傍や凸部4
Aと接触している燃料棒管部6Aも塑性変形などの損傷
を受けることになる。
FIG. 32 shows a case where the weld bead 6B of the fuel rod interferes with the protrusion 5 on the lower side of the cylindrical member.
3 is a cross-sectional view of the 81B SIB in FIG. 32, and FIG. 34 is a broken side view taken along the line ■-■ in FIG. 33. In this case, as shown in these figures, the inside of the spring comes into contact with the protruding piece 8A of the cylindrical member at and near the center of the spring,
Since the outer side is in contact with the pipe portion 6A of the fuel rod, the fuel rod 6
When trying to insert the spring further, not only the protrusion 5 on the lower side of the cylindrical member but also the protrusion 4A in the center of the spring and its vicinity and the protrusion 4
The fuel rod tube portion 6A that is in contact with the fuel rod A will also suffer damage such as plastic deformation.

第35図は、地震時や輸送時及び取扱時などにおいて燃
料集合体の横断面方向の荷重(加速度)を受けて燃料棒
6がばね4の方向(図中の矢印Asの方向)に移動し、
ば−ね中央部近傍のばねの内側が円筒部材の突片8Aに
接触した状態を示すものであり、第36図は、第35図
の817−817断面図である。この場合には、ばね中
央部の凸部4Aが塑性変形するとともに燃料棒の管部6
Aも燃料棒6がばね4を押す力と同等の反力をばねとの
接触部のみで受けるので大きな応力が管部6Aにも生じ
ることになる。
Figure 35 shows that the fuel rods 6 move in the direction of the spring 4 (in the direction of the arrow As in the figure) under the load (acceleration) in the cross-sectional direction of the fuel assembly during earthquakes, transportation, handling, etc. ,
FIG. 36 is a sectional view taken along line 817-817 in FIG. 35, showing a state in which the inside of the spring near the center of the spring is in contact with the protruding piece 8A of the cylindrical member. In this case, the convex portion 4A at the center of the spring is plastically deformed and the tube portion 6 of the fuel rod is
Since the fuel rod A also receives a reaction force equivalent to the force of the fuel rod 6 pushing the spring 4 only at the contact portion with the spring, a large stress is also generated in the tube portion 6A.

なお1以上述べたような不具合の比較的簡単な対策とし
ては、例えば、ばねの変形スペースを確保するという観
点から適用する燃料棒の外径を小さくするといった方法
や燃料棒の外径は変えずに円筒部材に設ける突起の高さ
を低くして意図的に燃料棒を円筒部材に対し突起の方へ
偏心させるというような方法が考えられる。しかし、前
者の方法(燃料棒外径を小さくする)によって場合には
、燃料棒内に装填し得る核反応物質の量が必然的に減る
ので、核分裂反応を維持するために濃縮度を上げる必要
があり、これは燃料のサイクルコストという観点から好
ましくない。一方、後者の方法(燃料棒を突起側に偏心
させる)によった場合には、燃料棒間隔が狭くなる部分
が生じてしまい、核的にも熱水力の面でも好ましくない
。更に、この場合には、突起の近傍で燃料棒と円筒部材
との間隙が小さくなるため、この部分での冷却材の流れ
方が悪化し、冷却材中に含まれる腐食生成物によってこ
の部分の間隙が閉塞され、燃料棒が熱的な損傷を受ける
恐れもある。また、その他の対策としては、ばね4の中
央の凸部4Aの高さく第37図中の寸法hz)を低くし
て、第30図や第32図及び第35図に示したような不
具合の発生を防止するという方法やはね4の上下の凸部
4Bの高さく第37図中の寸法h2)を低くして第28
図に示した不具合の発生を防止するという方法も考えら
れる。しかし、燃料棒6を円筒部材3に挿入する際の変
形によって、ばね4に生じる応力は、一般にばねの中央
部で最も大きく、一方、ばね中央の凸部4Aは、その応
力を低く抑える役目も担っているのでばね4の機械的健
全性という観点からみれば、ばね中央の凸部4Aの高さ
hlを低くするのは好ましくない。また、ばね中央の凸
部4Aの高さhlを低くすると、ばね4と燃料棒6との
間隙が凸部4Aの近傍で狭くなり、冷却材の流れ方が悪
化するので、熱水力設計の面でも好ましくない。一方、
ばね上下の凸部4Bを低くすると、第28図に示した不
具合に対しては、有効であるが、第35図に示した不具
合にとっては、むしろこの不具合を助長することになる
ので好ましくない。このように、ばね4は、非常に微妙
なバランスを保つように設計されているものであって、
1つの不具合のみに着目して安易に形状を変更すると、
他の不具合が助長されたり、新な不具合を引起こす恐れ
があり、ばねの形状を変更するのは、あまり好ましい方
法とはいえない。
Relatively easy countermeasures for the problems mentioned above include, for example, reducing the outer diameter of the fuel rods to ensure space for deformation of the springs, or leaving the outer diameter of the fuel rods unchanged. Another possible method is to lower the height of a protrusion provided on the cylindrical member and intentionally make the fuel rod eccentric toward the protrusion with respect to the cylindrical member. However, if the former method (reducing the outer diameter of the fuel rod) inevitably reduces the amount of nuclear reactant that can be loaded into the fuel rod, it is necessary to increase the enrichment to maintain the fission reaction. This is not desirable from the viewpoint of fuel cycle cost. On the other hand, if the latter method (the fuel rods are eccentrically moved toward the protrusion side) is used, there will be a portion where the fuel rod spacing becomes narrow, which is not preferable from both a nuclear and thermal-hydraulic point of view. Furthermore, in this case, the gap between the fuel rod and the cylindrical member becomes smaller near the protrusion, so the flow of coolant in this area deteriorates, and corrosion products contained in the coolant cause damage to this area. There is also a risk that the gap will be blocked and the fuel rods will be thermally damaged. In addition, as another countermeasure, the height of the convex portion 4A at the center of the spring 4 (dimension hz in FIG. 37) may be lowered to avoid the problems shown in FIGS. 30, 32, and 35. There is a method to prevent this from occurring, and to reduce the height of the upper and lower convex portions 4B of the spring 4 and to reduce the dimension h2) in Fig. 37.
Another possible method is to prevent the occurrence of the problem shown in the figure. However, the stress generated in the spring 4 due to deformation when inserting the fuel rod 6 into the cylindrical member 3 is generally largest at the center of the spring, and the convex portion 4A at the center of the spring also serves to keep the stress low. Therefore, from the viewpoint of the mechanical soundness of the spring 4, it is not preferable to reduce the height hl of the convex portion 4A at the center of the spring. Furthermore, if the height hl of the convex part 4A at the center of the spring is reduced, the gap between the spring 4 and the fuel rod 6 will become narrower near the convex part 4A, and the flow of coolant will deteriorate. I don't like it in terms of aspects either. on the other hand,
Lowering the height of the upper and lower convex portions 4B of the spring is effective against the problem shown in FIG. 28, but it is not preferable for the problem shown in FIG. 35 because it actually aggravates the problem. In this way, the spring 4 is designed to maintain a very delicate balance.
If you focus on only one defect and change the shape easily,
Changing the shape of the spring is not a very desirable method as it may exacerbate other problems or cause new problems.

以上のような理由から、これまで述べてきた構造の独立
セル型スペーサは、適用し得る燃料棒外径の許容範囲が
非常に狭く設計上の自由度の極めて小さな燃料スペーサ
であるということができる。
For the reasons mentioned above, it can be said that the independent cell spacer with the structure described so far has a very narrow allowable range of applicable fuel rod outer diameters and is a fuel spacer with an extremely small degree of freedom in design. .

このため、現在使用されている燃料集合体にこの燃料ス
ペーサを適用する場合には、その設計変更によって新た
な問題を引起こすこがないような抜本的な対策を施すこ
とが必要である。
Therefore, when applying this fuel spacer to fuel assemblies currently in use, it is necessary to take drastic measures to prevent new problems from occurring due to design changes.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、燃料集合体組立時や地震時など燃料ス
ペーサを構成するばねに大きな荷重が加えられる場合に
もばねの健全性を図る上で好適で、しかも独立セルの大
きさく直径)に応じて適用し得る燃料棒外径の許容範囲
が従来のものより格段に広く、かつ部材の製作及び組立
てが容易な燃料スペーサを提供することにある。
The purpose of the present invention is to provide a suitable method for maintaining the soundness of the springs constituting the fuel spacer even when a large load is applied to the springs constituting the fuel spacer, such as when assembling a fuel assembly or during an earthquake. It is an object of the present invention to provide a fuel spacer which has a much wider allowable range of applicable fuel rod outer diameters than conventional ones and whose members are easy to manufacture and assemble.

〔発明の概要〕[Summary of the invention]

これまで述べてきた独立セル型の燃料スペーサにおいで
懸念される不具合は、主に連続したループ型のばねを支
持する独立セルの構造や独立セルと挿入する燃料棒の大
きさく直径)の組合せ方に起因するものである。しかし
、この不具合の対策として、適用する燃料棒の外径を小
さくしたり、独立セル(円筒部材)の燃料癒支持用の突
起の高さを低くした場合には、この対策に伴い、その効
果を相殺して余りの有る新たな問題が生じるので実用的
な対策とはいえない。また、ばねの形状も前述の理由か
ら好ましくない。
The problems that are of concern with the independent cell type fuel spacers that have been discussed so far are mainly the structure of the independent cell that supports the continuous loop spring, and the combination of the independent cell and the inserted fuel rod (large diameter). This is due to However, as a countermeasure to this problem, if the outer diameter of the applied fuel rod is made smaller or the height of the protrusion for fuel healing support of the independent cell (cylindrical member) is lowered, the effect This is not a practical countermeasure because a new problem arises that has a surplus that offsets the above. Furthermore, the shape of the spring is also unfavorable for the reasons mentioned above.

そこで、本発明では、独立セルやばねの形状やばねの保
持方法は、これまで述べた燃料スペーサのそれと基本的
に同一とした上で、ばねの変形するスペーサを大きくす
ることとした。
Therefore, in the present invention, the shapes of the independent cells and springs and the method of holding the springs are basically the same as those of the fuel spacers described above, and the spacer on which the springs deform is made larger.

本発明の燃料スペーサでは、第1の方法として、独立セ
ルの壁面に施す切欠きの形状をE字形とすることにより
、ばねを保持する突片を独立セルの軸方向に対して分離
させ、分離した突片間のスペースを燃料棒によってばね
の中央部が隣接する独立セルの方へ押込まれた場合の通
過スペースとし、ばねが独立セルと接触して塑性変形が
生じたり、燃料棒や独立セルが損傷したりするのを防止
する構造とした。
In the fuel spacer of the present invention, the first method is to make the notch in the wall surface of the independent cell E-shaped so that the protruding piece that holds the spring is separated in the axial direction of the independent cell. The space between the protrusions is used as a passage space when the central part of the spring is pushed toward the adjacent independent cell by the fuel rod, and the spring comes into contact with the independent cell and plastic deformation occurs, and the fuel rod and independent cell It has a structure that prevents it from being damaged.

また、第2の方法としては、上述の切欠きの形状は、C
字形とし、切欠きによって形成された突片の大部分を平
坦にするとともに突片の板厚の中心が独立セルの中心か
ら燃料ピッチの半分だけ離れるように突片の平坦部を独
立セルの外側に張出させ、しかも突片の独立セルの軸方
向に沿った長さを上下が逆向きの独立セルどうしを切欠
き部が向い合う状態で接触させても互いの突片が干渉し
ないか、又は、突片間の独立セル軸方向に沿った間隙が
第1の方法と同程度になるような長さとすることによっ
て、第1の方法と同一の効果が得られる構造とした。
In addition, as a second method, the shape of the above-mentioned notch is C
The flat part of the protrusion is placed outside the independent cell so that most of the protrusion formed by the notch is flat and the center of the plate thickness of the protrusion is separated from the center of the independent cell by half the fuel pitch. Even if the independent cells of the protruding pieces are brought into contact with each other with their notches facing each other in the axial length of the independent cells of the protruding pieces, and the lengths along the axial direction of the independent cells are opposite to each other, the protruding pieces do not interfere with each other. Alternatively, by setting the length so that the gap between the protrusions along the independent cell axis direction is comparable to that of the first method, a structure is obtained in which the same effect as the first method can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図から第8図までの各回
により説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 8.

第1図は、燃料スペーサを構成する円筒部材3(独立セ
ル)1個ばね4(本図には示していない)を保持するた
めの突片8Bと突片8Bを形成するための切欠き7Bが
正面に見える位置で図示したものであり、第2図は、第
1図の5s−8□断面図である。また、第3図は、燃料
棒6が挿入された状態の2個の円筒部材3と円筒部材3
によって保持されたばね4を示す破断側面図であり、第
4図は、第3図の82−8z断面図である。なお、第4
図及び以下に述べる各図では、燃料棒内に装填されてい
る核反応物質は示していない。
FIG. 1 shows a protruding piece 8B for holding one cylindrical member 3 (independent cell) constituting a fuel spacer and a spring 4 (not shown in this figure) and a notch 7B for forming the protruding piece 8B. FIG. 2 is a sectional view taken along line 5s-8□ in FIG. 1. FIG. 3 also shows the two cylindrical members 3 and the cylindrical member 3 with the fuel rods 6 inserted therein.
FIG. 4 is a cross-sectional view taken along line 82-8z in FIG. 3. FIG. In addition, the fourth
The figure and the figures described below do not show nuclear reactants loaded in the fuel rods.

円筒部材3の円筒面には、第1図に示したようなばね4
を保持する突片8Bを形成するための8字形の切欠き7
Bが設けられている。また、円筒部材3には、燃料棒6
を支持するための突起5が円筒部材の上下に2個ずつ設
けられており、突起5は、円筒部材の円筒面に円周方向
に沿って細長い切込み9(第3図参照)を施した後1円
筒部材の内側に突出させて形成したものである。ばね4
は、第3図に示したように燃料棒6と向い合う面側の面
の中央と上下に凸部4A及び4Bを設けた連続ループ型
のばねである。
The cylindrical surface of the cylindrical member 3 is provided with a spring 4 as shown in FIG.
8-shaped notch 7 for forming a protruding piece 8B that holds the
B is provided. Further, the cylindrical member 3 includes fuel rods 6
Two protrusions 5 are provided on the top and bottom of the cylindrical member to support the cylindrical member. 1. It is formed to protrude inside a cylindrical member. Spring 4
As shown in FIG. 3, this is a continuous loop type spring having convex portions 4A and 4B provided at the center and upper and lower portions of the surface facing the fuel rods 6.

ばね4を2個の円筒部材3に取付る場合には、従来の燃
料スペーサと同様に、まず、ばね4の片側のばね部材を
円筒部材の8字形の切欠き7− B、 ?通過させた後
、円筒部材の突片8Bがばね4の中に入るように円筒部
材3を回転させる。次に、もう1個の円筒部材3の上下
の向きをばね4が係合された円筒部材と逆にして切欠き
7Bがヨ字形に−見えるようにした後、突片8Bを既に
他方の円筒部材の突片8Bが入れられたばねの入口と反
対側の入口からばね4の中に入れる。最後に1円筒部材
の突起5の中心が円筒部材どうしの中心を結ぶ直線に対
し、所定の角度だけ傾くように2つの円筒部材間の相対
角度を調整して溶溶部W1で円筒部材間を溶接し、ばね
4を保持する。
When attaching the spring 4 to the two cylindrical members 3, first insert the spring member on one side of the spring 4 into the figure-eight notch 7-B, ? After passing, the cylindrical member 3 is rotated so that the protruding piece 8B of the cylindrical member enters the spring 4. Next, the vertical direction of the other cylindrical member 3 is reversed to that of the cylindrical member with which the spring 4 is engaged so that the notch 7B looks Y-shaped, and then the protruding piece 8B is already attached to the other cylinder. Insert the member into the spring 4 from the entrance opposite to the spring entrance into which the protruding piece 8B was inserted. Finally, the relative angle between the two cylindrical members is adjusted so that the center of the protrusion 5 of one cylindrical member is inclined by a predetermined angle with respect to the straight line connecting the centers of the cylindrical members, and the cylindrical members are welded at the weld zone W1. and hold the spring 4.

なお1本実施例の燃料スペーサは、以上述べたような構
造のばね4を取付けた多数の円筒部材3の束の外周を帯
状部材(サイドバンド)で取囲み、円筒部材と円筒部材
及び円筒部材と帯状部材を各各溶接によって結合したも
のであり、全体の構成は、前述の第12図に示した燃料
スペーサ1と同様である。
Note that the fuel spacer of this embodiment has a band-like member (side band) surrounding the outer periphery of a bundle of a large number of cylindrical members 3 to which springs 4 having the structure described above are attached. and a band-shaped member are joined by each weld, and the overall structure is the same as that of the fuel spacer 1 shown in FIG. 12 described above.

第5図及び第6図(第6図は、第5図のSa −8B断
面図である)に示すように、本実施例によれば燃料集合
体組立時に燃料棒6を円筒部材3の中へ挿入させ、燃料
棒の管部6Bより外径の大きな燃料棒下部端栓溶接ビー
ド部6Aによってばねの中央部(凸部4Aとその近傍)
が隣接する円筒部材の方へ押し込まれた場合にも円筒部
材の8字形の切欠き7Bの円筒高さ方向の中央間隙Z1
をばね4の通過スペースとすることができるので、ばね
4が過度の変形によって弾性体としての機能を喪失した
り、燃料棒6や円筒部材の突起5が損傷したりするのを
防止することができる。はだ、本実施例によれば、第7
図及び第8図(第8図は、第7図のS4  S4断面図
である)に示すように。
As shown in FIGS. 5 and 6 (FIG. 6 is a sectional view of Sa-8B in FIG. 5), according to this embodiment, the fuel rods 6 are inserted into the cylindrical member 3 when assembling the fuel assembly. The central part of the spring (the convex part 4A and its vicinity) is inserted into the fuel rod by the lower end plug welding bead part 6A, which has a larger outer diameter than the fuel rod tube part 6B.
Even when the cylindrical member is pushed toward the adjacent cylindrical member, the center gap Z1 in the cylinder height direction of the figure-eight notch 7B of the cylindrical member
can be used as a passage space for the spring 4, so that it is possible to prevent the spring 4 from losing its function as an elastic body due to excessive deformation, and from damaging the fuel rod 6 or the protrusion 5 of the cylindrical member. can. However, according to this embodiment, the seventh
As shown in FIG.

地震時や輸送時及び取扱時など燃料集合体の横断面方向
に大きな加速度が加わり、燃料e6がばね4と接する方
向(図中の矢印Asの方向)に移動する場合にも、ばね
4の中央部(凸部4Aとその近傍)は、前述の空間スペ
ースZ1を通過できるのでばね4の塑性変形を防止する
ことができる。
Even when a large acceleration is applied in the cross-sectional direction of the fuel assembly such as during an earthquake, during transportation, or during handling, and the fuel e6 moves in the direction of contact with the spring 4 (in the direction of arrow As in the figure), the center of the spring 4 (the convex portion 4A and its vicinity) can pass through the above-mentioned spatial space Z1, so that plastic deformation of the spring 4 can be prevented.

更に、この場合には、燃料棒6がばね4の方へ移動して
ゆくと、燃料棒6は、所定の移動量でばね4の中央の凸
部4Aだけでなく上下の凸部4Bとも接触するようにな
るので、燃料棒6がばね4から受ける反力を分散するこ
とができ、燃料棒6に過度の応力が生ずるのを防止する
こともできる。
Furthermore, in this case, as the fuel rod 6 moves toward the spring 4, the fuel rod 6 contacts not only the central convex portion 4A of the spring 4 but also the upper and lower convex portions 4B by a predetermined amount of movement. Therefore, the reaction force that the fuel rod 6 receives from the spring 4 can be dispersed, and excessive stress can be prevented from being generated in the fuel rod 6.

この効果を示したのが第5図であり、本図は、地震時な
どにおいて燃料集合体が受ける横断面方向の加速度Gと
そのときに燃料棒6がばね4から受ける圧力Fとの関係
を示したものである。第9図において、Flは初期のば
ね4の反力、F2は燃料棒6がばねの上下の凸部と接触
したときのばねの反力である。また、G1は燃料棒6ば
ばね4を押す力とばね4の反力が釣合うときの加速度で
あり・、Gtは燃料棒6がばねの上下の凸部4Bと接触
するときの加速度である。従来の燃料スペーサの場合に
は、燃料棒6は、常にばねの中央の凸部4Aとのみ接触
し、上下の凸部4Bとは接触しない(第35図参照)の
で、加速度Gと燃料棒がばねから受ける反力Fの関係は
、第9図の二点鎖線(Pz〜P2〜P8〜P4)のよう
になる。これに対し1本実施例の燃料スペーサの場合に
は、先に述べた理由から、第9図の実線(Ps〜P2〜
P3〜Pa)及び一点鎖線(Pg〜P7)のようになる
This effect is shown in Figure 5, which shows the relationship between the acceleration G in the cross-sectional direction that the fuel assembly receives during an earthquake, etc., and the pressure F that the fuel rod 6 receives from the spring 4 at that time. This is what is shown. In FIG. 9, Fl is the initial reaction force of the spring 4, and F2 is the reaction force of the spring when the fuel rod 6 contacts the upper and lower convex portions of the spring. Also, G1 is the acceleration when the force pushing the fuel rod 6 spring 4 and the reaction force of the spring 4 are balanced, and Gt is the acceleration when the fuel rod 6 contacts the upper and lower convex portions 4B of the spring. . In the case of a conventional fuel spacer, the fuel rod 6 always contacts only the central convex portion 4A of the spring and does not contact the upper and lower convex portions 4B (see Fig. 35), so that the acceleration G and the fuel rod are The relationship between the reaction force F received from the spring is as shown by the two-dot chain line (Pz~P2~P8~P4) in FIG. On the other hand, in the case of the fuel spacer of this embodiment, the solid line (Ps~P2~
P3 to Pa) and the dashed dotted line (Pg to P7).

この図から、本実施例を採用することによって、燃料棒
6がばね4から受ける反力が大幅に軽減され、燃料棒の
機械的な健全性を維持する上で非常に有効であることが
容易に理解されよう。
From this figure, it is easy to see that by employing this embodiment, the reaction force that the fuel rod 6 receives from the spring 4 is significantly reduced, which is very effective in maintaining the mechanical integrity of the fuel rod. be understood.

第10図は1本発明の第二の実施例を示すものであり、
第11図は、第10図の5a−8a断面図である。前述
の第一の実施例では、ばねを保持する突片を形成するた
めに円筒部材の円筒面に施す切欠きがE字形で、しかも
突片の横断面形状が弓形のままであってのに対し、本実
施例では1円筒面に施す切欠き7Cの形状をC字形にす
るとともに形成された突片8Cの大部分を平坦にし、更
に、突片8Cの板厚の中心と円筒部材の中心との距mが
燃料ピッチの半分だけ踵れるように突片8Cを円筒部材
の外側に張出させたという相違がある。
FIG. 10 shows a second embodiment of the present invention,
FIG. 11 is a sectional view taken along line 5a-8a in FIG. 10. In the first embodiment described above, the notch made on the cylindrical surface of the cylindrical member to form the protruding piece that holds the spring is E-shaped, and the cross-sectional shape of the protruding piece remains arcuate. On the other hand, in this embodiment, the shape of the notch 7C made on one cylindrical surface is C-shaped, most of the formed protrusion 8C is made flat, and the center of the plate thickness of the protrusion 8C and the center of the cylindrical member are The difference is that the protruding piece 8C is made to protrude outside the cylindrical member so that the distance m from the cylindrical member is half the fuel pitch.

第12図及び第13図(第13図は、第12図の5o−
8a断面図である)は、本実施例の円筒部材3を用い、
前述の第一の実施例の場合と同一の方法でばね4を取付
け1円筒部材間の溶接部Wlで上下を溶接した円筒部材
に燃料棒6を挿入するときの状態を示したものである。
Figures 12 and 13 (Figure 13 is the 5o-
8a sectional view) uses the cylindrical member 3 of this example,
This figure shows a state in which a fuel rod 6 is inserted into a cylindrical member to which a spring 4 is attached in the same manner as in the first embodiment and whose upper and lower sides are welded together at a welded portion Wl between the cylindrical members.

この場合、突片8Cは、互いに空間スペースZx  (
第10図参照)に位置し合うことになる。本実例におい
ては、形成された突片8Cの円筒部材軸方向に沿った長
さを円筒部材どうしを組合せても2つの突片8Cが干渉
せず、突片の端面がほとんど隙間のない状態で向い合う
ように設定しているので、ばね4の中を1枚の平坦な部
材が通過するのと同一の状態になる。したがって、本実
施例によれば、ばね4の中を2枚の突片が通過する構造
の従来の燃料スペーサ(第30図参照)に比べて、少な
くとも突片1枚の板厚分だけ、ばね4が変形し得るスペ
ースが増すので、第28図や第30図及び第32図に示
したような燃料棒挿入時における不具合を防止すること
ができる。また、本実施例の場合には、ばねの上下の凸
部4Bの高さく第37図中の寸法hz)を中央の凸部の
高さく第37図中の寸法h1)より若干大きくすれば、
地震時などにおいても第一の実施例と同様の効果を得る
こともできる。
In this case, the projecting pieces 8C are spaced apart from each other by a spatial space Zx (
(see Figure 10). In this example, the length of the formed protrusion 8C along the axial direction of the cylindrical member is such that even when the cylindrical members are combined, the two protrusions 8C do not interfere, and the end surfaces of the protrusions have almost no gap. Since they are set to face each other, the state is the same as when a single flat member passes through the spring 4. Therefore, according to this embodiment, compared to the conventional fuel spacer having a structure in which two protruding pieces pass through the spring 4 (see FIG. 30), the spring 4 is at least as thick as the plate thickness of one protruding piece. Since the space in which the fuel rods 4 can be deformed is increased, it is possible to prevent problems when inserting the fuel rods as shown in FIGS. 28, 30, and 32. In addition, in the case of this embodiment, if the height of the upper and lower convex portions 4B of the spring (dimension hz in FIG. 37) is made slightly larger than the height of the central convex portion (dimension h1) in FIG. 37,
Effects similar to those of the first embodiment can also be obtained during an earthquake.

本発明の第三の実施例を第14図から第17図、までの
各図を用いて説明する。なお、第15図は。
A third embodiment of the present invention will be described with reference to FIGS. 14 to 17. In addition, Fig. 15.

第14図の5t−87断面図である。第16図は。It is a 5t-87 sectional view of FIG. 14. Figure 16 is.

第14図に示した円筒部材3を用い、前述の第−及び第
二の実施例と同一の方法でばね4を取付け、円筒部材ど
うしを溶接部W1で上下を溶接しと結合した円筒部材3
に燃料棒6を挿入するときの状態を示すものであり、第
17図は、第16図のSs  Ss断面図である。
Using the cylindrical member 3 shown in FIG. 14, a spring 4 is attached in the same manner as in the above-mentioned first and second embodiments, and the cylindrical members are joined together by welding the top and bottom at the welding part W1.
FIG. 17 is a sectional view taken along the line Ss-Ss of FIG. 16.

本実施例は、前述の第二の実施例と同様円筒部材3の円
筒面にC字形の切欠き7Dにより突片8Dを形成する。
In this embodiment, a protruding piece 8D is formed in the cylindrical surface of the cylindrical member 3 by a C-shaped notch 7D, similar to the second embodiment described above.

しかし、第二の実施例では、突片の円筒部材の軸方向に
沿って長さが、円筒部材どうしを結合させると突片の端
面がほとんど隙間なく向い合う(第12図参照)長さで
あったのに対し、本実施例では、突片の端面間の間隙が
前述の第一の実施例のそれと同一になる(第3図及び第
16図参照)ような長さとしたという相違がある。
However, in the second embodiment, the length of the protrusion along the axial direction of the cylindrical member is such that when the cylindrical members are combined, the end surfaces of the protrusion face each other with almost no gap (see Fig. 12). On the other hand, in this embodiment, the difference is that the length is set so that the gap between the end surfaces of the protruding pieces is the same as that in the first embodiment described above (see Fig. 3 and Fig. 16). .

したがって、第16図より分かるように本実施例におい
ては、ばね4の中を平坦な1枚のしかも上下に分離した
部材が通過するのと同一の状態になるため、ばね4と突
片8Dとの間隙が増し、また、突片端面間の空間Z8を
ばね中央部の通過スペースとすることができる。これに
よって、ばね4の変形スペースが従来に比べ飛躍的に大
きくなり、第−及び第二の実施例と同様で、しかも、こ
れらの実施例よりも更に大きな効果を得ることができる
Therefore, as can be seen from FIG. 16, in this embodiment, the state is the same as when a single flat member separated vertically passes through the spring 4, so that the spring 4 and the protruding piece 8D The gap is increased, and the space Z8 between the end faces of the protruding pieces can be used as a passage space for the center portion of the spring. As a result, the deformation space of the spring 4 is dramatically increased compared to the conventional one, and it is possible to obtain the same effects as the first and second embodiments, and even greater effects than these embodiments.

なお、以上の実施例の説明では、燃料スペーサを構成す
る独立セルの断面形状が円形の場合だけを対象としたが
、独立セルの断面形状が八角形や六角形などの多角形の
場合にも本発明を適用し。
In addition, in the above description of the embodiment, only the case where the cross-sectional shape of the independent cells constituting the fuel spacer is circular, but it can also be applied when the cross-sectional shape of the independent cells is polygonal, such as octagonal or hexagonal. Applying the present invention.

同様に効果を得ることができる。第18図から第21図
に示す各図は、断面形状が八角形の独立セル(角筒部材
10)に本発明の第一の実施例を適用した角筒部材10
と、この角筒部材10にばね4を取付けて溶接により角
筒部材間を結合させた後、燃料棒6を挿入させた状態を
示すものである。
Similar effects can be obtained. Each figure shown in FIG. 18 to FIG. 21 shows a square tube member 10 in which the first embodiment of the present invention is applied to an independent cell (square tube member 10) having an octagonal cross-sectional shape.
This figure shows a state in which a spring 4 is attached to this rectangular tube member 10, the rectangular tube members are connected by welding, and then a fuel rod 6 is inserted.

第19図は、第18図の5lI−5a断面図、第21図
は、第20図の51o−8ta断面図であり、各符号は
、角筒部材10を除きすべて第1図から第4図に示した
ものと同一である。第20図と第3図の比較から分かる
ように、独立セルの形状が異なる他は、両者のはね4や
燃料棒6の支持方法は、同一である。したがって独立セ
ルの断面形状が多角形の場合にも、本発明の各実施例も
適用することは、十分に可能であり、前述の効果を得る
ことができることは、これらの図から容易に理解されよ
う。
19 is a sectional view taken along line 5lI-5a in FIG. 18, and FIG. 21 is a sectional view taken along line 51o-8ta in FIG. This is the same as shown in . As can be seen from a comparison between FIG. 20 and FIG. 3, the support methods for the springs 4 and fuel rods 6 are the same in both cases, except for the different shapes of the independent cells. Therefore, it is easily understood from these figures that even when the cross-sectional shape of the independent cell is polygonal, it is fully possible to apply each of the embodiments of the present invention, and the above-mentioned effects can be obtained. Good morning.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、限られた燃料棒間隙内で従来の構造の
燃料スペーサよりも大きなばねの変形スペースを確保す
ることができ、また、地震時などばねに極めて大きく荷
重が作用する場合にも燃料棒ばねから受ける反力を分散
することができるので、ばねや独立セルの健全性を確保
するという観点から、適用し得る燃料棒外径の許容範囲
を格段に広くすることができるだけでなく、燃料棒自体
の健全性も確保することができる。また、本発明では、
ばね自体の形状やばねの保持方法は、何ら変更する必要
ばなく、一方、独立セルに施す加工も極めて部分的かつ
軽微であり、しかも独立セルは一種類で済むので、燃料
スペーサの組立が容易である。
According to the present invention, it is possible to secure a larger spring deformation space within a limited fuel rod gap than a fuel spacer with a conventional structure, and it can also be used when an extremely large load is applied to the spring, such as during an earthquake. Since the reaction force received from the fuel rod springs can be dispersed, from the perspective of ensuring the integrity of the springs and independent cells, it is not only possible to significantly widen the allowable range of applicable fuel rod outer diameters, but also to The integrity of the fuel rod itself can also be ensured. Furthermore, in the present invention,
There is no need to make any changes to the shape of the spring itself or the way it is held, and on the other hand, the processing that is applied to the independent cells is extremely partial and slight, and since only one type of independent cell is required, it is easy to assemble the fuel spacer. It is.

例を示す独立セルの側面図、第2図は第1図のSt  
St断面図、第3図は、第一の実施例における通常の燃
料棒支持状態を表す破断側面図、第4図は第3図のS 
2−82断面図、第5図は第一の実施例における燃料棒
挿入状態を表す破断側面図、第6図は第5図のSs  
Sa断面図、第7図は第一の実施例における地震時等で
の燃料棒支持状態を表す破断側面図、第8図は第7図の
S4  S4断面、第9図は、本発明の燃料スペーサで
の地震時等における加速度と燃料棒がばねから受ける反
力との関係を表す説明図である。第10図は本発明の燃
料スペーサの第二の実施例を示す独立セルの側面図、第
11図は第10図の85〜S5断面図、第12図は第二
の実施例における燃料棒挿入状態を表す破断側面図、第
13図は第12図の5s−8a断面図、第14図は本発
明の燃料スペーサの第三の実施例を示す独立セルの側面
図、第15図は第14図の87−87断面図、第16図
は第三の実施例における燃料棒挿入状態を表す破断側面
図、第17図は第16図の5R−3a断面図、第18図
は本発明の燃料スペーサの第一の実施例を六角形断面の
独立セルに適用した場合の独立セル側面図、第19図は
第18図の39−89断面図、第20図は上記六角形独
立セル型燃料スペーサにおける燃料棒支持状態を表す破
断側面図、第21図は第20図のS1a  S工o断面
図、第22図は本発明及び従来の燃料スペーサの構造を
示す平面図、第23図は従来の燃料スペーサ用の独立セ
ルの側面図、第24図は第23図のSll  Sll断
面図、第25図は、従来の燃料スペーサにおける燃料棒
支持状態を表す平面図、第26図は第25図のSll−
812断面図、第27図は第25図の81s  Sta
断面図、第28図、第30図及び第32図は、各々従来
の燃料スペーサの燃料棒挿入時における不具合を表す破
断側面図、第29図は第28図の814  S14断面
図、第31図は第30図の815−\S1s断面図、第
33図は第32図の5ze−8ta断、面図、第34図
は第33図の■−■矢視ての破断側面図、第35図は従
来の燃料スペーサでの地震時等における燃料棒支持状態
を表す破断側面図、第36図4:418図の8”−8”
断面図・第37     1図は従来の燃料スペーサに
おける燃料棒の支持状態を表す破断側面図である。
A side view of an example independent cell, FIG. 2 shows the St of FIG.
3 is a broken side view showing a normal fuel rod support state in the first embodiment, and FIG. 4 is a sectional view of S in FIG. 3.
2-82 sectional view, FIG. 5 is a cutaway side view showing the fuel rod insertion state in the first embodiment, and FIG. 6 is the Ss in FIG.
Fig. 7 is a broken side view showing the fuel rod support state during an earthquake in the first embodiment, Fig. 8 is the S4 S4 cross section of Fig. 7, and Fig. 9 is a cross-sectional view of the fuel rod of the present invention. FIG. 3 is an explanatory diagram showing the relationship between the acceleration at the spacer during an earthquake and the reaction force that the fuel rod receives from the spring. Fig. 10 is a side view of an independent cell showing a second embodiment of the fuel spacer of the present invention, Fig. 11 is a sectional view from 85 to S5 in Fig. 10, and Fig. 12 is a fuel rod insertion in the second embodiment. FIG. 13 is a sectional view taken along line 5s-8a in FIG. 12, FIG. 14 is a side view of an independent cell showing the third embodiment of the fuel spacer of the present invention, and FIG. 87-87 sectional view in the figure, FIG. 16 is a broken side view showing the fuel rod insertion state in the third embodiment, FIG. 17 is a 5R-3a sectional view in FIG. 16, and FIG. 18 is a fuel rod of the present invention. A side view of an independent cell when the first embodiment of the spacer is applied to an independent cell with a hexagonal cross section, FIG. 19 is a sectional view taken along line 39-89 in FIG. 18, and FIG. 20 is a hexagonal independent cell type fuel spacer. 21 is a cross-sectional view of the S1a S section of FIG. 20, FIG. 22 is a plan view showing the structure of the fuel spacer of the present invention and the conventional fuel spacer, and FIG. FIG. 24 is a side view of an independent cell for a fuel spacer, FIG. 24 is a Sll-Sll sectional view of FIG. 23, FIG. 25 is a plan view showing the fuel rod support state in a conventional fuel spacer, and FIG. Sll-
812 sectional view, Figure 27 is 81s Sta in Figure 25
28, 30, and 32 are broken side views showing defects in the conventional fuel spacer when inserting fuel rods, and FIG. 29 is a sectional view of 814S14 in FIG. 28, and FIG. 31. is a 815-\S1s cross-sectional view in Fig. 30, Fig. 33 is a 5ze-8ta cross-section and side view in Fig. 32, Fig. 34 is a broken side view taken from the ■-■ arrow in Fig. 33, and Fig. 35 Figure 36: 8"-8" of Figure 4:418 is a broken side view showing the state of fuel rod support during an earthquake with a conventional fuel spacer.
Cross-sectional view - Fig. 37 Figure 1 is a cutaway side view showing how fuel rods are supported in a conventional fuel spacer.

1・・・燃料スペーサ、2・・・サイドバンド、3・・
・独立セル(円筒部材)、4・・・ばね、4A・・・ば
ねの中央の凸部、4B・・・ばね上下の凸部、5・・・
突起、6・・・燃料棒、6A・・・燃料棒の管部、6B
・・・燃料棒の下部端栓溶接ビード部、6C・・・燃料
棒の下部端栓、−7”A、7B、7G、7D・・・切欠
き、8A、8B。
1...Fuel spacer, 2...Side band, 3...
・Independent cell (cylindrical member), 4... Spring, 4A... Convex part at the center of the spring, 4B... Convex parts above and below the spring, 5...
Projection, 6...Fuel rod, 6A...Fuel rod tube part, 6B
... Lower end plug welding bead of fuel rod, 6C... Lower end plug of fuel rod, -7''A, 7B, 7G, 7D... Notch, 8A, 8B.

8G、8D・・・突片、9・・・切込み、10・・・独
立セル(八角形断面の角筒部材)、V/s・・・独立セ
ル間溶接部、Wz・・・独立セル−サイドバンド間溶接
部。
8G, 8D... Projection piece, 9... Notch, 10... Independent cell (square tube member with octagonal cross section), V/s... Weld between independent cells, Wz... Independent cell - Weld between side bands.

Z* + Zz * Zs・・・ばねの通過スペース又
は突辺の収納スペース。
Z* + Zz * Zs...Spring passage space or ridge storage space.

Claims (1)

【特許請求の範囲】 1、互いに結合された多数の円筒部材(独立セル)と、
ばねと前記円筒部材の束の外周を取囲む帯状部材からな
り、複数の細長い要素を含む原子炉の燃料集合体中で前
記要素相互間の間隔を保持する燃料スペーサにおいて、
前記ばねは、全体的に楕円形で、その長手方向中央部と
上端及び下端に前記要素を支持するための凸部が面側に
形成された連続したループ状のばねであつて、各々のば
ねの片側のばね部材が1つの円筒部材に突入し、反対側
のばね部材が当該円筒部材に隣接した円筒部材に突入す
るようになつていて、各々のばねが、1つの円筒部材の
壁面のE字形の切欠きによつて形成された突片と当該円
筒部材に隣接した円筒部材の壁面のE字形の切欠きによ
つて形成された上下が反対向きの突片とによつて支持さ
れ、各々の要素は、円筒部材の内側に突出するように円
筒部材から形成された突起と前記ばねの片側のばね部材
によつて支持される構造となつていることを特徴とする
燃料スペーサ。 2、前記円筒部材(独立セル)の壁面に設ける切欠きが
C字形であつて、この切欠きによつて形成された突片の
大部分が平坦であり、当該突片の平坦な部分の板厚の中
心が当該円筒部材の中心から前記要素の配置間隔の半分
だけ離れ、しかも当該突の円筒部材軸方向に沿つて長さ
が、2つの円筒部材のうち一方の円筒部材の上下を他方
の円筒部材と逆にして前記切欠き部どうしが向い合う状
態で円筒部材を接触させても当該突片どうしが接触しな
いか、又は、当該突片間の円筒部材の軸方向に沿つた間
隙が前記E字形の切欠きによつて形成され、上下に分離
した突片間の間隙と同程度となるような長さである特許
請求の範囲第1項記載の燃料スペーサ。 3、特許請求の範囲第1項または第2項記載の燃料スペ
ーサにおいて、燃料棒が挿入される前記独立セルの横断
面形状が全体的に八角形である燃料スペーサ。 4、特許請求の範囲第1項または第2項記載の燃料スペ
ーサにおいて、燃料棒が挿入される前記独立セルの横断
面形成が全体的に六角形である燃料スペーサ。
[Claims] 1. A large number of cylindrical members (independent cells) connected to each other;
A fuel spacer consisting of a spring and a band member surrounding the outer periphery of the bundle of cylindrical members and maintaining a distance between the elements in a nuclear reactor fuel assembly including a plurality of elongated elements,
The spring is a continuous loop-shaped spring that has an overall elliptical shape and has convex portions formed on the surface side at its longitudinal center, upper end, and lower end for supporting the element. The spring member on one side of the cylindrical member projects into one cylindrical member, and the spring member on the opposite side projects into a cylindrical member adjacent to the cylindrical member, and each spring has an E of the wall surface of one cylindrical member. supported by a protruding piece formed by a letter-shaped notch and a protruding piece having vertically opposite directions formed by an E-shaped notch on the wall surface of the cylindrical member adjacent to the cylindrical member, each A fuel spacer characterized in that the element is supported by a protrusion formed from the cylindrical member so as to protrude inside the cylindrical member and a spring member on one side of the spring. 2. The notch provided in the wall surface of the cylindrical member (independent cell) is C-shaped, and most of the protruding piece formed by this notch is flat, and the flat part of the protruding piece is a plate. The center of thickness is separated from the center of the cylindrical member by half the arrangement interval of the elements, and the length along the axial direction of the protruding cylindrical member is such that the upper and lower sides of one of the two cylindrical members are the same as the other. Even if the cylindrical member is brought into contact with the cylindrical member in a state where the notches face each other, the protruding pieces do not contact each other, or the gap between the protruding pieces along the axial direction of the cylindrical member is as described above. The fuel spacer according to claim 1, which is formed by an E-shaped notch and has a length comparable to the gap between the vertically separated projecting pieces. 3. The fuel spacer according to claim 1 or 2, wherein the independent cells into which the fuel rods are inserted have an overall octagonal cross-sectional shape. 4. The fuel spacer according to claim 1 or 2, wherein the independent cells into which the fuel rods are inserted have a generally hexagonal cross section.
JP60177570A 1985-08-14 1985-08-14 Fuel spacer Granted JPS6238392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60177570A JPS6238392A (en) 1985-08-14 1985-08-14 Fuel spacer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60177570A JPS6238392A (en) 1985-08-14 1985-08-14 Fuel spacer

Publications (2)

Publication Number Publication Date
JPS6238392A true JPS6238392A (en) 1987-02-19
JPH0376879B2 JPH0376879B2 (en) 1991-12-06

Family

ID=16033276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60177570A Granted JPS6238392A (en) 1985-08-14 1985-08-14 Fuel spacer

Country Status (1)

Country Link
JP (1) JPS6238392A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5002726A (en) * 1989-12-27 1991-03-26 General Electric Company Nuclear fuel assembly spacer and loop spring with enhanced flexibility
US5085827A (en) * 1989-12-27 1992-02-04 General Electric Company Nuclear fuel assembly spacer and loop spring with enhanced flexibility
JPH05150072A (en) * 1991-05-17 1993-06-18 General Electric Co <Ge> Freely attachable and detachable spring for ferrule spacer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5002726A (en) * 1989-12-27 1991-03-26 General Electric Company Nuclear fuel assembly spacer and loop spring with enhanced flexibility
US5085827A (en) * 1989-12-27 1992-02-04 General Electric Company Nuclear fuel assembly spacer and loop spring with enhanced flexibility
JPH05150072A (en) * 1991-05-17 1993-06-18 General Electric Co <Ge> Freely attachable and detachable spring for ferrule spacer

Also Published As

Publication number Publication date
JPH0376879B2 (en) 1991-12-06

Similar Documents

Publication Publication Date Title
US4544522A (en) Nuclear fuel assembly spacer
US5966419A (en) Spacing grid of a fuel assembly for a nuclear reactor and fuel assembly
US5186891A (en) Swirl vanes in inconel spacer
JPH0335640B2 (en)
US4714585A (en) Interlocking egg-crate type grid assembly
EP0674321B1 (en) Nuclear fuel assembly
US4059483A (en) Nuclear fuel assembly seismic amplitude limiter
US4571324A (en) Nuclear fuel assembly spacer
KR101496983B1 (en) Nuclear fuel rod spacer grid and framework and assembly comprising such a grid
JP3133436B2 (en) Automatic positioning spring for ferrule spacer
JPS5910880A (en) Fuel spacer
EP0220931B1 (en) Cell for a spent nuclear fuel rack
US4587704A (en) Method of mounting a continuous loop spring on a nuclear fuel spacer
US4058436A (en) Nuclear reactor seismic fuel assembly grid
JPS6238392A (en) Fuel spacer
JP5058089B2 (en) Spent fuel storage rack and manufacturing method thereof
JP7161960B2 (en) Storage cell, nuclear fuel storage rack, storage cell manufacturing method, and nuclear fuel storage rack manufacturing method
JPS5946588A (en) Nuclear fuel assembly
RU2518058C1 (en) Spacer grid of fuel assembly of nuclear reactor (versions)
JPH0339694A (en) Fuel assembly
JP2569128B2 (en) Fuel assembly
JPH0453599Y2 (en)
JP3064812B2 (en) Fuel assembly
JPS638590A (en) Support structure of grid spacer
JPH057597Y2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term