JP7161960B2 - Storage cell, nuclear fuel storage rack, storage cell manufacturing method, and nuclear fuel storage rack manufacturing method - Google Patents

Storage cell, nuclear fuel storage rack, storage cell manufacturing method, and nuclear fuel storage rack manufacturing method Download PDF

Info

Publication number
JP7161960B2
JP7161960B2 JP2019034648A JP2019034648A JP7161960B2 JP 7161960 B2 JP7161960 B2 JP 7161960B2 JP 2019034648 A JP2019034648 A JP 2019034648A JP 2019034648 A JP2019034648 A JP 2019034648A JP 7161960 B2 JP7161960 B2 JP 7161960B2
Authority
JP
Japan
Prior art keywords
small cell
nuclear fuel
cell assembly
storage
cell assemblies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019034648A
Other languages
Japanese (ja)
Other versions
JP2020139807A (en
Inventor
正明 中村
勝彦 谷口
潔 二瓶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2019034648A priority Critical patent/JP7161960B2/en
Publication of JP2020139807A publication Critical patent/JP2020139807A/en
Application granted granted Critical
Publication of JP7161960B2 publication Critical patent/JP7161960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、核燃料を貯蔵ピット内の水中に立てた状態で収納する収納セル、核燃料貯蔵用ラック、収納セルの製造方法並びに核燃料貯蔵用ラックの製造方法に関する。 The present invention relates to a storage cell for storing nuclear fuel in an upright state in water in a storage pit, a nuclear fuel storage rack, a method for manufacturing the storage cell, and a method for manufacturing a nuclear fuel storage rack.

例えば、特許文献1には、鋼製または非鉄金属からなる底付の四角筒形状をなして上方が開口する収納部の内部に、中性子吸収材(「中性子しゃへい壁」ともいう。)であるボロンを添加したステンレス鋼またはアルミニウムからなる四角管形状のセルが均等間隔で複数配置され、溶接などの適宜な手段により固定された燃料貯蔵用ラックが開示されている。 For example, in Patent Document 1, a neutron absorbing material (also referred to as a "neutron shielding wall") of boron is placed inside a rectangular cylindrical housing with a bottom made of steel or non-ferrous metal and having an open top. A fuel storage rack is disclosed in which a plurality of square-tube-shaped cells made of stainless steel or aluminum to which is added are arranged at equal intervals and fixed by appropriate means such as welding.

また、特許文献2には、複数の切込みを設けた長尺仕切板と、長尺仕切板の切込みに挿入できる凸部を設けた短尺仕切板とを備え、長尺仕切板と短尺仕切板と格子状に組み合わせ、その交点を一体化した核燃料貯蔵用ラックが開示されている。 Further, in Patent Document 2, a long partition plate provided with a plurality of notches and a short partition plate provided with a convex portion that can be inserted into the notch of the long partition plate are provided, and the long partition plate and the short partition plate are provided. A nuclear fuel storage rack is disclosed in which the racks are combined in a lattice shape and the intersections are integrated.

また、特許文献3には、円管を成形し、この円管を押出しロール成型法またはプレス成型により四角管に成形することが開示されている。 Further, Patent Literature 3 discloses that a circular tube is formed and then formed into a square tube by extrusion roll molding or press molding.

特許第5951359号公報Japanese Patent No. 5951359 特開2000-121782号公報Japanese Patent Application Laid-Open No. 2000-121782 特開2000-227494号公報JP-A-2000-227494

特許文献1に記載の燃料貯蔵用ラックでは、ボロンを添加したステンレス鋼またはアルミニウムからなる四角管形状のセルを製造するため、特許文献3に開示されているように上記材料から円管を形成し、この円管を四角管に押出成形するような手間のかかる作業を要し多大なコストがかかる。 In the fuel storage rack described in Patent Document 1, in order to manufacture square-tube-shaped cells made of boron-added stainless steel or aluminum, circular tubes are formed from the above material as disclosed in Patent Document 3. However, it requires a labor-intensive work such as extruding the circular tube into a square tube, which is very costly.

また、加圧水型原子炉に用いる核燃料を貯蔵する燃料貯蔵用ラックにおいては、高速中性子を熱中性子に減速させることで中性子吸収材により効率よく中性子を吸収するとともに、使用済核燃料の崩壊熱を除去するため、核燃料の周囲に貯蔵ピット内の水を配置する領域を設けなければならない。例えば、特許文献2に記載の燃料貯蔵用ラックでは、この領域が、セルや格子の内面と核燃料との隙間で形成されることとなり、当該領域の精度を確保することが容易ではない。 In addition, in fuel storage racks that store nuclear fuel used in pressurized water reactors, fast neutrons are moderated to thermal neutrons to efficiently absorb neutrons and remove decay heat from spent nuclear fuel. Therefore, an area must be provided around the nuclear fuel for arranging the water in the storage pit. For example, in the fuel storage rack described in Patent Document 2, this area is formed by the gap between the inner surface of the cell or lattice and the nuclear fuel, and it is not easy to ensure the accuracy of this area.

本発明は上述した課題を解決するものであり、核燃料を挿入する収納領域の間に高速中性子を熱中性子に減速させるとともに核燃料の崩壊熱を冷却するための水(以降は、便宜的に「冷却水」と称する。)を配置する領域(以降は、便宜的に「冷却領域」と称する。)を確保することのできる収納セル、核燃料貯蔵用ラック、円管を四角管に押出成形する必要のない収納セルの製造方法、並びに核燃料貯蔵用ラックの製造方法を提供することを目的とする。 The present invention solves the above-mentioned problems, and provides water (hereinafter referred to as "cooling storage cells, nuclear fuel storage racks, and circular tubes that can secure an area (hereinafter referred to as a "cooling area" for the sake of convenience) for disposing It is an object of the present invention to provide a method for manufacturing a storage cell that does not contain a nuclear fuel and a method for manufacturing a nuclear fuel storage rack.

上述の目的を達成するために、本発明の一態様に係る収納セルは、複数の小セル組立体から成るセル組立体を含み、前記小セル組立体は、対向する一対の側板と、対向する一対の前記側板どうしを接続するように配置された複数の仕切板と、を有し、対向する一対の前記側板と複数の前記仕切板とにより核燃料が挿入可能に構成された収納領域が複数並設され、且つ各前記収納領域の間に冷却水が流動可能な第一冷却領域が形成され、前記セル組立体は、隣合う前記小セル組立体において前記側板が対向するように複数の前記小セル組立体が並べられて構成されており、隣合う前記小セル組立体の間に冷却水が流動可能な第二冷却領域が形成される。 To achieve the above object, a storage cell according to one aspect of the present invention includes a cell assembly comprising a plurality of small cell assemblies, the small cell assemblies comprising a pair of opposing side plates and a pair of opposing side plates. and a plurality of partition plates arranged to connect the pair of side plates, and a plurality of storage areas arranged so that nuclear fuel can be inserted by the pair of side plates facing each other and the plurality of partition plates. and a first cooling region through which cooling water can flow is formed between each of the storage regions, and the cell assemblies are arranged such that the side plates of adjacent small cell assemblies face each other. The cell assemblies are arranged side by side, and a second cooling area is formed between adjacent small cell assemblies in which cooling water can flow.

また、本発明の一態様に係る収納セルでは、前記小セル組立体は、前記仕切板の一部が前記側板の外側に貫通する突出片を有し、前記セル組立体として接合された状態で前記突出片により前記第二冷却領域が規定されていることが好ましい。 Further, in the storage cell according to the aspect of the present invention, the small cell assembly has a protruding piece in which a part of the partition plate penetrates to the outside of the side plate, and is joined as the cell assembly. It is preferable that the second cooling area is defined by the projecting piece.

また、本発明の一態様に係る収納セルでは、前記突出片は、断続的に前記側板の外側に貫通して設けられ、複数の前記小セル組立体が前記セル組立体として接合された状態で、一方の前記小セル組立体の前記突出片と、他方の前記小セル組立体の前記突出片とが交互に配置されることが好ましい。 Further, in the storage cell according to the aspect of the present invention, the protruding pieces are intermittently provided to penetrate the outside of the side plate, and the plurality of small cell assemblies are joined together as the cell assembly. , the projecting pieces of one of the small cell assemblies and the projecting pieces of the other small cell assembly are preferably arranged alternately.

上述の目的を達成するために、本発明の一態様に係る核燃料貯蔵用ラックは、上記の収納セルと、前記収納セルにおける前記セル組立体を複数支持して貯蔵ピットの床面に載置されるラック本体と、を含み、前記ラック本体は、各前記セル組立体を並設して支持し且つ各前記セル組立体の間に冷却水が流動可能な第三冷却領域を形成する支持部材を有する。 In order to achieve the above object, a nuclear fuel storage rack according to one aspect of the present invention is mounted on the floor surface of a storage pit while supporting a plurality of the storage cells and the cell assemblies in the storage cells. The rack body includes a support member that supports the cell assemblies side by side and forms a third cooling region between the cell assemblies in which cooling water can flow. have.

また、本発明の一態様に係る核燃料貯蔵用ラックでは、前記ラック本体は、前記収納領域への前記核燃料の挿入方向に前記支持部材を複数配置し、前記セル組立体の間で各前記支持部材を連結する補強部材を有することが好ましい。 Further, in the nuclear fuel storage rack according to one aspect of the present invention, the rack body has a plurality of the support members arranged in the direction in which the nuclear fuel is inserted into the storage area, and each of the support members is arranged between the cell assemblies. It is preferable to have a reinforcing member connecting the .

また、本発明の一態様に係る核燃料貯蔵用ラックでは、前記支持部材と前記セル組立体との間に配置されて前記支持部材に対して前記セル組立体の位置を固定する位置決部材を有することが好ましい。 Further, the nuclear fuel storage rack according to one aspect of the present invention includes a positioning member disposed between the support member and the cell assembly to fix the position of the cell assembly with respect to the support member. is preferred.

本発明の一態様に係る核燃料貯蔵用ラックは、核燃料が挿入される収納領域を有する収納セルと、前記収納セルを複数支持して貯蔵ピットの床面に載置されるラック本体と、を含み、前記ラック本体は、前記収納セルを並設して支持する支持部材を前記収納領域への前記核燃料の挿入方向に複数配置し、前記収納セルの間で各前記支持部材を連結する補強部材を有する。 A nuclear fuel storage rack according to one aspect of the present invention includes a storage cell having a storage area into which nuclear fuel is inserted, and a rack body that supports a plurality of the storage cells and is placed on the floor of a storage pit. The rack body has a plurality of support members arranged side by side to support the storage cells arranged in a direction in which the nuclear fuel is inserted into the storage area, and a reinforcing member connecting each of the support members between the storage cells. have.

上述の目的を達成するために、本発明の一態様に係る収納セルの製造方法は、対向する一対の側板と、対向する一対の前記側板どうしを接続するように配置される複数の仕切板とにより、核燃料が挿入可能に構成された収納領域を複数並設し、且つ各前記収納領域の間に冷却水が流動可能な第一冷却領域を形成する小セル組立体を複数構成する工程と、隣合う前記小セル組立体において前記側板が対向するように複数の前記小セル組立体を並べて、隣合う前記小セル組立体の間に冷却水が流動可能な第二冷却領域を形成するセル組立体を構成する工程と、を含む。 In order to achieve the above object, a storage cell manufacturing method according to an aspect of the present invention includes a pair of side plates facing each other, and a plurality of partition plates arranged to connect the pair of side plates facing each other. A step of forming a plurality of small cell assemblies in which a plurality of storage areas into which nuclear fuel can be inserted are arranged side by side and a first cooling area in which cooling water can flow is formed between the storage areas; A cell set in which a plurality of small cell assemblies are arranged so that the side plates of the adjacent small cell assemblies face each other, thereby forming a second cooling region between the adjacent small cell assemblies in which cooling water can flow. and constructing a solid.

また、本発明の一態様に係る収納セルの製造方法では、前記小セル組立体は、前記仕切板の一部が前記側板の外側に貫通する突出片を有し、前記突出片を介して前記セル組立体として接合し前記第二冷却領域を規定することが好ましい。 Further, in the method for manufacturing a storage cell according to an aspect of the present invention, the small cell assembly has a protruding piece that a part of the partition plate penetrates to the outside of the side plate, and through the protruding piece the Preferably, they are joined together as a cell assembly to define said second cooling zone.

また、本発明の一態様に係る収納セルの製造方法では、前記側板の外側に貫通した前記突出片に楔部材を挿入し、前記楔部材を抜け止めする抜止部材を前記楔部材に溶接することが好ましい。 Further, in the method for manufacturing a storage cell according to an aspect of the present invention, a wedge member is inserted into the protruding piece penetrating to the outside of the side plate, and a retaining member for retaining the wedge member is welded to the wedge member. is preferred.

上述の目的を達成するために、本発明の一態様に係る核燃料貯蔵用ラックの製造方法は、対向する一対の側板と、対向する一対の前記側板どうしを接続するように配置される複数の仕切板とにより、核燃料が挿入可能に構成された収納領域を複数並設し、且つ各前記収納領域の間に冷却水が流動可能な第一冷却領域を形成する小セル組立体を複数構成する工程と、隣合う前記小セル組立体において前記側板が対向するように複数の前記小セル組立体を並べて、隣合う前記小セル組立体の間に冷却水が流動可能な第二冷却領域を形成するセル組立体を複数構成する工程と、貯蔵ピットの床面に載置されるラック本体に、複数の前記セル組立体を並設するように配置し、且つ各前記セル組立体の間に冷却水が流動可能な第三冷却領域を形成する工程と、を含む。 To achieve the above object, a method for manufacturing a nuclear fuel storage rack according to one aspect of the present invention includes a pair of side plates facing each other, and a plurality of partitions arranged to connect the pair of side plates facing each other. A step of constructing a plurality of small cell assemblies in which a plurality of storage areas into which nuclear fuel can be inserted are juxtaposed by plates, and a first cooling area in which cooling water can flow is formed between the storage areas. and a plurality of the small cell assemblies are arranged so that the side plates of the adjacent small cell assemblies face each other, thereby forming a second cooling region in which cooling water can flow between the adjacent small cell assemblies. forming a plurality of cell assemblies; arranging a plurality of the cell assemblies side by side on a rack body placed on the floor of a storage pit; and cooling water between the cell assemblies. and forming a third cooling zone through which is flowable.

また、本発明の一態様に係る核燃料貯蔵用ラックの製造方法では、前記ラック本体は、各前記セル組立体を並設して配置し且つ各前記セル組立体の間に前記第三冷却領域を確保する支持部材を有し、前記支持部材を介して各前記セル組立体を固定することが好ましい。 Further, in the method for manufacturing a nuclear fuel storage rack according to one aspect of the present invention, the rack body includes the cell assemblies arranged side by side, and the third cooling area between the cell assemblies. It is preferred to have a securing support member through which each said cell assembly is secured.

本発明によれば、収納セルにおいて、複数の板材の組み合わせで、複数の収納領域を並設して配置し且つ各収納領域の間に第一冷却領域や第二冷却領域が設けられている。この結果、核燃料を挿入する収納領域の間に冷却領域を確保できる。また、核燃料貯蔵用ラックにおいて、支持部材が各セル組立体を支持すると共に、各セル組立体の間に第三冷却領域を確保することで、個々の核燃料を挿入する収納領域を容易に構成することができると共に、収納領域の間に各冷却領域を確保できる。なお、第一冷却領域、第二冷却領域、第三冷却領域などで表される冷却領域は、使用済核燃料の崩壊熱を除去するとともに、高速中性子を熱中性子に減速する役割も有する。高速中性子を熱中性子に減速すれば、中性子吸収材は、中性子を効率よく吸収するため、中性子吸収材により、中性子を遮蔽することができる。 According to the present invention, in the storage cell, a plurality of storage areas are arranged side by side by combining a plurality of plate members, and the first cooling area and the second cooling area are provided between the storage areas. As a result, a cooling area can be secured between storage areas into which nuclear fuel is inserted. Further, in the nuclear fuel storage rack, the support member supports each cell assembly and secures the third cooling region between each cell assembly, thereby easily configuring the storage region for inserting the individual nuclear fuel. and each cooling area can be secured between storage areas. The cooling zones represented by the first cooling zone, the second cooling zone, the third cooling zone, etc. have the role of removing the decay heat of the spent nuclear fuel and moderating fast neutrons into thermal neutrons. If the fast neutrons are moderated to thermal neutrons, the neutron absorber will efficiently absorb the neutrons, so that the neutron absorbers can shield the neutrons.

図1は、貯蔵ピットの斜視図である。1 is a perspective view of a storage pit; FIG. 図2は、本発明の実施形態に係る核燃料貯蔵用ラックの斜視図である。FIG. 2 is a perspective view of a nuclear fuel storage rack according to an embodiment of the invention. 図3は、本発明の実施形態に係る核燃料貯蔵用ラックの分解斜視図である。FIG. 3 is an exploded perspective view of a nuclear fuel storage rack according to an embodiment of the present invention. 図4は、本発明の実施形態に係る収納セルにおける小セル組立体およびセル組立体の斜視図である。4 is a perspective view of a small cell assembly and a cell assembly in a storage cell according to an embodiment of the invention; FIG. 図5は、本発明の実施形態に係る小セル組立体の分解斜視図である。FIG. 5 is an exploded perspective view of a small cell assembly according to an embodiment of the invention. 図6は、本発明の実施形態に係る小セル組立体の部品図である。FIG. 6 is a part drawing of a small cell assembly according to an embodiment of the present invention. 図7は、図6のA-A断面拡大図である。FIG. 7 is an enlarged cross-sectional view taken along line AA of FIG. 図8は、本発明の実施形態に係る小セル組立体の部品図である。FIG. 8 is a part drawing of a small cell assembly according to an embodiment of the present invention. 図9は、本発明の実施形態に係る小セル組立体の部品図である。FIG. 9 is a part drawing of a small cell assembly according to an embodiment of the present invention. 図10は、図9のC-C断面拡大図である。10 is an enlarged cross-sectional view taken along line CC of FIG. 9. FIG. 図11は、本発明の実施形態に係る小セル組立体の部分拡大斜視図である。11 is a partially enlarged perspective view of a small cell assembly according to an embodiment of the present invention; FIG. 図12は、本発明の実施形態に係る小セル組立体の分解斜視図である。FIG. 12 is an exploded perspective view of a small cell assembly according to an embodiment of the invention; 図13は、本発明の実施形態に係る小セル組立体の部品図である。FIG. 13 is a part drawing of a small cell assembly according to an embodiment of the present invention. 図14は、図13のD-D断面拡大図である。14 is an enlarged cross-sectional view taken along line DD of FIG. 13. FIG. 図15は、本発明の実施形態に係る小セル組立体の部分拡大斜視図である。15 is a partially enlarged perspective view of a small cell assembly according to an embodiment of the present invention; FIG. 図16は、本発明の実施形態に係る小セル組立体の分解斜視図である。FIG. 16 is an exploded perspective view of a small cell assembly according to an embodiment of the invention; 図17は、本発明の実施形態に係る小セル組立体の部品図である。FIG. 17 is a part drawing of a small cell assembly according to an embodiment of the present invention. 図18は、図17のE-E断面拡大図である。18 is an enlarged cross-sectional view along EE of FIG. 17. FIG. 図19は、本発明の実施形態に係る小セル組立体の部分拡大斜視図である。19 is a partially enlarged perspective view of a small cell assembly according to an embodiment of the present invention; FIG. 図20は、本発明の実施形態に係る小セル組立体の部分拡大図である。FIG. 20 is a partial enlarged view of a small cell assembly according to an embodiment of the invention. 図21は、本発明の実施形態に係る小セル組立体の部分拡大図である。FIG. 21 is a partial enlarged view of a small cell assembly according to an embodiment of the invention. 図22は、本発明の実施形態に係る小セル組立体の部分拡大図である。FIG. 22 is a partially enlarged view of a small cell assembly according to an embodiment of the invention; 図23は、本発明の実施形態に係るセル組立体の部分拡大斜視図である。FIG. 23 is a partially enlarged perspective view of a cell assembly according to an embodiment of the invention; 図24は、本発明の実施形態に係る核燃料貯蔵用ラックの部分拡大断面図である。FIG. 24 is a partially enlarged cross-sectional view of a nuclear fuel storage rack according to an embodiment of the present invention. 図25は、本発明の実施形態に係る核燃料貯蔵用ラックの部分拡大断面図である。FIG. 25 is a partially enlarged cross-sectional view of a nuclear fuel storage rack according to an embodiment of the present invention.

以下に、本発明に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。 EMBODIMENT OF THE INVENTION Below, embodiment which concerns on this invention is described in detail based on drawing. In addition, this invention is not limited by this embodiment. In addition, components in the following embodiments include components that can be easily replaced by those skilled in the art, or components that are substantially the same.

図1は、貯蔵ピットの斜視図である。 1 is a perspective view of a storage pit; FIG.

貯蔵ピット101は、原子力発電プラントにおいて原子炉にて使用された使用済みの燃料集合体や、未使用の燃料集合体が貯蔵される。燃料集合体は、複数の燃料棒である核燃料が矩形状に束ねられた集合体である。従って、燃料集合体は、いわゆる核燃料である。燃料集合体は、例えば、加圧水型軽水炉に使用する場合は、矩形状の1辺が約0.2mの正方形状で、長さが4mを超える細長い角柱形をなす。沸騰水型軽水炉に使用する場合は、矩形状の1辺が約0.15mの正方形状で、長さが約4.5mの細長い角柱形をなす。
貯蔵ピット101は、矩形状で上部が開放されたコンクリート躯体のプールとして構成されている。貯蔵ピット101は、矩形状の床面101a、および床面101aの4方向を囲む側壁の縦壁面101bを有している。この貯蔵ピット101において、床面101aに核燃料貯蔵用ラック1が配置される。核燃料貯蔵用ラック1は、詳細を後述するが、上部が開放されて上方から核燃料が挿入されるように構成されている。そして、貯蔵ピット101は、内部に冷却水103が貯留された状態で、核燃料貯蔵用ラック1に核燃料が立てられた状態で収納されて貯蔵される。
The storage pit 101 stores used fuel assemblies that have been used in nuclear reactors in nuclear power plants and unused fuel assemblies. A fuel assembly is an assembly in which nuclear fuel, which is a plurality of fuel rods, is bundled in a rectangular shape. The fuel assembly is therefore a so-called nuclear fuel. For example, when used in a pressurized water reactor, the fuel assembly is in the form of a rectangular square with a side of about 0.2 m and an elongated prism shape with a length exceeding 4 m. When it is used in a boiling water reactor, it has a rectangular shape with a side of about 0.15 m and a length of about 4.5 m.
The storage pit 101 is configured as a pool of rectangular concrete frame with an open top. The storage pit 101 has a rectangular floor surface 101a and vertical wall surfaces 101b of side walls surrounding the floor surface 101a in four directions. In this storage pit 101, the nuclear fuel storage rack 1 is arranged on the floor surface 101a. The nuclear fuel storage rack 1, which will be described later in detail, is constructed such that the top is open and the nuclear fuel is inserted from above. In the storage pit 101, the cooling water 103 is stored inside, and the nuclear fuel is stored and stored in the nuclear fuel storage rack 1 in a state where the nuclear fuel is erected.

なお、貯蔵ピット101は、図には明示しないが、床面101aおよび縦壁面101bの内面であるコンクリート面にライニングが張り付けられている。ライニングは、厚さ3mmから5mm程度のオーステナイト系ステンレス鋼からなり、貯蔵ピット101の床面101aおよび縦壁面101bの内面を保護するものである。 Although not shown in the drawing, the storage pit 101 has a floor surface 101a and a concrete inner surface of the vertical wall surface 101b with a lining. The lining is made of austenitic stainless steel with a thickness of about 3 mm to 5 mm, and protects the inner surfaces of the floor surface 101a and the vertical wall surface 101b of the storage pit 101.

図2は、本実施形態に係る核燃料貯蔵用ラックの斜視図である。図3は、本実施形態に係る核燃料貯蔵用ラックの分解斜視図である。 FIG. 2 is a perspective view of the nuclear fuel storage rack according to this embodiment. FIG. 3 is an exploded perspective view of the nuclear fuel storage rack according to this embodiment.

核燃料貯蔵用ラック1は、ラック本体11と、ラック本体11に配置されて核燃料が挿入される収納セル12と、を有する。 The nuclear fuel storage rack 1 has a rack body 11 and storage cells 12 arranged in the rack body 11 and into which nuclear fuel is inserted.

ラック本体11は、ステンレス鋼で形成され、基盤11Aと、外枠11Bと、支持格子(支持部材)11Cと、補強部材11Dと、脚部11Eと、を含み構成されている。これらの接合は、溶接またはボルトやネジで行う。 The rack body 11 is made of stainless steel and includes a base 11A, an outer frame 11B, a support grid (support member) 11C, a reinforcing member 11D, and legs 11E. These connections are made by welding or by bolts or screws.

基盤11Aは平面視で矩形状に形成されラック本体11の基部をなす。 The base 11A is formed in a rectangular shape in plan view and forms the base of the rack body 11. As shown in FIG.

外枠11Bは、矩形の板材として形成され、基盤11Aの各辺から上方に立ち上がって設けられて平面視で矩形状の筒を形成し、ラック本体11の外周部をなす。外枠11Bは、後述する上部、中央部、下部の支持格子11Cを支持する。なお、図には明示しないが、外枠11Bは、後述する上部、中央部、下部の支持格子11Cを支持するように各支持格子11Cの周りを囲む構成として、矩形の板材以外に帯状の板材の組み合わせにて形成されていてもよいし、図は省略するが、外枠11Bに代えて、帯鋼による筋交い状(X形状、V形状)などの斜材で構成してもよい。 The outer frame 11</b>B is formed as a rectangular plate material, is provided so as to rise upward from each side of the base 11</b>A, forms a rectangular cylinder in a plan view, and forms the outer peripheral portion of the rack body 11 . The outer frame 11B supports upper, central, and lower support grids 11C, which will be described later. Although not shown in the figure, the outer frame 11B is configured to surround each support grid 11C so as to support upper, central, and lower support grids 11C, which will be described later. Alternatively, although not shown in the drawings, it may be formed of diagonal members such as braces (X-shaped, V-shaped) made of band steel in place of the outer frame 11B.

支持格子11Cは、収納セル12を支持する。支持格子11Cは、収納セル12において後述する複数のセル組立体13を支持する複数の格子11Caが形成されている。本実施形態において、格子11Caは、矩形状に形成され、1つの支持格子11Cにおいて、セル組立体13を挿入するために、3×3の区画11Cbが整列して設けられている。支持格子11Cは、ラック本体11の外枠11Bがなす筒内において、例えば、上部、中央部、下部の3箇所に設けられている。上部、中央部、下部の3箇所の支持格子11Cは、平面視で格子11Caが上下方向に連通するように設けられている。 The support grid 11C supports the storage cells 12. As shown in FIG. The support grid 11C is formed with a plurality of grids 11Ca that support a plurality of cell assemblies 13, which will be described later, in the storage cells 12. As shown in FIG. In this embodiment, the lattice 11Ca is formed in a rectangular shape, and 3×3 partitions 11Cb are arranged in line in order to insert the cell assemblies 13 in one support lattice 11C. The support grids 11C are provided at three locations, for example, an upper portion, a central portion, and a lower portion, within the cylinder formed by the outer frame 11B of the rack body 11. As shown in FIG. The support grids 11C at the top, center, and bottom are provided so that the grids 11Ca communicate with each other in the vertical direction in a plan view.

補強部材11Dは、上下の支持格子11Cを繋ぐもので、平面視で、支持格子11Cの格子11Caを形成する枠に重なるように設けられている。補強部材11Dは、平面視で、支持格子11Cの複数の枠に重なりつつ複数が上下方向に斜めに配置されている。複数の補強部材11Dは、交差して設けられ、交差部で互いに溶接などで接合されている。 The reinforcing member 11D connects the upper and lower support grids 11C, and is provided so as to overlap the frame forming the grid 11Ca of the support grid 11C in plan view. A plurality of reinforcing members 11D are obliquely arranged in the vertical direction while overlapping the plurality of frames of the support grid 11C in plan view. A plurality of reinforcing members 11D are provided to intersect and are joined to each other by welding or the like at the intersecting portions.

脚部11Eは、基盤11Aの底面に複数設けられている。脚部11Eは、床面101aに対して摺動することが可能に設けられている。ラック本体11は、脚部11Eにより床面101aに自立して支持され、床面101aに対して相対移動が可能とされている。従って、本実施形態にて説明する核燃料貯蔵用ラック1は、いわゆるフリースタンディング方式のラックである。なお、核燃料貯蔵用ラック1は、ラック本体11が床面101aや縦壁面101bに固定されたものであってもよい。 A plurality of legs 11E are provided on the bottom surface of the base 11A. The leg portion 11E is provided slidably on the floor surface 101a. The rack body 11 is independently supported on the floor surface 101a by the legs 11E, and is movable relative to the floor surface 101a. Therefore, the nuclear fuel storage rack 1 described in this embodiment is a so-called free-standing rack. Note that the nuclear fuel storage rack 1 may be one in which the rack body 11 is fixed to the floor surface 101a or the vertical wall surface 101b.

ラック本体11は、好ましくは直方体形状の外形をなし、貯蔵ピット101の周りを矩形状に囲む4面の縦壁面101bから所定距離を隔てた状態で複数(図1では12個)が平面視の4方向に矩形状に整列して床面101aに配置されている。 The rack body 11 preferably has a rectangular parallelepiped outer shape, and a plurality (12 in FIG. 1) of the rack body 11 are arranged at a predetermined distance from the four vertical wall surfaces 101b that surround the storage pit 101 in a rectangular shape. They are arranged in a rectangular shape in four directions on the floor surface 101a.

図3に示すように、収納セル12は、複数のセル組立体13を含み構成されている。各セル組立体13は、ラック本体11の各支持格子11Cにおいて上下方向に連通する上部、中央部、下部の格子11Caに沿って挿入され、基盤11Aの上面に下端が置かれて支持される。セル組立体13は、支持格子11Cの9個の格子11Caにより仕切られた区画11Cbにそれぞれ挿入される。セル組立体13は、四角形の筒状に形成されて核燃料が挿入される収納領域15が複数設けられている。本実施形態では、収納領域15は、1つのセル組立体13において9個が3×3で整列して設けられている。 As shown in FIG. 3, the storage cell 12 includes a plurality of cell assemblies 13 . Each cell assembly 13 is inserted along upper, middle, and lower lattices 11Ca communicating in the vertical direction in each support lattice 11C of the rack body 11, and is supported with its lower end placed on the upper surface of the base 11A. The cell assemblies 13 are respectively inserted into the partitions 11Cb partitioned by the nine grids 11Ca of the support grid 11C. The cell assembly 13 is formed in a rectangular cylindrical shape and provided with a plurality of storage areas 15 into which nuclear fuel is inserted. In this embodiment, nine storage areas 15 are provided in a 3×3 array in one cell assembly 13 .

なお、図3では、9個のセル組立体13をラック本体11に配置した例を示すが、これに限るものではなく、例えば、図には明示しないが、ラック本体11の支持格子11Cが4×4の16個の格子11Caを有し、16個のセル組立体13を配置してもよい。また、収納領域15も、1つのセル組立体13において9個の例に限るものではなく、例えば、図には明示しないが4×3の12個が整列して設けられていてもよい。収納セル12の詳細な構成については後述する。 Although FIG. 3 shows an example in which nine cell assemblies 13 are arranged in the rack body 11, the present invention is not limited to this. 16 grids 11Ca of x4 may be provided and 16 cell assemblies 13 may be arranged. Also, the number of storage areas 15 in one cell assembly 13 is not limited to nine. For example, although not shown in the drawing, twelve (4×3=12) may be arranged in line. A detailed configuration of the storage cell 12 will be described later.

従って、核燃料貯蔵用ラック1では、収納セル12の複数のセル組立体13の各収納領域15に挿入された核燃料は、基盤11Aの上面により下端が支持され、収納セル12および支持格子11Cにより周囲が支持され、外枠11Bにより周りを囲まれて耐震強度を確保された形態で、貯蔵ピット101の冷却水103の中で貯蔵される。 Therefore, in the nuclear fuel storage rack 1, the nuclear fuel inserted into each storage area 15 of the plurality of cell assemblies 13 of the storage cells 12 is supported at its lower end by the upper surface of the base 11A and is surrounded by the storage cells 12 and the support grid 11C. are supported and stored in the cooling water 103 of the storage pit 101 in a form that is surrounded by the outer frame 11B to ensure seismic strength.

また、核燃料貯蔵用ラック1では、収納セル12の複数のセル組立体13は、支持部材である支持格子11Cの各格子11Caに上方から挿入され、上部、中央部、下部の周囲が格子11Caの枠に囲まれて支持されている。このため、複数のセル組立体13の間に支持格子11Cの格子11Caの枠が存在することで、セル組立体13の間に貯蔵ピット101の冷却水103が流動可能な冷却領域(第三冷却領域)が確保される。これにより、核燃料から放出される高速中性子を熱中性子に減速し核燃料の崩壊熱を除去できる。 Further, in the nuclear fuel storage rack 1, the plurality of cell assemblies 13 of the storage cells 12 are inserted from above into the grids 11Ca of the support grids 11C, which are the support members, and the upper, middle, and lower peripheries of the grids 11Ca are inserted. supported by a frame. Therefore, since the frame of the grid 11Ca of the support grid 11C exists between the plurality of cell assemblies 13, the cooling area (third cooling area) in which the cooling water 103 of the storage pit 101 can flow area) is secured. As a result, the fast neutrons emitted from the nuclear fuel can be moderated to thermal neutrons and the decay heat of the nuclear fuel can be removed.

また、核燃料貯蔵用ラック1では、各セル組立体13を並設して配置するラック本体11は、その内部において、複数のセル組立体13を支持する支持格子11Cが、上部と中央部、および中央部と下部の格子11Caの枠が補強部材11Dにより連結されている。補強部材11Dは、ラック本体11の構造強度を補強し耐震性を高める。これにより、耐震強度を向上し、核燃料を保護することができる。なお、補強部材11Dは、上述したセル組立体13を並設して配置するラック本体11に適用されることに限らない。例えば、収納セルが各々核燃料を挿入する収納領域を有するように複数設けられ、ラック本体11は、その内部において、各収納セルを並設して配置するように収納領域への核燃料の挿入方向に支持部材である支持格子を複数配置し、収納セルの間で各支持部材を連結するように補強部材11Dを有する構成としてもよい。このような構成においても、補強部材11Dは、ラック本体11の構造強度を補強し耐震性を高め、耐震強度を向上し、核燃料を保護することができる。 Further, in the nuclear fuel storage rack 1, the rack body 11 in which the cell assemblies 13 are arranged side by side has support grids 11C that support the plurality of cell assemblies 13 inside thereof. The frames of the central portion and the lower lattice 11Ca are connected by a reinforcing member 11D. The reinforcing member 11D reinforces the structural strength of the rack body 11 and enhances the earthquake resistance. As a result, the seismic strength can be improved and the nuclear fuel can be protected. Note that the reinforcing member 11D is not limited to being applied to the rack body 11 in which the above-described cell assemblies 13 are arranged side by side. For example, a plurality of storage cells are provided so as to each have a storage area into which the nuclear fuel is inserted, and the rack body 11 is arranged in the rack body 11 in the direction in which the nuclear fuel is inserted into the storage area so that the storage cells are arranged side by side. A plurality of support grids, which are support members, may be arranged, and a reinforcing member 11D may be provided to connect each support member between storage cells. Even in such a configuration, the reinforcing member 11D can reinforce the structural strength of the rack body 11, improve the earthquake resistance, improve the earthquake resistance, and protect the nuclear fuel.

また、核燃料貯蔵用ラック1は、基盤11Aに貫通孔11Aaが設けられている。貫通孔11Aaは、収納セル12において複数のセル組立体13の各収納領域15の略中央に設けられている。貫通孔11Aaは、各収納領域15の内部であって、各収納領域15に挿入された核燃料に対し貯蔵ピット101の冷却水103を送る。これにより、核燃料から放出される高速中性子を熱中性子に減速し核燃料の崩壊熱を除去できる。 Further, the nuclear fuel storage rack 1 is provided with a through hole 11Aa in the base 11A. The through-hole 11</b>Aa is provided substantially in the center of each storage area 15 of the plurality of cell assemblies 13 in the storage cell 12 . The through-hole 11Aa is inside each storage area 15 and sends the cooling water 103 of the storage pit 101 to the nuclear fuel inserted in each storage area 15 . As a result, the fast neutrons emitted from the nuclear fuel can be moderated to thermal neutrons and the decay heat of the nuclear fuel can be removed.

以下、収納セル12の詳細な構成について説明する。 A detailed configuration of the storage cell 12 will be described below.

図4は、本実施形態に係る収納セル12における小セル組立体14およびセル組立体13の斜視図である。図5は、本実施形態に係る小セル組立体14の分解斜視図である。図6は、本実施形態に係る小セル組立体14の部品図である。図7は、図6のA-A断面拡大図、および図8のB-B断面拡大図である。図8は、本実施形態に係る小セル組立体14の部品図である。図9は、本実施形態に係る小セル組立体14の部品図である。図10は、図9のC-C断面拡大図である。図11は、本実施形態に係る小セル組立体14の部分拡大斜視図である。図12は、本実施形態に係る小セル組立体14の分解斜視図である。図13は、本実施形態に係る小セル組立体14の部品図である。図14は、図13のD-D断面拡大図である。図15は、本実施形態に係る小セル組立体14の部分拡大斜視図である。図16は、本実施形態に係る小セル組立体14の分解斜視図である。図17は、本実施形態に係る小セル組立体14の部品図である。図18は、図17のE-E断面拡大図である。図19は、本実施形態に係る小セル組立体14の部分拡大斜視図である。図20~図22は、本実施形態に係る小セル組立体14の部分拡大図である。図23は、本実施形態に係るセル組立体13の部分拡大斜視図である。なお、図4~図23では、セル組立体13や小セル組立体14を横に倒し、収納領域15が横方向に延びるように示している。 FIG. 4 is a perspective view of the small cell assembly 14 and the cell assembly 13 in the storage cell 12 according to this embodiment. FIG. 5 is an exploded perspective view of the small cell assembly 14 according to this embodiment. FIG. 6 is a component diagram of the small cell assembly 14 according to this embodiment. 7 is an enlarged cross-sectional view taken along line AA of FIG. 6 and an enlarged cross-sectional view taken along line BB of FIG. FIG. 8 is a component diagram of the small cell assembly 14 according to this embodiment. FIG. 9 is a component diagram of the small cell assembly 14 according to this embodiment. 10 is an enlarged cross-sectional view taken along line CC of FIG. 9. FIG. FIG. 11 is a partially enlarged perspective view of the small cell assembly 14 according to this embodiment. FIG. 12 is an exploded perspective view of the small cell assembly 14 according to this embodiment. FIG. 13 is a component diagram of the small cell assembly 14 according to this embodiment. 14 is an enlarged cross-sectional view taken along line DD of FIG. 13. FIG. FIG. 15 is a partially enlarged perspective view of the small cell assembly 14 according to this embodiment. FIG. 16 is an exploded perspective view of the small cell assembly 14 according to this embodiment. FIG. 17 is a component diagram of the small cell assembly 14 according to this embodiment. 18 is an enlarged cross-sectional view along EE of FIG. 17. FIG. FIG. 19 is a partially enlarged perspective view of the small cell assembly 14 according to this embodiment. 20 to 22 are partially enlarged views of the small cell assembly 14 according to this embodiment. FIG. 23 is a partially enlarged perspective view of the cell assembly 13 according to this embodiment. 4 to 23, the cell assembly 13 and the small cell assembly 14 are laid down, and the storage area 15 is shown extending in the horizontal direction.

上述したように、収納セル12は、複数のセル組立体13を含み構成されている(図3参照)。各セル組立体13は、図4に示すように、複数の小セル組立体14を含み構成されている。即ち、収納セル12は、複数の小セル組立体14と、この複数の小セル組立体14を含む複数のセル組立体13と、を含み構成されている。 As described above, the storage cell 12 includes a plurality of cell assemblies 13 (see FIG. 3). Each cell assembly 13 includes a plurality of small cell assemblies 14, as shown in FIG. That is, the storage cell 12 includes a plurality of small cell assemblies 14 and a plurality of cell assemblies 13 including the plurality of small cell assemblies 14 .

小セル組立体14は、中性子吸収材からなる板材で形成されている。中性子吸収材は、ボロン、ガドリニウムの少なくとも一方を添加したステンレス鋼や、ボロン化合物(好ましくは炭化ホウ素)、ガドリニウムの少なくとも一方を含有するアルミニウム複合材からなる。従って、複数の小セル組立体14を含むセル組立体13も同様に中性子吸収材からなる板材で形成されている。 The small cell assembly 14 is made of a plate made of a neutron absorbing material. The neutron absorber is made of stainless steel to which at least one of boron and gadolinium is added, or an aluminum composite material containing at least one of a boron compound (preferably boron carbide) and gadolinium. Accordingly, the cell assembly 13 including a plurality of small cell assemblies 14 is similarly formed of plate material made of neutron absorbing material.

本実施形態のセル組立体13は、図4に示すように、3個の小セル組立体14が組み合わされて構成されている。セル組立体13をなす小セル組立体14を組み合わせる個数は、これに限定されない。 The cell assembly 13 of this embodiment is constructed by combining three small cell assemblies 14, as shown in FIG. The number of small cell assemblies 14 that form the cell assembly 13 is not limited to this.

図4において、3個の小セル組立体14を、それぞれ小セル組立体14A、小セル組立体14B、小セル組立体14Cとする。小セル組立体14Aは、セル組立体13において、一方の側部に設けられる。小セル組立体14Bは、セル組立体13において、中央に設けられる。小セル組立体14Cは、セル組立体13において、他方の側部に設けられる。このように、小セル組立体14A、小セル組立体14B、小セル組立体14Cを重ねて組み合わせることでセル組立体13が構成される。 In FIG. 4, the three small cell assemblies 14 are designated as small cell assembly 14A, small cell assembly 14B, and small cell assembly 14C, respectively. The small cell assembly 14A is provided on one side of the cell assembly 13 . The small cell assembly 14B is centrally provided in the cell assembly 13. As shown in FIG. Small cell assembly 14C is provided on the other side of cell assembly 13 . In this manner, the cell assembly 13 is configured by stacking and combining the small cell assembly 14A, the small cell assembly 14B, and the small cell assembly 14C.

図5に示すように、小セル組立体14Aは、2枚の側板16A,16Bと、6枚の仕切板16Cと、で構成される。 As shown in FIG. 5, the small cell assembly 14A is composed of two side plates 16A and 16B and six partition plates 16C.

一方の側板16Aは、図6および図7に示すように、核燃料の長さよりも例えば20mm~400mm程度長い長さを有し、核燃料を複数収納できるように核燃料複数(本実施形態では3本)分の幅よりも広い幅を有している。ここで、核燃料の長さ寸法に応じた方向を長さ方向とし、核燃料の幅寸法に応じた方向を幅方向とする。 One side plate 16A, as shown in FIGS. 6 and 7, has a length longer than the length of the nuclear fuel by, for example, about 20 mm to 400 mm, and has a plurality of nuclear fuels (three in this embodiment) so as to accommodate a plurality of nuclear fuels. It has a width wider than the width of a minute. Here, the direction corresponding to the length dimension of the nuclear fuel is defined as the length direction, and the direction corresponding to the width dimension of the nuclear fuel is defined as the width direction.

なお、側板16Aは、中性子吸収材を添加した材料の製作の容易性を考慮すれば、好ましくは、幅方向の最大寸法を1m以内とすることが推奨される。上述した中性子吸収材は、製造する過程の圧延時において、幅方向の端部に耳割れが生じるため、これを生じさせない特殊な製造方法によるか、もしくは、耳割れを切断して除去する必要があるなど、幅方向に広い板の製造は、容易ではない。このため、側板16Aは、幅方向の最大寸法を、製造が比較的容易な1m以内とすることが好ましい。小セル組立体14A,14B,14Cにおいて、核燃料を貯蔵する本数、すなわち、核燃料の収納領域15の個数は、この側板16Aの幅方向の最大寸法に基づいて決定される。 It is recommended that the side plate 16A have a maximum dimension of 1 m or less in the width direction, considering the ease of manufacturing the material to which the neutron absorbing material is added. In the neutron absorber described above, edge cracks occur at the edges in the width direction during rolling during the manufacturing process. Therefore, it is necessary to use a special manufacturing method that does not cause such edge cracks, or to remove the edge cracks by cutting them. It is not easy to manufacture a plate that is wide in the width direction. For this reason, the side plate 16A preferably has a maximum width dimension of 1 m or less, which is relatively easy to manufacture. In the small cell assemblies 14A, 14B, and 14C, the number of nuclear fuel storage areas 15, that is, the number of nuclear fuel storage areas 15, is determined based on the maximum widthwise dimension of the side plate 16A.

側板16Aは、幅方向の両端に、凸部16Aaと凹部16Abが設けられている。凸部16Aaと凹部16Abは、長さ方向に交互に設けられている。本実施形態の側板16Aは、長さ方向の両端側に凸部16Aaが設けられ、ここから凹部16Abと凸部16Aaが交互に設けられている。凸部16Aaと凹部16Abは、長さ方向の寸法が同じに形成され、長さ方向の両端側の凸部16Aaのみがその半分程度の寸法に形成されている。また、凸部16Aaと凹部16Abは、少なくとも仕切板16Cの厚さ分を挿入できる寸法で形成されている。 The side plate 16A is provided with a convex portion 16Aa and a concave portion 16Ab at both ends in the width direction. The convex portions 16Aa and the concave portions 16Ab are provided alternately in the length direction. The side plate 16A of the present embodiment is provided with protrusions 16Aa on both ends in the length direction, and recesses 16Ab and protrusions 16Aa are alternately provided from there. The convex portion 16Aa and the concave portion 16Ab are formed to have the same size in the length direction, and only the convex portions 16Aa on both ends in the length direction are formed to have about half the size. Also, the convex portion 16Aa and the concave portion 16Ab are formed with dimensions that allow insertion of at least the thickness of the partition plate 16C.

また、側板16Aは、スリット16Acが設けられている。スリット16Acは、仕切板16Cの厚さと同等であり、仕切板16Cを挿入できる寸法で形成されている。スリット16Acは、側板16Aの長さ方向に延在し、長さ方向で所定間隔をおいて複数設けられている。スリット16Acの長さ方向の配置は、凹部16Abの長さ方向の配置と同じく設けられている。また、スリット16Acは、側板16Aの幅方向に複数(本実施形態では4個)設けられている。幅方向の両側に配置されたスリット16Acは、凹部16Abとの間に核燃料の幅を包含する間隔aをおいて配置されている。この幅方向の両側のスリット16Acに対して幅方向で隣り合うスリット16Acは、核燃料から放出される高速中性子を熱中性子に減速し核燃料の崩壊熱を除去し得るように冷却水103が流動可能な間隔bをおいて配置されている。また、幅方向の両側のスリット16Acに対して幅方向で隣り合うスリット16Ac同士は、核燃料の幅を包含する間隔aをおいて配置されている。従って、4個のスリット16Acは、幅方向において3個の間隔aをおいて配置されていると共に、2箇所の間隔aの間でそれぞれ間隔bをおいて配置されている。側板16Aのスリット16Acには、図9に示す仕切板16Cの凸部16Caが、間隔aならびに間隔bを跨いで嵌装される。間隔aは、核燃料の収納領域15を形成させるための間隔であり、間隔bは、第一冷却領域17を形成するための間隔である。 Also, the side plate 16A is provided with a slit 16Ac. The slit 16Ac has the same thickness as the partition plate 16C, and is formed with a dimension that allows the partition plate 16C to be inserted. The slits 16Ac extend in the length direction of the side plate 16A, and are provided in plurality at predetermined intervals in the length direction. The arrangement of the slits 16Ac in the length direction is the same as the arrangement of the recesses 16Ab in the length direction. A plurality of (four in this embodiment) slits 16Ac are provided in the width direction of the side plate 16A. The slits 16Ac arranged on both sides in the width direction are arranged with an interval a covering the width of the nuclear fuel between them and the recesses 16Ab. The slits 16Ac adjacent in the width direction to the slits 16Ac on both sides in the width direction allow the cooling water 103 to flow so that the fast neutrons emitted from the nuclear fuel can be moderated into thermal neutrons and the decay heat of the nuclear fuel can be removed. They are arranged with an interval b. In addition, the slits 16Ac adjacent to each other in the width direction with respect to the slits 16Ac on both sides in the width direction are arranged with an interval a covering the width of the nuclear fuel. Therefore, the four slits 16Ac are arranged at three intervals a in the width direction, and are arranged at intervals b between two intervals a. The protrusion 16Ca of the partition plate 16C shown in FIG. 9 is fitted into the slit 16Ac of the side plate 16A across the gaps a and b. The interval a is the interval for forming the storage area 15 for the nuclear fuel, and the interval b is the interval for forming the first cooling area 17 .

他方の側板16Bは、図8に示すように、核燃料の長さよりも長い長さを有し、核燃料を複数収納できるように核燃料複数(本実施形態では3本)分の幅よりも広い幅を有している。他方の側板16Bは、一方の側板16Aと同様の長さおよび幅に形成されている。ここで、核燃料の長さ寸法に応じた方向を長さ方向とし、核燃料の幅寸法に応じた方向を幅方向とする。 The other side plate 16B, as shown in FIG. 8, has a length longer than the length of the nuclear fuel, and a width wider than the width of a plurality of nuclear fuels (three in this embodiment) so as to accommodate a plurality of nuclear fuels. have. The other side plate 16B is formed to have the same length and width as the one side plate 16A. Here, the direction corresponding to the length dimension of the nuclear fuel is defined as the length direction, and the direction corresponding to the width dimension of the nuclear fuel is defined as the width direction.

なお、側板16Bは、中性子吸収材を添加した材料の製作の容易性を考慮すれば、好ましくは、幅方向の最大寸法を1m以内とすることが推奨される。上述した中性子吸収材は、製造する過程の圧延時において、幅方向の端部に耳割れが生じるため、これを生じさせない特殊な製造方法によるか、もしくは、耳割れを切断して除去する必要があるなど、幅方向に広い板の製造は、容易ではない。このため、側板16Bは、側板16Aと同様に、幅方向の最大寸法を、1m以内とすることが好ましい。小セル組立体14A,14B,14Cにおいて、核燃料を貯蔵する本数すなわち、核燃料の収納領域15の個数は、この側板16Bの幅方向の最大寸法に基づいて決定される。 It is recommended that the side plate 16B have a maximum width of 1 m or less, considering the ease of manufacturing the material to which the neutron absorbing material is added. In the neutron absorber described above, edge cracks occur at the edges in the width direction during rolling during the manufacturing process. Therefore, it is necessary to use a special manufacturing method that does not cause such edge cracks, or to remove the edge cracks by cutting them. It is not easy to manufacture a plate that is wide in the width direction. Therefore, like the side plate 16A, the side plate 16B preferably has a maximum width dimension of 1 m or less. In the small cell assemblies 14A, 14B, and 14C, the number of nuclear fuel storage areas 15, that is, the number of nuclear fuel storage areas 15, is determined based on the maximum widthwise dimension of the side plate 16B.

側板16Bは、幅方向の両端に、凸部16Baと凹部16Bbが設けられている。凸部16Baと凹部16Bbは、長さ方向に交互に設けられている。本実施形態の側板16Bは、長さ方向の両端側に凹部16Bbが設けられ、ここから凸部16Baと凹部16Bbが交互に設けられている。凸部16Baと凹部16Bbは、長さ方向の寸法が同じに形成され、長さ方向の両端側の凹部16Bbのみがその半分程度の寸法に形成されている。また、凸部16Baと凹部16Bbは、少なくとも仕切板16Cの厚さ分を挿入できる寸法で形成されている。 The side plate 16B is provided with a convex portion 16Ba and a concave portion 16Bb at both ends in the width direction. The convex portions 16Ba and the concave portions 16Bb are alternately provided in the length direction. The side plate 16B of the present embodiment is provided with concave portions 16Bb on both ends in the length direction, from which convex portions 16Ba and concave portions 16Bb are provided alternately. The convex portion 16Ba and the concave portion 16Bb are formed to have the same size in the length direction, and only the concave portions 16Bb on both ends in the length direction are formed to have about half the size. Moreover, the convex portion 16Ba and the concave portion 16Bb are formed with dimensions that allow insertion of at least the thickness of the partition plate 16C.

また、側板16Bは、スリット16Bcが設けられている。スリット16Bcは、仕切板16Cの厚さと同等であり、仕切板16Cを挿入できる寸法で形成されている。スリット16Bcは、側板16Bの長さ方向に延在し、長さ方向で所定間隔をおいて複数設けられている。スリット16Bcの長さ方向の配置は、凹部16Bbの長さ方向の配置と同じく設けられている。また、スリット16Bcは、側板16Bの幅方向に複数(本実施形態では4個)設けられている。幅方向の両側に配置されたスリット16Bcは、凹部16Bbとの間に核燃料の幅を包含する間隔aをおいて配置されている。この幅方向の両側のスリット16Bcに対して幅方向で隣り合うスリット16Bcは、核燃料から放出される高速中性子を熱中性子に減速し核燃料の崩壊熱を除去し得るように冷却水が流動可能な間隔bをおいて配置されている。また、幅方向の両側のスリット16Bcに対して幅方向で隣り合うスリット16Bc同士は、核燃料の幅を包含する間隔aをおいて配置されている。従って、4個のスリット16Bcは、幅方向において3個の間隔aをおいて配置されていると共に、2箇所の間隔aの間でそれぞれ間隔bをおいて配置されている。側板16Bのスリット16Bcには、図9に示す仕切板16Cの凸部16Caが、間隔aならびに間隔bを跨いで嵌装される。間隔aは、核燃料の収納領域15を形成させるための間隔であり、間隔bは、第一冷却領域17を形成するための間隔である。 Also, the side plate 16B is provided with a slit 16Bc. The slit 16Bc has a thickness equivalent to that of the partition plate 16C, and is formed with a dimension that allows insertion of the partition plate 16C. The slits 16Bc extend in the length direction of the side plate 16B, and are provided in plurality at predetermined intervals in the length direction. The arrangement of the slits 16Bc in the length direction is the same as the arrangement of the recesses 16Bb in the length direction. A plurality of (four in the present embodiment) slits 16Bc are provided in the width direction of the side plate 16B. The slits 16Bc, which are arranged on both sides in the width direction, are arranged with an interval a covering the width of the nuclear fuel between them and the recesses 16Bb. The slits 16Bc adjacent in the width direction to the slits 16Bc on both sides in the width direction are spaced so that the cooling water can flow so that the fast neutrons emitted from the nuclear fuel can be moderated into thermal neutrons and the decay heat of the nuclear fuel can be removed. It is arranged with b. Also, the slits 16Bc adjacent in the width direction to the slits 16Bc on both sides in the width direction are arranged with an interval a covering the width of the nuclear fuel. Therefore, the four slits 16Bc are arranged at three intervals a in the width direction, and are arranged at intervals b between two intervals a. The protrusions 16Ca of the partition plate 16C shown in FIG. 9 are fitted into the slits 16Bc of the side plate 16B across the gaps a and b. The interval a is the interval for forming the storage area 15 for the nuclear fuel, and the interval b is the interval for forming the first cooling area 17 .

仕切板16Cは、図9および図10に示すように、核燃料の長さよりも長い長さを有し、核燃料を複数収納できるように核燃料1本分の幅よりも広い幅を有している。仕切板16Cは、側板16A,16Bと同様の長さに形成されている。ここで、核燃料の長さ寸法に応じた方向を長さ方向とし、核燃料の幅寸法に応じた方向を幅方向とする。 As shown in FIGS. 9 and 10, the partition plate 16C has a length longer than the length of the nuclear fuel and a width wider than the width of one nuclear fuel so as to accommodate a plurality of nuclear fuels. The partition plate 16C is formed to have the same length as the side plates 16A and 16B. Here, the direction corresponding to the length dimension of the nuclear fuel is defined as the length direction, and the direction corresponding to the width dimension of the nuclear fuel is defined as the width direction.

仕切板16Cは、幅方向の一側に、凸部(突出片)16Caと凹部16Cbが設けられている。凸部16Caと凹部16Cbは、長さ方向に交互に設けられている。本実施形態の仕切板16Cは、長さ方向の両端側に凹部16Cbが設けられ、ここから凸部16Caと凹部16Cbが交互に設けられている。凸部16Caと凹部16Cbは、長さ方向の寸法が同じに形成され、長さ方向の両端側の凹部16Cbのみがその半分程度の寸法に形成されている。また、凸部16Caと凹部16Cbは、一方の側板16Aの厚さに、核燃料から放出される高速中性子を熱中性子に減速し核燃料の崩壊熱を除去し得るように冷却水が流動可能な間隔bを加えた寸法cで形成されている。 The partition plate 16C is provided with a convex portion (protruding piece) 16Ca and a concave portion 16Cb on one side in the width direction. The convex portions 16Ca and the concave portions 16Cb are alternately provided in the length direction. The partition plate 16C of the present embodiment is provided with concave portions 16Cb on both ends in the length direction, from which convex portions 16Ca and concave portions 16Cb are provided alternately. The convex portion 16Ca and the concave portion 16Cb are formed to have the same size in the length direction, and only the concave portions 16Cb on both ends in the length direction are formed to have about half the size. Moreover, the protrusion 16Ca and the recess 16Cb are formed in the thickness of one of the side plates 16A. It is formed with a dimension c added with

また、仕切板16Cは、幅方向の他側に、凸部16Ccと凹部16Cdが設けられている。凸部16Ccと凹部16Cdは、長さ方向に交互に設けられている。本実施形態の仕切板16Cは、長さ方向の両端側に凸部16Ccが設けられ、ここから凹部16Cdと凸部16Ccが交互に設けられている。凸部16Ccと凹部16Cdは、長さ方向の寸法が同じに形成され、長さ方向の両端側の凸部16Ccのみがその半分程度の寸法に形成されている。また、凸部16Ccと凹部16Cdは、他方の側板16Bの厚さ分の寸法dまたはそれ以上で形成されている。 Moreover, the partition plate 16C is provided with a convex portion 16Cc and a concave portion 16Cd on the other side in the width direction. The convex portions 16Cc and the concave portions 16Cd are alternately provided in the length direction. The partition plate 16C of the present embodiment is provided with protrusions 16Cc on both ends in the length direction, from which recesses 16Cd and protrusions 16Cc are provided alternately. The convex portion 16Cc and the concave portion 16Cd are formed to have the same size in the length direction, and only the convex portions 16Cc on both ends in the length direction are formed to have about half the size. Moreover, the convex portion 16Cc and the concave portion 16Cd are formed with a dimension d corresponding to the thickness of the other side plate 16B or more.

なお、本実施形態では、側板16A,16Bおよび仕切板16Cは、同じ厚さで形成されている。 In addition, in this embodiment, the side plates 16A and 16B and the partition plate 16C are formed with the same thickness.

小セル組立体14Aは、図5および図11に示すように、側板16A,16Bの2枚を互いに板面を対向して平行に配置し、6枚の仕切板16Cを側板16A,16Bの間に側板16A,16Bに対して垂直に設ける。具体的には、図6~図10において、一方の側板16Aの幅方向の両端部では、凸部16Aaと仕切板16Cの凹部16Cbを嵌め合わせると共に、凹部16Abと仕切板16Cの凸部16Caを嵌め合わせる。また、一方の側板16Aのスリット16Acに仕切板16Cの凸部16Caを挿入して嵌め合わせる。他方の側板16Bの幅方向の両端部では、凸部16Baと仕切板16Cの凹部16Cdを嵌め合わせると共に、凹部16Bbと仕切板16Cの凸部16Ccを嵌め合わせる。また、他方の側板16Bのスリット16Bcに仕切板16Cの凸部16Ccを挿入して嵌め合わせる。そして、各嵌め合わせの部分を溶接にて接合する。 As shown in FIGS. 5 and 11, the small cell assembly 14A has two side plates 16A and 16B arranged parallel to each other with their plate surfaces facing each other, and six partition plates 16C between the side plates 16A and 16B. are provided perpendicularly to the side plates 16A and 16B. Specifically, in FIGS. 6 to 10, at both ends in the width direction of one side plate 16A, the convex portion 16Aa and the concave portion 16Cb of the partition plate 16C are fitted together, and the concave portion 16Ab and the convex portion 16Ca of the partition plate 16C are engaged with each other. fit together. Also, the projection 16Ca of the partition plate 16C is inserted into the slit 16Ac of one side plate 16A and fitted. At both ends in the width direction of the other side plate 16B, the projection 16Ba and the recess 16Cd of the partition plate 16C are fitted together, and the recess 16Bb and the projection 16Cc of the partition plate 16C are fitted together. Also, the projection 16Cc of the partition plate 16C is inserted into the slit 16Bc of the other side plate 16B and fitted. Then, the fitting portions are joined by welding.

これにより、仕切板16Cによって側板16A,16Bの間に核燃料が挿入される間隔aが確保され、各仕切板16Cの間に核燃料が挿入される間隔aが確保されることで、小セル組立体14Aにおいて、側板16A,16Bおよび仕切板16Cで囲まれた収納領域15が幅方向に複数(本実施形態では3個)並設される。また、各仕切板16Cの間に冷却水が流動可能な間隔bが確保されることで、小セル組立体14Aにおいて、側板16A,16Bおよび仕切板16Cで囲まれた収納領域15の間に貯蔵ピット101の冷却水103が流動可能な第一冷却領域17が形成される。また、小セル組立体14Aは、一方の側板16Aの外側に、各仕切板16Cの凸部16Caが突出する。 As a result, the partition plate 16C secures the space a for inserting the nuclear fuel between the side plates 16A and 16B, and the space a for inserting the nuclear fuel between the partition plates 16C is secured, thereby forming the small cell assembly. In 14A, a plurality (three in this embodiment) of storage areas 15 surrounded by side plates 16A and 16B and partition plates 16C are arranged side by side in the width direction. In addition, by ensuring a space b between the partition plates 16C that allows the cooling water to flow, in the small cell assembly 14A, the cooling water is stored between the storage areas 15 surrounded by the side plates 16A and 16B and the partition plate 16C. A first cooling area 17 is formed through which the cooling water 103 in the pit 101 can flow. Also, in the small cell assembly 14A, the projections 16Ca of the partition plates 16C protrude outside one side plate 16A.

図12に示すように、小セル組立体14Bは、2枚の側板16A,16Bと、6枚の仕切板16Dと、で構成される。 As shown in FIG. 12, the small cell assembly 14B is composed of two side plates 16A and 16B and six partition plates 16D.

側板16A,16Bは、小セル組立体14Aの側板16A,16Bと同じ構成であり、説明を省略する。 The side plates 16A, 16B have the same configuration as the side plates 16A, 16B of the small cell assembly 14A, and the description thereof is omitted.

仕切板16Dは、図13および図14に示すように、核燃料の長さよりも長い長さを有し、核燃料を複数収納できるように核燃料1本分の幅よりも広い幅を有している。仕切板16Dは、側板16A,16Bと同様の長さに形成されている。ここで、核燃料の長さ寸法に応じた方向を長さ方向とし、核燃料の幅寸法に応じた方向を幅方向とする。 As shown in FIGS. 13 and 14, the partition plate 16D has a length longer than the length of the nuclear fuel and a width wider than the width of one nuclear fuel so as to accommodate a plurality of nuclear fuels. The partition plate 16D is formed to have the same length as the side plates 16A and 16B. Here, the direction corresponding to the length dimension of the nuclear fuel is defined as the length direction, and the direction corresponding to the width dimension of the nuclear fuel is defined as the width direction.

仕切板16Dは、幅方向の一側に、凸部(突出片)16Daと凹部16Dbが設けられている。凸部16Daと凹部16Dbは、長さ方向に交互に設けられている。本実施形態の仕切板16Dは、長さ方向の両端側に凹部16Dbが設けられ、ここから凸部16Daと凹部16Dbが交互に設けられている。凸部16Daと凹部16Dbは、長さ方向の寸法が同じに形成され、長さ方向の両端側の凹部16Dbのみがその半分程度の寸法に形成されている。また、凸部16Daと凹部16Dbは、一方の側板16Aの厚さに、核燃料から放出される高速中性子を熱中性子に減速し核燃料の崩壊熱を除去し得るように冷却水が流動可能な間隔bを加えた寸法cで形成されている。 The partition plate 16D is provided with a convex portion (protruding piece) 16Da and a concave portion 16Db on one side in the width direction. The convex portions 16Da and the concave portions 16Db are alternately provided in the length direction. The partition plate 16D of the present embodiment is provided with concave portions 16Db at both ends in the length direction, from which convex portions 16Da and concave portions 16Db are provided alternately. The convex portion 16Da and the concave portion 16Db are formed to have the same size in the length direction, and only the concave portions 16Db on both ends in the length direction are formed to have about half the size. In addition, the protrusion 16Da and the recess 16Db are formed in the thickness of one of the side plates 16A so that the cooling water can flow in such a manner that the fast neutrons emitted from the nuclear fuel can be moderated into thermal neutrons and the decay heat of the nuclear fuel can be removed. It is formed with a dimension c added with

また、仕切板16Dは、幅方向の他側に、凸部(突出片)16Dcと凹部16Ddが設けられている。凸部16Dcと凹部16Ddは、長さ方向に交互に設けられている。本実施形態の仕切板16Dは、長さ方向の両端側に凸部16Dcが設けられ、ここから凹部16Ddと凸部16Dcが交互に設けられている。凸部16Dcと凹部16Ddは、長さ方向の寸法が同じに形成され、長さ方向の両端側の凸部16Dcのみがその半分程度の寸法に形成されている。また、凸部16Dcと凹部16Ddは、他方の側板16Bの厚さに、核燃料から放出される高速中性子を熱中性子に減速し核燃料の崩壊熱を除去し得るように冷却水が流動可能な間隔bを加えた寸法cで形成されている。 In addition, the partition plate 16D is provided with a convex portion (protruding piece) 16Dc and a concave portion 16Dd on the other side in the width direction. The convex portions 16Dc and the concave portions 16Dd are alternately provided in the length direction. The partition plate 16D of the present embodiment is provided with protrusions 16Dc on both ends in the length direction, from which the recesses 16Dd and the protrusions 16Dc are provided alternately. The convex portion 16Dc and the concave portion 16Dd are formed to have the same size in the length direction, and only the convex portions 16Dc on both ends in the length direction are formed to have about half the size. In addition, the protrusion 16Dc and the recess 16Dd are formed in the thickness of the other side plate 16B so that the cooling water can flow in such a manner that the fast neutrons emitted from the nuclear fuel can be moderated into thermal neutrons and the decay heat of the nuclear fuel can be removed. It is formed with a dimension c added with

なお、本実施形態では、側板16A,16Bおよび仕切板16Dは、同じ厚さで形成されている。 In addition, in this embodiment, the side plates 16A and 16B and the partition plate 16D are formed with the same thickness.

小セル組立体14Bは、図12および図15に示すように、2枚の側板16A,16Bを互いに板面を対向して平行に配置し、6枚の仕切板16Dを側板16A,16Bの間に側板16A,16Bに対して垂直に設ける。具体的には、図6~図8、図13~図14において、一方の側板16Aの幅方向の両端部では、凸部16Aaと仕切板16Dの凹部16Dbを嵌め合わせると共に、凹部16Abと仕切板16Dの凸部16Daを嵌め合わせる。また、一方の側板16Aのスリット16Acに仕切板16Dの凸部16Daを挿入して嵌め合わせる。他方の側板16Bの幅方向の両端部では、凸部16Baと仕切板16Dの凹部16Ddを嵌め合わせると共に、凹部16Bbと仕切板16Dの凸部16Dcを嵌め合わせる。また、他方の側板16Bのスリット16Bcに仕切板16Dの凸部16Dcを挿入して嵌め合わせる。そして、各嵌め合わせの部分を溶接にて接合する。 As shown in FIGS. 12 and 15, the small cell assembly 14B has two side plates 16A and 16B arranged parallel to each other with their plate surfaces facing each other, and six partition plates 16D between the side plates 16A and 16B. are provided perpendicularly to the side plates 16A and 16B. Specifically, in FIGS. 6 to 8 and FIGS. 13 to 14, at both ends in the width direction of one side plate 16A, the convex portion 16Aa is fitted to the concave portion 16Db of the partition plate 16D, and the concave portion 16Ab and the partition plate are fitted. The convex portion 16Da of 16D is fitted. Also, the projection 16Da of the partition plate 16D is inserted into the slit 16Ac of one side plate 16A and fitted. At both ends in the width direction of the other side plate 16B, the projection 16Ba and the recess 16Dd of the partition plate 16D are fitted together, and the recess 16Bb and the projection 16Dc of the partition plate 16D are fitted together. Also, the projection 16Dc of the partition plate 16D is inserted into the slit 16Bc of the other side plate 16B and fitted. Then, the fitting portions are joined by welding.

これにより、仕切板16Dによって側板16A,16Bの間に核燃料が挿入される間隔aが確保され、各仕切板16Dの間に核燃料が挿入される間隔aが確保されることで、小セル組立体14Bにおいて、側板16A,16Bおよび仕切板16Dで囲まれた収納領域15が幅方向に複数(本実施形態では3個)並設される。また、各仕切板16Dの間に冷却水が流動可能な間隔bが確保されることで、小セル組立体14Bにおいて、側板16A,16Bおよび仕切板16Dで囲まれた収納領域15の間に貯蔵ピット101の冷却水103が流動可能な第一冷却領域17が形成される。また、小セル組立体14Bは、一方の側板16Aの外側に、各仕切板16Dの凸部16Daが突出する。また、小セル組立体14Bは、他方の側板16Bの外側に、各仕切板16Dの凸部16Dcが突出する。 As a result, the partition plate 16D secures the space a for inserting the nuclear fuel between the side plates 16A and 16B, and the space a for inserting the nuclear fuel between the partition plates 16D is secured. In 14B, a plurality (three in this embodiment) of storage areas 15 surrounded by side plates 16A and 16B and partition plates 16D are arranged side by side in the width direction. In addition, by ensuring a space b between the partition plates 16D through which the cooling water can flow, in the small cell assembly 14B, the cooling water is stored between the storage areas 15 surrounded by the side plates 16A and 16B and the partition plate 16D. A first cooling area 17 is formed through which the cooling water 103 in the pit 101 can flow. Also, in the small cell assembly 14B, the protrusion 16Da of each partition plate 16D protrudes outside one side plate 16A. Also, in the small cell assembly 14B, the projections 16Dc of each partition plate 16D protrude outside the other side plate 16B.

図16に示すように、小セル組立体14Cは、2枚の側板16A,16Bと、6枚の仕切板16Eと、で構成される。 As shown in FIG. 16, the small cell assembly 14C is composed of two side plates 16A and 16B and six partition plates 16E.

側板16A,16Bは、小セル組立体14A,14Bの側板16A,16Bと同じ構成であり、説明を省略する。 The side plates 16A and 16B have the same configuration as the side plates 16A and 16B of the small cell assemblies 14A and 14B, and the description thereof is omitted.

仕切板16Eは、図17および図18に示すように、核燃料の長さよりも長い長さを有し、核燃料を複数収納できるように核燃料1本分の幅よりも広い幅を有している。仕切板16Eは、側板16A,16Bと同様の長さに形成されている。ここで、核燃料の長さ寸法に応じた方向を長さ方向とし、核燃料の幅寸法に応じた方向を幅方向とする。 As shown in FIGS. 17 and 18, the partition plate 16E has a length longer than the length of the nuclear fuel and a width wider than the width of one nuclear fuel so as to accommodate a plurality of nuclear fuels. The partition plate 16E is formed to have the same length as the side plates 16A and 16B. Here, the direction corresponding to the length dimension of the nuclear fuel is defined as the length direction, and the direction corresponding to the width dimension of the nuclear fuel is defined as the width direction.

仕切板16Eは、幅方向の一側に、凸部16Eaと凹部16Ebが設けられている。凸部16Eaと凹部16Ebは、長さ方向に交互に設けられている。本実施形態の仕切板16Eは、長さ方向の両端側に凹部16Ebが設けられ、ここから凸部16Eaと凹部16Ebが交互に設けられている。凸部16Eaと凹部16Ebは、長さ方向の寸法が同じに形成され、長さ方向の両端側の凹部16Ebのみがその半分程度の寸法に形成されている。また、凸部16Eaと凹部16Ebは、一方の側板16Aの厚さ分の寸法dで形成されている。 The partition plate 16E is provided with a convex portion 16Ea and a concave portion 16Eb on one side in the width direction. The protrusions 16Ea and the recesses 16Eb are alternately provided in the length direction. The partition plate 16E of the present embodiment is provided with concave portions 16Eb on both ends in the length direction, and convex portions 16Ea and concave portions 16Eb are provided alternately from these. The convex portion 16Ea and the concave portion 16Eb are formed to have the same dimension in the length direction, and only the concave portions 16Eb on both end sides in the length direction are formed to about half the dimension. Moreover, the convex portion 16Ea and the concave portion 16Eb are formed with a dimension d corresponding to the thickness of one side plate 16A.

また、仕切板16Eは、幅方向の他側に、凸部(突出片)16Ecと凹部16Edが設けられている。凸部16Ecと凹部16Edは、長さ方向に交互に設けられている。本実施形態の仕切板16Eは、長さ方向の両端側に凸部16Ecが設けられ、ここから凹部16Edと凸部16Ecが交互に設けられている。凸部16Ecと凹部16Edは、長さ方向の寸法が同じに形成され、長さ方向の両端側の凸部16Ecのみがその半分程度の寸法に形成されている。また、凸部16Ecと凹部16Edは、他方の側板16Bの厚さに、核燃料から放出される高速中性子を熱中性子に減速し核燃料の崩壊熱を除去し得るように冷却水が流動可能な間隔bを加えた寸法cで形成されている。 In addition, the partition plate 16E is provided with a convex portion (protruding piece) 16Ec and a concave portion 16Ed on the other side in the width direction. The convex portions 16Ec and the concave portions 16Ed are alternately provided in the length direction. The partition plate 16E of the present embodiment is provided with protrusions 16Ec on both ends in the length direction, from which the recesses 16Ed and the protrusions 16Ec are provided alternately. The convex portion 16Ec and the concave portion 16Ed are formed to have the same dimension in the length direction, and only the convex portions 16Ec on both ends in the length direction are formed to have approximately half the dimension. In addition, the protrusion 16Ec and the recess 16Ed are formed in the thickness of the other side plate 16B so that the cooling water can flow through the space b so that fast neutrons emitted from the nuclear fuel can be moderated into thermal neutrons and the decay heat of the nuclear fuel can be removed. It is formed with a dimension c added with

なお、本実施形態では、側板16A,16Bおよび仕切板16Eは、同じ厚さで形成されている。 In addition, in this embodiment, the side plates 16A and 16B and the partition plate 16E are formed with the same thickness.

小セル組立体14Cは、図16および図19に示すように、2枚の側板16A,16Bを互いに板面を対向して平行に配置し、6枚の仕切板16Eを側板16A,16Bの間に側板16A,16Bに対して垂直に設ける。具体的には、図6~図8、図17~図18において、一方の側板16Aの幅方向の両端部では、凸部16Aaと仕切板16Eの凹部16Ebを嵌め合わせると共に、凹部16Abと仕切板16Eの凸部16Eaを嵌め合わせる。また、一方の側板16Aのスリット16Acに仕切板16Eの凸部16Eaを挿入して嵌め合わせる。他方の側板16Bの幅方向の両端部では、凸部16Baと仕切板16Eの凹部16Edを嵌め合わせると共に、凹部16Bbと仕切板16Eの凸部16Ecを嵌め合わせる。また、他方の側板16Bのスリット16Bcに仕切板16Eの凸部16Ecを挿入して嵌め合わせる。そして、各嵌め合わせの部分を溶接にて接合する。 As shown in FIGS. 16 and 19, the small cell assembly 14C has two side plates 16A and 16B arranged parallel to each other with their plate surfaces facing each other, and six partition plates 16E between the side plates 16A and 16B. are provided perpendicularly to the side plates 16A and 16B. Specifically, in FIGS. 6 to 8 and FIGS. 17 to 18, at both ends in the width direction of one side plate 16A, the convex portion 16Aa and the concave portion 16Eb of the partition plate 16E are fitted, and the concave portion 16Ab and the partition plate are fitted. The projection 16Ea of 16E is fitted. Also, the projection 16Ea of the partition plate 16E is inserted into the slit 16Ac of one side plate 16A and fitted. At both ends in the width direction of the other side plate 16B, the protrusion 16Ba and the recess 16Ed of the partition plate 16E are fitted together, and the recess 16Bb and the protrusion 16Ec of the partition plate 16E are fitted together. Also, the protrusion 16Ec of the partition plate 16E is inserted into the slit 16Bc of the other side plate 16B and fitted. Then, the fitting portions are joined by welding.

これにより、仕切板16Eによって側板16A,16Bの間に核燃料が挿入される間隔aが確保され、各仕切板16Eの間に核燃料が挿入される間隔aが確保されることで、小セル組立体14Cにおいて、側板16A,16Bおよび仕切板16Eで囲まれた収納領域15が幅方向に複数(本実施形態では3個)並設される。また、各仕切板16Eの間に冷却水が流動可能な間隔bが確保されることで、小セル組立体14Cにおいて、側板16A,16Bおよび仕切板16Eで囲まれた収納領域15の間に貯蔵ピット101の冷却水103が流動可能な第一冷却領域17が形成される。また、小セル組立体14Cは、他方の側板16Bの外側に、各仕切板16Eの凸部16Ecが突出する。 As a result, the partition plate 16E secures the space a for inserting the nuclear fuel between the side plates 16A and 16B, and the space a for inserting the nuclear fuel between the partition plates 16E is secured, thereby forming a small cell assembly. At 14C, a plurality (three in this embodiment) of storage areas 15 surrounded by side plates 16A and 16B and a partition plate 16E are arranged side by side in the width direction. In addition, by ensuring a space b between the partition plates 16E that allows the cooling water to flow, in the small cell assembly 14C, the cooling water is stored between the storage areas 15 surrounded by the side plates 16A and 16B and the partition plate 16E. A first cooling area 17 is formed through which the cooling water 103 in the pit 101 can flow. Also, in the small cell assembly 14C, the projections 16Ec of each partition plate 16E protrude to the outside of the other side plate 16B.

ここで、小セル組立体14の接合に際し、図20に示すように、仕切板16C,16D,16Eが、側板16A,16Bの内側に位置する部分にレ形(片側)開先16Fを形成して開先溶接21により接合する方法がある。また、小セル組立体14の接合に際し、図21に示すように、側板16A,16Bの幅方向寸法を大きくし、凸部16Aa,16Baと凹部16Ab,16Bbの寸法を仕切板16C,16D,16Eの厚さ分を超える寸法とし、側板16A,16Bと仕切板16C,16D,16Eとの間に入隅を形成して隅肉溶接22により接合する方法もある。また、小セル組立体14の接合に際し、図22に示すように、側板16A,16Bの外側に突出する仕切板16Dの凸部16Da,16Dcに楔部材16Gを差し込むための開口(好ましくは、矩形開口、なお図は省略。)を設け、この開口に楔部材16Gを差し込み、楔部材16Gに抜止部材16Hを溶接して抜け止めする方法がある。楔部材16Gに抜止部材16Hを溶接固定すれば、側板16A,16Bや仕切板16Dの溶接ひずみを回避できるため、小セル組立体14を精度よく製造できる。なお、図22において、側板16A,16Bの外側に突出する仕切板16Dの凸部16Da,16Dc,16Ecに楔部材16Gを差し込んで楔部材16Gを側板16A,16Bや仕切板16Dに溶接により固定してもよい。この溶接は、楔部材16Gが抜け出ないための微量な溶接であることから、側板16A,16Bや仕切板16Dに生じる溶接ひずみは無視できる程度の微量なものである。溶接ひずみは、最も軟弱な楔部材16Gにのみ発生し、側板16A,16Bや仕切板16Dには影響を与えない。 Here, when joining the small cell assembly 14, as shown in FIG. 20, the partition plates 16C, 16D, and 16E form a groove 16F in the portion located inside the side plates 16A and 16B. There is a method of joining by groove welding 21. When joining the small cell assembly 14, as shown in FIG. 21, the width dimension of the side plates 16A and 16B is increased, and the dimensions of the projections 16Aa and 16Ba and the recesses 16Ab and 16Bb are adjusted to the partition plates 16C, 16D and 16E. There is also a method of forming internal corners between the side plates 16A, 16B and the partition plates 16C, 16D, 16E and joining them by fillet welding 22. Also, when joining the small cell assembly 14, as shown in FIG. 22, an opening (preferably a rectangular There is a method of providing an opening (not shown), inserting the wedge member 16G into the opening, and welding the retaining member 16H to the wedge member 16G to prevent it from coming off. By welding and fixing the retainer member 16H to the wedge member 16G, welding distortion of the side plates 16A and 16B and the partition plate 16D can be avoided, so that the small cell assembly 14 can be manufactured with high accuracy. In FIG. 22, the wedge member 16G is inserted into the protrusions 16Da, 16Dc, and 16Ec of the partition plate 16D projecting outside the side plates 16A and 16B, and the wedge member 16G is fixed to the side plates 16A and 16B and the partition plate 16D by welding. may Since this welding is a very small amount of welding to prevent the wedge member 16G from slipping out, the welding strain generated in the side plates 16A and 16B and the partition plate 16D is negligibly small. Welding distortion occurs only in the weakest wedge member 16G, and does not affect the side plates 16A, 16B and partition plate 16D.

なお、小セル組立体14Aにおいて、側板16Aのスリット16Acから外側に突出した仕切板16Cの凸部16Caと側板16Aとの溶接や、側板16Bのスリット16Bcから外側に突出した仕切板16Cの凸部16Ccと側板16Bとの溶接は行わないことが好ましい。また、小セル組立体14Bにおいて、側板16Aのスリット16Acから外側に突出した仕切板16Dの凸部16Daと側板16Aとの溶接や、側板16Bのスリット16Bcから外側に突出した仕切板16Dの凸部16Dcと側板16Bとの溶接は行わないことが好ましい。また、小セル組立体14Cにおいて、側板16Aのスリット16Acから外側に突出した仕切板16Eの凸部16Eaと側板16Aとの溶接や、側板16Bのスリット16Bcから外側に突出した仕切板16Eの凸部16Ecと側板16Bとの溶接は行わないことが好ましい。このようにすることで、側板16A,16Bや仕切板16Dへの溶接ひずみが無視できる程度の微量なものとなる。 In the small cell assembly 14A, welding of the convex portion 16Ca of the partition plate 16C that protrudes outward from the slit 16Ac of the side plate 16A and the side plate 16A and the convex portion of the partition plate 16C that protrudes outward from the slit 16Bc of the side plate 16B It is preferable not to weld 16Cc and side plate 16B. In the small cell assembly 14B, welding of the protrusion 16Da of the partition plate 16D projecting outward from the slit 16Ac of the side plate 16A and the side plate 16A, and protrusion of the partition plate 16D projecting outward from the slit 16Bc of the side plate 16B It is preferable not to weld 16Dc and side plate 16B. In the small cell assembly 14C, welding of the protrusion 16Ea of the partition plate 16E projecting outward from the slit 16Ac of the side plate 16A and the side plate 16A, and protrusion of the partition plate 16E projecting outward from the slit 16Bc of the side plate 16B It is preferable not to weld 16Ec and side plate 16B. By doing so, the welding strain on the side plates 16A and 16B and the partition plate 16D becomes negligibly small.

そして、このように構成した各小セル組立体14(14A,14B,14C)を、図4に示すように接合し、セル組立体13を構成する。図4では、小セル組立体14Aの一方の側板16Aと、小セル組立体14Bの他方の側板16Bとの板面を対向させ、対向する各小セル組立体14A,14B同士を溶接によって接合する。また、小セル組立体14Bの一方の側板16Aと、小セル組立体14Cの他方の側板16Bとの板面を対向させて、対向する各小セル組立体14B,14C同士を溶接によって接合する。 Then, the small cell assemblies 14 (14A, 14B, 14C) constructed in this manner are joined as shown in FIG. In FIG. 4, the plate surfaces of one side plate 16A of the small cell assembly 14A and the other side plate 16B of the small cell assembly 14B are opposed to each other, and the opposing small cell assemblies 14A and 14B are joined by welding. . Also, the plate surfaces of one side plate 16A of the small cell assembly 14B and the other side plate 16B of the small cell assembly 14C are made to face each other, and the opposing small cell assemblies 14B and 14C are joined by welding.

具体的に、小セル組立体14Aと小セル組立体14Bとの接合では、小セル組立体14Aにおける一方の側板16Aの幅方向の両端部の凸部16Aaと、小セル組立体14Bにおける他方の側板16Bの幅方向の両端部に位置する仕切板16Dの凸部16Dcと、を溶接により接合する。また、小セル組立体14Aにおける一方の側板16Aの幅方向の両端部に位置する仕切板16Cの凸部16Caと、小セル組立体14Bにおける他方の側板16Bの幅方向の両端部の凸部16Baと、を溶接により接合する。また、小セル組立体14Aにおける一方の側板16Aの幅方向の両端部に位置する仕切板16Cと、小セル組立体14Bにおける他方の側板16Bの幅方向の両端部に位置する仕切板16Dと、を溶接により接合する。小セル組立体14Bと小セル組立体14Cとの接合では、小セル組立体14Bにおける一方の側板16Aの幅方向の両端部の凸部16Aaと、小セル組立体14Cにおける他方の側板16Bの幅方向の両端部に位置する仕切板16Eの凸部16Ecと、を溶接により接合する。また、小セル組立体14Bにおける一方の側板16Aの幅方向の両端部に位置する仕切板16Dの凸部16Daと、小セル組立体14Cにおける他方の側板16Bの幅方向の両端部の凸部16Baと、を溶接により接合する。また、小セル組立体14Bにおける一方の側板16Aの幅方向の両端部に位置する仕切板16Dと、小セル組立体14Cにおける他方の側板16Bの幅方向の両端部に位置する仕切板16Eと、を溶接により接合する。このようにして、セル組立体13が構成される。 Specifically, when the small cell assembly 14A and the small cell assembly 14B are joined together, the projections 16Aa at both ends in the width direction of one side plate 16A of the small cell assembly 14A and the other projections 16Aa of the small cell assembly 14B The projecting portions 16Dc of the partition plate 16D positioned at both ends in the width direction of the side plate 16B are joined by welding. In addition, the projections 16Ca of the partition plate 16C located at both ends in the width direction of one side plate 16A in the small cell assembly 14A and the projections 16Ba at both ends in the width direction of the other side plate 16B in the small cell assembly 14B and are joined by welding. In addition, partition plates 16C positioned at both ends in the width direction of one side plate 16A in the small cell assembly 14A, partition plates 16D positioned at both ends in the width direction of the other side plate 16B in the small cell assembly 14B, are joined by welding. When connecting the small cell assembly 14B and the small cell assembly 14C, the protrusions 16Aa at both ends in the width direction of one side plate 16A of the small cell assembly 14B and the width of the other side plate 16B of the small cell assembly 14C The projections 16Ec of the partition plate 16E located at both ends in the direction are joined by welding. In addition, the protrusions 16Da of the partition plate 16D located at both ends in the width direction of one side plate 16A in the small cell assembly 14B and the protrusions 16Ba at both ends in the width direction of the other side plate 16B in the small cell assembly 14C and are joined by welding. In addition, partition plates 16D positioned at both ends in the width direction of one side plate 16A in the small cell assembly 14B, partition plates 16E positioned at both ends in the width direction of the other side plate 16B in the small cell assembly 14C, are joined by welding. Thus, the cell assembly 13 is constructed.

図23に示すように、セル組立体13は、小セル組立体14Aと小セル組立体14Bと小セル組立体14Cとの接合により、9個の収納領域15が3×3で整列して設けられる。また、小セル組立体14Aと小セル組立体14Bとの接合において、小セル組立体14Aにおける一方の側板16Aの外側に突出した各仕切板16Cの凸部16Caと、小セル組立体14Bにおける他方の側板16Bの外側に突出した各仕切板16Dの凸部16Dcと、により、小セル組立体14Aの一方の側板16Aの外面と、小セル組立体14Bの他方の側板16Bの外面との間に冷却水が流動可能な間隔bを有する第二冷却領域18が形成される。また、小セル組立体14Bと小セル組立体14Cとの接合において、小セル組立体14Bにおける一方の側板16Aの外側に突出した各仕切板16Dの凸部16Daと、小セル組立体14Cにおける他方の側板16Bの外側に突出した各仕切板16Eの凸部16Ecと、により、小セル組立体14Bの一方の側板16Aの外面と、小セル組立体14Cの他方の側板16Bの外面との間に貯蔵ピット101の冷却水103が流動可能な間隔bを有する第二冷却領域18が収納領域15の周りを囲むように形成される。 As shown in FIG. 23, the cell assembly 13 has nine storage areas 15 arranged in a 3×3 arrangement by joining the small cell assemblies 14A, 14B, and 14C. be done. Also, in joining the small cell assembly 14A and the small cell assembly 14B, the protrusion 16Ca of each partition plate 16C projecting outward from one side plate 16A of the small cell assembly 14A and the other side plate 16C of the small cell assembly 14B Between the outer surface of one side plate 16A of the small cell assembly 14A and the outer surface of the other side plate 16B of the small cell assembly 14B by the convex portion 16Dc of each partition plate 16D projecting to the outside of the side plate 16B A second cooling area 18 is formed having a gap b through which cooling water can flow. Also, in joining the small cell assembly 14B and the small cell assembly 14C, the protrusion 16Da of each partition plate 16D projecting outside one side plate 16A of the small cell assembly 14B and the other side plate 16D of the small cell assembly 14C Between the outer surface of one side plate 16A of the small cell assembly 14B and the outer surface of the other side plate 16B of the small cell assembly 14C by the convex portion 16Ec of each partition plate 16E projecting to the outside of the side plate 16B A second cooling area 18 having a gap b through which the cooling water 103 of the storage pit 101 can flow is formed to surround the storage area 15 .

なお、側板16A,16Bおよび仕切板16C,16E,16Dの厚さは、収納領域15に収納される核燃料を臨界未満に保持するに必要な厚さとするが、中性子吸収材を添加した材料は、薄板への圧延が困難であることと、厚くし過ぎると2枚割れを生じさせるおそれがあることから、これら製作の容易性を考慮して、2mm~10mm程度にすることが望ましい。 The thickness of the side plates 16A, 16B and the partition plates 16C, 16E, 16D is set to a thickness necessary to keep the nuclear fuel stored in the storage area 15 below criticality. Since it is difficult to roll it into a thin plate, and if it is too thick, it may crack into two sheets.

図24および図15は、本実施形態に係る核燃料貯蔵用ラックの部分拡大断面図である。 24 and 15 are partially enlarged sectional views of the nuclear fuel storage rack according to this embodiment.

上述のように構成された収納セル12の複数のセル組立体13は、図2および図3で示したように、ラック本体11の各支持格子11Cにおいて上下方向に連通する上部、中央部、下部の格子11Caに沿って挿入され、基盤11Aの上面に下端が置かれて支持される。そして、図24および図25に示すように、複数のセル組立体13の間に支持格子11Cの格子11Caの枠が存在することで、セル組立体13の間に貯蔵ピット101の冷却水103が流動可能な第三冷却領域19が確保される。これにより、核燃料から放出される高速中性子を熱中性子に減速し核燃料の崩壊熱を除去できる。 As shown in FIGS. 2 and 3, the plurality of cell assemblies 13 of the storage cells 12 configured as described above are arranged in upper, middle, and lower portions communicating in the vertical direction in each support grid 11C of the rack body 11. is inserted along the lattice 11Ca of the substrate 11A, and the lower end is placed and supported on the upper surface of the substrate 11A. As shown in FIGS. 24 and 25, the presence of the frame of the grid 11Ca of the support grid 11C between the plurality of cell assemblies 13 allows the cooling water 103 of the storage pit 101 to flow between the cell assemblies 13. A flowable third cooling area 19 is ensured. As a result, the fast neutrons emitted from the nuclear fuel can be moderated to thermal neutrons and the decay heat of the nuclear fuel can be removed.

なお、図2および図3において、支持格子11Cは、上部、中央部、下部の3箇所に設置した実施例を示したが、必ずしも3箇所に限定するものではなく、上部と下部の2箇所、またはこれよりも多い適宜な個数を設置してもよい。 2 and 3 show an embodiment in which the support grids 11C are installed at three locations, the upper portion, the center portion, and the lower portion, but the number of locations is not necessarily limited to three. Alternatively, an appropriate number larger than this may be installed.

ここで、支持格子11Cの格子11Caの枠とセル組立体13との間に隙間が生じる場合、図24および図25に示すように、支持格子11Cの格子11Caの枠とセル組立体13との間にシムまたは楔からなる位置決部材20を設けてもよい。これにより、セル組立体13の間に第三冷却領域19を確保すると共に、支持格子11Cの格子11Caの枠にセル組立体13を位置決めして固定できる。なお、図24では、位置決部材20は、板状(または楔状)に形成されて支持格子11Cの格子11Caの枠とセル組立体13との間に挿入され、支持格子11Cの格子11Caの枠に引っ掛かる止具20aが上下端部に溶接固定されることで、支持格子11Cに取り付けられている。また、図25では、位置決部材20は、板状(または楔状)に形成されて支持格子11Cの格子11Caの枠とセル組立体13との間に挿入され、上端部の折曲部20bが支持格子11Cの格子11Caの枠に引っ掛かり、下端部に止具20aが溶接固定されることで、支持格子11Cに取り付けられている。または、支持格子11Cの格子11Caの枠とセル組立体13との間に位置決部材20を挿入して配置した状態で、セル組立体13と位置決部材20と格子11Caの枠とを貫通するボルト20cにより、セル組立体13を格子11Caの枠に固定してもよい。なお、セル組立体13の質量は、数百kg相当となることが想定されることから、セル組立体13は、ラック本体11の、セル組立体13を挿入するための区画11Cbに挿入するのみとしてもよい。 Here, if there is a gap between the frame of the grid 11Ca of the support grid 11C and the cell assembly 13, as shown in FIGS. A locating member 20 consisting of a shim or wedge may be provided between them. As a result, the third cooling region 19 can be secured between the cell assemblies 13, and the cell assemblies 13 can be positioned and fixed to the frame of the grid 11Ca of the support grid 11C. In FIG. 24, the positioning member 20 is formed in a plate shape (or wedge shape) and is inserted between the frame of the grid 11Ca of the support grid 11C and the cell assembly 13, and the frame of the grid 11Ca of the support grid 11C. It is attached to the support grid 11C by fixing by welding the stoppers 20a that are caught on the upper and lower ends. 25, the positioning member 20 is formed in a plate shape (or wedge shape) and is inserted between the frame of the grid 11Ca of the support grid 11C and the cell assembly 13, and the bent portion 20b at the upper end is It is attached to the support grid 11C by hooking on the frame of the grid 11Ca of the support grid 11C and fixing the fastener 20a to the lower end by welding. Alternatively, in a state in which the positioning member 20 is inserted between the frame of the grid 11Ca of the support grid 11C and the cell assembly 13, the cell assembly 13, the positioning member 20, and the frame of the grid 11Ca are penetrated. The cell assembly 13 may be fixed to the frame of the lattice 11Ca with bolts 20c. Since the mass of the cell assembly 13 is assumed to be equivalent to several hundred kg, the cell assembly 13 is simply inserted into the section 11Cb of the rack body 11 into which the cell assembly 13 is inserted. may be

上述したように、本実施形態の収納セル12は、複数の小セル組立体14から成るセル組立体13を含み、小セル組立体14は、対向する一対の側板16A,16Bと、対向する一対の側板16A,16Bどうしを接続するように配置された複数の仕切板16C(16D,16E)と、を有し、対向する一対の側板16A,16Bと複数の仕切板16C(16D,16E)とにより核燃料が挿入可能に構成された収納領域15が複数並設され、且つ各収納領域15の間に冷却水103が流動可能な第一冷却領域17が形成され、セル組立体13は、隣合う小セル組立体14において側板16A,16Bが対向するように複数の小セル組立体14が並べられて構成されており、隣合う小セル組立体14の間に冷却水103が流動可能な第二冷却領域18が形成される。 As described above, the storage cell 12 of this embodiment includes the cell assembly 13 composed of a plurality of small cell assemblies 14. The small cell assembly 14 includes a pair of opposing side plates 16A and 16B and a pair of opposing side plates 16A and 16B. a plurality of partition plates 16C (16D, 16E) arranged so as to connect the side plates 16A, 16B of the pair of opposing side plates 16A, 16B and the plurality of partition plates 16C (16D, 16E) A plurality of storage areas 15 configured to allow nuclear fuel to be inserted are arranged side by side, and a first cooling area 17 in which cooling water 103 can flow is formed between the storage areas 15, and the cell assemblies 13 are adjacent to each other. A plurality of small cell assemblies 14 are arranged so that the side plates 16A and 16B of the small cell assemblies 14 face each other. A cooling region 18 is formed.

この収納セル12によれば、複数の板材(側板16A,16B、仕切板16C(16D,16E))の組み合わせで、複数の収納領域15を並設して配置し且つ各収納領域15の間に第一冷却領域17や第二冷却領域18が設けられている。この結果、核燃料を挿入する収納領域15の間に冷却領域17,18を確保できる。 According to this storage cell 12, a plurality of storage areas 15 are arranged side by side by combining a plurality of plate materials (side plates 16A and 16B, partition plates 16C (16D and 16E)), and between each storage area 15 A first cooling area 17 and a second cooling area 18 are provided. As a result, the cooling areas 17 and 18 can be secured between the storage areas 15 into which the nuclear fuel is inserted.

また、本実施形態の収納セル12では、小セル組立体14A(14B,14C)は、仕切板16C(16D,16E)の一部が側板16A,16Bの外側に貫通する突出片としての凸部16Ca(16Da,16Dc,16Ec)を有し、セル組立体13として接合された状態で凸部16Ca(16Da,16Dc,16Ec)により第二冷却領域18が規定されていることが好ましい。 In addition, in the storage cell 12 of the present embodiment, the small cell assembly 14A (14B, 14C) has a convex portion as a projecting piece that a part of the partition plate 16C (16D, 16E) penetrates to the outside of the side plates 16A, 16B. 16Ca (16Da, 16Dc, 16Ec), and the second cooling region 18 is preferably defined by the projections 16Ca (16Da, 16Dc, 16Ec) in a state where the cell assembly 13 is joined.

従って、各小セル組立体14A,14B,14Cの間の第二冷却領域18が仕切板16C,16D,16Eの凸部16Ca,16Da,16Dc,16Ecで規定されるため、第二冷却領域18を容易に規定できる。 Therefore, since the second cooling region 18 between the small cell assemblies 14A, 14B, 14C is defined by the projections 16Ca, 16Da, 16Dc, 16Ec of the partition plates 16C, 16D, 16E, the second cooling region 18 is can be easily defined.

また、本実施形態の収納セル12では、凸部16Ca,16Da,16Dc,16Ecは、断続的に側板16A,16Bの外側に貫通して設けられ、複数の小セル組立体14A,14B,14Cがセル組立体13として接合された状態で、一方の小セル組立体14A(14B)の凸部16Ca(16Da)と、他方の小セル組立体14B(14C)の凸部16Dc(16Ec)とが交互に配置されることが好ましい。 In addition, in the storage cell 12 of this embodiment, the projections 16Ca, 16Da, 16Dc, and 16Ec are intermittently provided through the side plates 16A and 16B to form the plurality of small cell assemblies 14A, 14B, and 14C. In the joined state of the cell assembly 13, the protrusions 16Ca (16Da) of one small cell assembly 14A (14B) and the protrusions 16Dc (16Ec) of the other small cell assembly 14B (14C) alternate. is preferably placed in the

従って、一方の小セル組立体14A(14B)の凸部16Ca(16Da)と、他方の小セル組立体14B(14C)の凸部16Dc(16Ec)とが交互に配置されることで、一方の小セル組立体14A(14B)と他方の小セル組立体14B(14C)との接合強度を向上でき、且つ、第二冷却領域18を容易に規定できる。 Therefore, by alternately arranging the protrusions 16Ca (16Da) of one small cell assembly 14A (14B) and the protrusions 16Dc (16Ec) of the other small cell assembly 14B (14C), one The bonding strength between the small cell assembly 14A (14B) and the other small cell assembly 14B (14C) can be improved, and the second cooling region 18 can be easily defined.

また、本実施形態の核燃料貯蔵用ラック1は、上述した収納セル12と、収納セル12におけるセル組立体13を複数支持して貯蔵ピット101の床面101aに載置されるラック本体11と、を含み、ラック本体11は、各セル組立体13を並設して支持し且つ各セル組立体13の間に冷却水が流動可能な第三冷却領域19を形成する支持部材としての支持格子11Cを有する。 Further, the nuclear fuel storage rack 1 of this embodiment includes the storage cells 12 described above, the rack body 11 that supports a plurality of cell assemblies 13 in the storage cells 12 and is placed on the floor surface 101a of the storage pit 101, The rack body 11 includes a support grid 11C as a support member that supports the cell assemblies 13 side by side and forms a third cooling region 19 between the cell assemblies 13 in which cooling water can flow. have

この核燃料貯蔵用ラック1によれば、支持格子11Cが各セル組立体13を支持すると共に、各セル組立体13の間に第三冷却領域19を確保することで、個々の核燃料を挿入する収納領域15を容易に構成することができると共に、収納領域15の間に冷却水103を配置する冷却領域17,18,19を確保できる。 According to this nuclear fuel storage rack 1, the support grid 11C supports each cell assembly 13, and by securing the third cooling region 19 between each cell assembly 13, a storage space for inserting individual nuclear fuel is provided. The area 15 can be easily constructed, and the cooling areas 17 , 18 , 19 for disposing the cooling water 103 can be secured between the storage areas 15 .

また、本実施形態の核燃料貯蔵用ラック1では、ラック本体11は、収納領域15への核燃料の挿入方向に支持格子11Cを複数配置し、セル組立体13の間で各支持格子11Cを連結する補強部材11Dを有することが好ましい。 In the nuclear fuel storage rack 1 of this embodiment, the rack body 11 has a plurality of support grids 11C arranged in the direction in which the nuclear fuel is inserted into the storage area 15, and the support grids 11C are connected between the cell assemblies 13. It is preferable to have a reinforcing member 11D.

従って、支持格子11Cの間に補強部材11Dを設けることで、ラック本体11の強度を向上できる。 Therefore, the strength of the rack body 11 can be improved by providing the reinforcing member 11D between the support grids 11C.

また、本実施形態の核燃料貯蔵用ラック1では、支持格子11Cとセル組立体13との間に配置されて支持格子11Cに対してセル組立体13の位置を固定する位置決部材20を有することが好ましい。 Further, the nuclear fuel storage rack 1 of this embodiment has a positioning member 20 which is arranged between the support grid 11C and the cell assembly 13 to fix the position of the cell assembly 13 with respect to the support grid 11C. is preferred.

従って、位置決部材20により、支持格子11Cに対してセル組立体13の位置を規定することで、第三冷却領域19を規定できる。 Therefore, by defining the position of the cell assembly 13 with respect to the support grid 11C with the positioning member 20, the third cooling region 19 can be defined.

本実施形態の収納セル12の製造方法は、対向する一対の側板16A,16Bと、対向する一対の側板16A,16Bどうしを接続するように配置される複数の仕切板16C(16D,16E)とにより、核燃料が挿入可能に構成された収納領域15を複数並設し、且つ各収納領域15の間に冷却水103が流動可能な第一冷却領域17を形成する小セル組立体14を複数構成する工程と、隣合う小セル組立体14において側板16A,16Bが対向するように複数の小セル組立体14を並べて、隣合う小セル組立体14の間に冷却水103が流動可能な第二冷却領域18を形成するセル組立体13を構成する工程と、を含む。 The manufacturing method of the storage cell 12 of this embodiment comprises a pair of side plates 16A and 16B facing each other, and a plurality of partition plates 16C (16D and 16E) arranged to connect the pair of side plates 16A and 16B facing each other. Thus, a plurality of small cell assemblies 14 are formed in which a plurality of storage areas 15 in which nuclear fuel can be inserted are arranged side by side, and a first cooling area 17 in which cooling water 103 can flow is formed between the storage areas 15. a step of arranging a plurality of small cell assemblies 14 such that the side plates 16A and 16B of the adjacent small cell assemblies 14 face each other, and performing a second step in which the cooling water 103 can flow between the adjacent small cell assemblies 14; and configuring the cell assembly 13 to form the cooling region 18 .

この収納セル12の製造方法によれば、複数の板材(側板16A,16B、仕切板16C(16D,16E))の組み合わせで、複数の収納領域15を並設して配置し且つ各収納領域15の間に第一冷却領域17や第二冷却領域18が設けられる。この結果、核燃料を挿入する収納領域15の間に冷却領域17,18を確保できる。 According to the manufacturing method of the storage cell 12, a plurality of storage areas 15 are arranged side by side by combining a plurality of plate materials (side plates 16A, 16B, partition plates 16C (16D, 16E)), and each storage area 15 A first cooling area 17 and a second cooling area 18 are provided between. As a result, the cooling areas 17 and 18 can be secured between the storage areas 15 into which the nuclear fuel is inserted.

また、本実施形態の収納セル12の製造方法では、小セル組立体14A(14B,14C)は、仕切板16C(16D,16E)の一部が側板16A,16Bの外側に貫通する突出片としての凸部16Ca(16Da,16Dc,16Ec)を有し、凸部16Ca(16Da,16Dc,16Ec)を介してセル組立体13として接合し第二冷却領域18を規定する。 In addition, in the manufacturing method of the storage cell 12 of the present embodiment, the small cell assembly 14A (14B, 14C) has the partition plate 16C (16D, 16E) as a protruding piece that partially penetrates the side plates 16A, 16B to the outside. are joined as a cell assembly 13 via the protrusions 16Ca (16Da, 16Dc, 16Ec) to define a second cooling region 18 .

従って、各小セル組立体14A,14B,14Cの間の第二冷却領域18が仕切板16C,16D,16Eの凸部16Ca,16Da,16Dc,16Ecで規定されるため、第二冷却領域18を容易に規定できる。 Therefore, since the second cooling region 18 between the small cell assemblies 14A, 14B, 14C is defined by the projections 16Ca, 16Da, 16Dc, 16Ec of the partition plates 16C, 16D, 16E, the second cooling region 18 is can be easily defined.

また、本実施形態の収納セル12の製造方法では、側板16A,16Bの外側に貫通した凸部16Ca(16Da,16Dc,16Ec)に楔部材16Gを挿入し、楔部材16Gを抜け止めする抜止部材16Hを楔部材16Gに溶接することが好ましい。 In addition, in the manufacturing method of the storage cell 12 of the present embodiment, the wedge member 16G is inserted into the protrusions 16Ca (16Da, 16Dc, 16Ec) penetrating the outside of the side plates 16A and 16B, and the retaining member that retains the wedge member 16G. Preferably, 16H is welded to wedge member 16G.

従って、各小セル組立体14A,14B,14Cの組み立て時に、楔部材16Gで組み付けを行い、抜止部材16Hを楔部材16Gに溶接して楔部材16Gを固定する。この結果、側板16A,16Bや仕切板16C(16D,16E)の溶接箇所を低減でき溶接ひずみを回避できるため、小セル組立体14A,14B,14Cを精度よく製造できる。 Therefore, when assembling the small cell assemblies 14A, 14B, and 14C, the wedge member 16G is used for assembly, and the retaining member 16H is welded to the wedge member 16G to fix the wedge member 16G. As a result, the number of welded portions of the side plates 16A, 16B and the partition plates 16C (16D, 16E) can be reduced and welding strain can be avoided, so that the small cell assemblies 14A, 14B, 14C can be manufactured with high accuracy.

本実施形態の核燃料貯蔵用ラック1の製造方法は、対向する一対の側板16A,16Bと、対向する一対の側板16A,16Bどうしを接続するように配置される複数の仕切板16C(16D,16E)とにより、核燃料が挿入可能に構成された収納領域15を複数並設し、且つ各収納領域15の間に冷却水103が流動可能な第一冷却領域17を形成する小セル組立体14を複数構成する工程と、隣合う小セル組立体14において側板16A,16Bが対向するように複数の小セル組立体14を並べて、隣合う小セル組立体14の間に冷却水103が流動可能な第二冷却領域18を形成するセル組立体13を複数構成する工程と、貯蔵ピット101の床面101aに載置されるラック本体11に、複数のセル組立体13を並設するように配置し且つ各セル組立体13の間に冷却水103が流動可能な第三冷却領域19を形成する工程と、を含む。 The manufacturing method of the nuclear fuel storage rack 1 of the present embodiment includes a pair of opposing side plates 16A and 16B and a plurality of partition plates 16C (16D and 16E) arranged to connect the pair of opposing side plates 16A and 16B. ), a small cell assembly 14 in which a plurality of storage areas 15 configured to allow insertion of nuclear fuel are arranged side by side, and a first cooling area 17 in which cooling water 103 can flow is formed between the storage areas 15. a step of arranging a plurality of small cell assemblies 14 so that the side plates 16A and 16B of the adjacent small cell assemblies 14 face each other so that the cooling water 103 can flow between the adjacent small cell assemblies 14; A step of forming a plurality of cell assemblies 13 forming the second cooling area 18, and a step of arranging the plurality of cell assemblies 13 side by side on the rack body 11 placed on the floor surface 101a of the storage pit 101. and forming a third cooling region 19 between each cell assembly 13 through which the cooling water 103 can flow.

この核燃料貯蔵用ラック1の製造方法によれば、個々の核燃料を挿入する収納領域15を容易に構成することができると共に、収納領域15の間に冷却水103を配置する冷却領域17,18,19を確保できる。 According to this method of manufacturing the nuclear fuel storage rack 1, the storage areas 15 into which the individual nuclear fuels are inserted can be easily configured, and the cooling areas 17, 18, 18, 18, 18, 18, 18, 17, 18, 17, 18, 18, 18 and 18 in which the cooling water 103 is arranged between the storage areas 15. 19 can be secured.

また、本実施形態の核燃料貯蔵用ラック1の製造方法では、ラック本体11は、各セル組立体13を並設して支持し且つ各セル組立体13の間に第三冷却領域19を確保する支持部材としての支持格子11Cを有し、支持格子11Cを介して各セル組立体13を固定することが好ましい。 In addition, in the method of manufacturing the nuclear fuel storage rack 1 of this embodiment, the rack body 11 supports the cell assemblies 13 in parallel and secures the third cooling area 19 between the cell assemblies 13. It is preferable to have a support grid 11C as a support member and fix each cell assembly 13 via the support grid 11C.

従って、支持格子11Cが各セル組立体13を支持すると共に、各セル組立体13の間に第三冷却領域19を確保することで、個々の核燃料を挿入する収納領域15を容易に構成することができると共に、収納領域15の間に冷却水103を配置する冷却領域17,18,19を確保できる。 Therefore, the support grid 11C supports each cell assembly 13 and secures the third cooling region 19 between each cell assembly 13, thereby facilitating the configuration of the storage region 15 into which the individual nuclear fuel is inserted. and the cooling areas 17 , 18 , 19 in which the cooling water 103 is arranged can be secured between the storage areas 15 .

ところで、フリースタンディング方式の核燃料貯蔵用ラック1は、地震発生時に作用する水平力を冷却水103の流体付加減衰効果と共に核燃料貯蔵用ラック1の摺動抵抗によって吸収することで高い耐震性を有する。その反面、地震レベルが大きくなると、移動方向の片側がロックされて移動方向の反対側の片側が浮き上がるロッキング事象が発生し、核燃料貯蔵用ラック1同士が衝突したり、核燃料貯蔵用ラック1が貯蔵ピット101の床面101aや縦壁面101bに衝突したり、核燃料貯蔵用ラック1が縦壁面101bに接近したりすることが課題となっている。核燃料貯蔵用ラック1同士が衝突すると、ラック本体11および収納セル12に荷重が伝わり応力が過大となるおそれがある。核燃料貯蔵用ラック1が貯蔵ピット101の床面101aや縦壁面101bに衝突すると、床面101aや縦壁面101bのライニングが損傷した場合に当該床面101aや縦壁面101bの保護ができなくなるおそれがある。核燃料貯蔵用ラック1が貯蔵ピット101の縦壁面101bに接近すると、貯蔵ピット101の壁の向こう側に存在する通路などに核燃料が近くなり放射線の影響が生じるおそれがある。 By the way, the free-standing nuclear fuel storage rack 1 has high earthquake resistance by absorbing the horizontal force acting upon occurrence of an earthquake by the fluid additional damping effect of the cooling water 103 and the sliding resistance of the nuclear fuel storage rack 1 . On the other hand, when the earthquake level increases, a rocking event occurs in which one side in the moving direction is locked and the other side in the moving direction is lifted up, causing the nuclear fuel storage racks 1 to collide with each other or the nuclear fuel storage racks 1 to be stored. Collision with the floor surface 101a and the vertical wall surface 101b of the pit 101, and the nuclear fuel storage rack 1 approaching the vertical wall surface 101b are problems. If the nuclear fuel storage racks 1 collide with each other, the load may be transmitted to the rack body 11 and the storage cells 12, resulting in excessive stress. If the nuclear fuel storage rack 1 collides with the floor surface 101a and the vertical wall surface 101b of the storage pit 101, the floor surface 101a and the vertical wall surface 101b may not be protected if the lining of the floor surface 101a and the vertical wall surface 101b is damaged. be. When the nuclear fuel storage rack 1 approaches the vertical wall surface 101b of the storage pit 101, the nuclear fuel may approach the passage or the like existing on the other side of the wall of the storage pit 101 and be affected by radiation.

ここで、転倒モーメントと安定モーメントの相関について検討する。核燃料貯蔵用ラック1の質量M、重力加速度G、水平方向地震加速度FH、鉛直方向地震加速度FV、核燃料貯蔵用ラック1の重心位置から床面101aまでの高さH、核燃料貯蔵用ラック1の重心位置から核燃料貯蔵用ラック1のロッキング時の回転軸心(最も転倒方向に近い脚部11E)までの水平距離L、とする。 Now, let us consider the correlation between the overturning moment and the stabilizing moment. Mass M of nuclear fuel storage rack 1, gravitational acceleration G, horizontal seismic acceleration FH, vertical seismic acceleration FV, height H from center of gravity of nuclear fuel storage rack 1 to floor surface 101a, center of gravity of nuclear fuel storage rack 1 Let L be the horizontal distance from the position to the rotation axis (the leg 11E closest to the overturning direction) when the nuclear fuel storage rack 1 is locked.

核燃料貯蔵用ラック1の水平方向地震力F=M×FH
核燃料貯蔵用ラック1の鉛直方向の地震力P=M×(G±FV)
核燃料貯蔵用ラック1への浮き上がる方向への地震力P=M×(G-FV)
核燃料貯蔵用ラック1の転倒モーメントMt=F×H
核燃料貯蔵用ラック1の安定モーメントMa=P×L
核燃料貯蔵用ラック1の最小安定モーメントMamin=M×(G-FV)×L
Horizontal seismic force of nuclear fuel storage rack 1 F=M×FH
Vertical seismic force of nuclear fuel storage rack 1 P=M×(G±FV)
Seismic force P=M×(G-FV) in the lifting direction to the nuclear fuel storage rack 1
Overturning moment of nuclear fuel storage rack 1 Mt=F×H
Stable moment of nuclear fuel storage rack 1 Ma=P×L
Minimum stable moment of nuclear fuel storage rack 1 Mamin=M×(G−FV)×L

そして、転倒モーメントMtよりも安定モーメントMaが大きければ(Mt<Ma)核燃料貯蔵用ラック1は転倒せず、転倒モーメントMtよりも安定モーメントMaが小さければ(Mt>Ma)核燃料貯蔵用ラック1は転倒する。従って、フリースタンディング方式の核燃料貯蔵用ラック1において床面101aに安定して載置するには、核燃料の高さ(核燃料貯蔵用ラック1の重心位置から床面101aまでの高さH)が決められていることから、回転軸芯から重心位置までの水平距離Lを大きくすることが望ましい。 If the stable moment Ma is larger than the overturning moment Mt (Mt<Ma), the nuclear fuel storage rack 1 will not overturn, and if the stable moment Ma is smaller than the overturning moment Mt (Mt>Ma), the nuclear fuel storage rack 1 will Fall down. Therefore, the height of the nuclear fuel (height H from the center of gravity of the nuclear fuel storage rack 1 to the floor 101a) is determined in order to place the free-standing nuclear fuel storage rack 1 stably on the floor 101a. Therefore, it is desirable to increase the horizontal distance L from the rotation axis to the center of gravity.

しかし、上述したように、中性子吸収材は、製造する過程の圧延時において、幅方向の端部に耳割れが生じるため、これを生じさせない特殊な製造方法によるか、もしくは、耳割れを切断して除去する必要があるなど、幅方向に広い板の製造は、容易ではない。このため、中性子吸収材は、幅方向の最大寸法を、製造が可能な1m以内とすることが望ましく、これでは、水平距離Lを大きくすることが難しい。 However, as described above, the neutron absorber has edge cracks at the edges in the width direction during rolling during the manufacturing process. It is not easy to manufacture a plate that is wide in the width direction, for example, it needs to be removed by hand. For this reason, it is desirable that the neutron absorber has a maximum dimension in the width direction of 1 m or less, which makes it possible to manufacture the neutron absorber.

本実施形態では、収納セル12が、対向する二枚の側板16A,16Bと、側板16A,16Bの間に設けられた仕切板16C(16D,16E)とで、各側板16A,16Bの間の複数の仕切板16C(16D,16E)により核燃料が挿入される収納領域15が複数並設され且つ各収納領域15の間に冷却水103が流動可能な第一冷却領域17を有する小セル組立体14と、複数の小セル組立体14A,14B,14Cの側板16A,16Bを対向させた間に冷却水が流動可能な第二冷却領域18を形成するように各小セル組立体14A,14B,14Cが接合されたセル組立体13と、を含む。 In this embodiment, the storage cell 12 includes two side plates 16A and 16B facing each other, and partition plates 16C (16D and 16E) provided between the side plates 16A and 16B. A small cell assembly having a first cooling area 17 in which a plurality of storage areas 15 into which nuclear fuel is inserted are arranged side by side by a plurality of partition plates 16C (16D, 16E) and cooling water 103 can flow between the storage areas 15. 14 and the side plates 16A, 16B of the plurality of small cell assemblies 14A, 14B, 14C are opposed to each other so as to form a second cooling area 18 in which cooling water can flow. and a cell assembly 13 to which 14C is joined.

このため、本実施形態の収納セル12によれば、小セル組立体14において、側板16A,16Bの幅方向の最大寸法を小さくしても、複数の小セル組立体14A,14B,14Cを接合したセル組立体13を構成することから、セル組立体13の水平距離Lを大きくでき、転倒モーメントMtよりも安定モーメントMaを大きくできる。また、本実施形態の核燃料貯蔵用ラック1によれば、複数の収納セル12をラック本体11に配置するため、ラック本体11の水平距離Lを大きくでき、転倒モーメントMtよりも安定モーメントMaを大きくできる。 Therefore, according to the storage cell 12 of the present embodiment, even if the maximum dimension of the side plates 16A, 16B in the width direction of the small cell assembly 14 is reduced, the plurality of small cell assemblies 14A, 14B, 14C can be joined together. Since the cell assembly 13 is configured in such a manner, the horizontal distance L of the cell assembly 13 can be increased, and the stable moment Ma can be made larger than the overturning moment Mt. Further, according to the nuclear fuel storage rack 1 of the present embodiment, since the plurality of storage cells 12 are arranged in the rack body 11, the horizontal distance L of the rack body 11 can be increased, and the stable moment Ma can be made larger than the overturning moment Mt. can.

1 核燃料貯蔵用ラック
11 ラック本体
11A 基盤
11Aa 貫通孔
11B 外枠
11C 支持格子(支持部材)
11Ca 格子
11Cb 区画(セル組立体挿入区画)
11D 補強部材
11E 脚部
12 収納セル
13 セル組立体
14(14A,14B,14C) 小セル組立体
15 収納領域
16A 側板
16Aa 凸部
16Ab 凹部
16Ac スリット
16B 側板
16Ba 凸部
16Bb 凹部
16Bc スリット
16C 仕切板
16Ca 凸部
16Cb 凹部
16Cc 凸部
16Cd 凹部
16D 仕切板
16Da 凸部
16Db 凹部
16Dc 凸部
16Dd 凹部
16E 仕切板
16Ea 凸部
16Eb 凹部
16Ec 凸部
16Ed 凹部
16F 開先
16G 楔部材
16H 抜止部材
17 第一冷却領域
18 第二冷却領域
19 第三冷却領域
20 位置決部材
20a 止具
20b 折曲部
20c ボルト
21 開先溶接
22 隅肉溶接
101 貯蔵ピット
101a 床面
101b 縦壁面
103 冷却水
Reference Signs List 1 nuclear fuel storage rack 11 rack body 11A base 11Aa through hole 11B outer frame 11C support grid (support member)
11Ca Lattice 11Cb Section (cell assembly insertion section)
11D Reinforcement member 11E Leg 12 Storage cell 13 Cell assembly 14 (14A, 14B, 14C) Small cell assembly 15 Storage area 16A Side plate 16Aa Convex portion 16Ab Concave portion 16Ac Slit 16B Side plate 16Ba Convex portion 16Bb Concave portion 16Bc Slit 16C Partition plate 16Ca Convex portion 16Cb Concave portion 16Cc Convex portion 16Cd Concave portion 16D Partition plate 16Da Convex portion 16Db Concave portion 16Dc Convex portion 16Dd Concave portion 16E Partition plate 16Ea Convex portion 16Eb Concave portion 16Ec Convex portion 16Ed Concave portion 16F Groove 16G Wedge member 16H First cooling region 18H Second cooling area 19 Third cooling area 20 Positioning member 20a Fastener 20b Bent portion 20c Bolt 21 Groove weld 22 Fillet weld 101 Storage pit 101a Floor surface 101b Vertical wall surface 103 Cooling water

Claims (8)

複数の小セル組立体から成るセル組立体を含み、
前記小セル組立体は、
対向する一対の側板と、対向する一対の前記側板どうしを接続するように配置された複数の仕切板と、を有し、
対向する一対の前記側板と複数の前記仕切板とにより核燃料が挿入可能に構成された収納領域が複数並設され、且つ各前記収納領域の間に冷却水が流動可能な第一冷却領域が形成され、
前記セル組立体は、
隣合う前記小セル組立体において前記側板が対向するように複数の前記小セル組立体が並べられて構成されており、隣合う前記小セル組立体の間に冷却水が流動可能な第二冷却領域が形成され、
前記小セル組立体は、前記仕切板の一部が前記側板の外側に貫通する突出片を有し、前記セル組立体として接合された状態で前記突出片により前記第二冷却領域が規定されており、
前記突出片は、断続的に前記側板の外側に貫通して設けられ、複数の前記小セル組立体が前記セル組立体として接合された状態で、一方の前記小セル組立体の前記突出片と、他方の前記小セル組立体の前記突出片とが交互に配置される、
収納セル。
including a cell assembly consisting of a plurality of sub-cell assemblies;
The small cell assembly includes:
a pair of side plates facing each other; and a plurality of partition plates arranged to connect the pair of side plates facing each other;
A plurality of storage areas configured so that nuclear fuel can be inserted are arranged side by side by a pair of said side plates facing each other and a plurality of said partition plates, and a first cooling area in which cooling water can flow is formed between said storage areas. is,
The cell assembly is
A second cooling system in which a plurality of small cell assemblies are arranged such that the side plates of adjacent small cell assemblies face each other, and cooling water can flow between the adjacent small cell assemblies. a region is formed,
In the small cell assembly, a part of the partition plate has a protruding piece penetrating to the outside of the side plate, and the second cooling region is defined by the protruding piece in a state of being joined as the cell assembly. cage,
The protruding pieces are intermittently provided to penetrate the outside of the side plate, and in a state in which a plurality of the small cell assemblies are joined as the cell assembly, the protruding piece of one of the small cell assemblies , alternately arranged with the projecting pieces of the other small cell assembly,
storage cell.
請求項1に記載の収納セルと、
前記収納セルにおける前記セル組立体を複数支持して貯蔵ピットの床面に載置されるラック本体と、
を含み、
前記ラック本体は、各前記セル組立体を並設して支持し且つ各前記セル組立体の間に冷却水が流動可能な第三冷却領域を形成する支持部材を有する、核燃料貯蔵用ラック。
A storage cell according to claim 1;
a rack body that supports a plurality of the cell assemblies in the storage cells and is mounted on the floor surface of the storage pit;
including
A nuclear fuel storage rack, wherein the rack body has support members that support the cell assemblies side by side and form a third cooling region between the cell assemblies in which cooling water can flow.
前記ラック本体は、前記収納領域への前記核燃料の挿入方向に前記支持部材を複数配置し、前記セル組立体の間で各前記支持部材を連結する補強部材を有する、請求項2に記載の核燃料貯蔵用ラック。 3. The nuclear fuel according to claim 2, wherein said rack body has a plurality of said support members arranged in a direction in which said nuclear fuel is inserted into said storage area, and has reinforcing members connecting each of said support members between said cell assemblies. storage rack. 前記支持部材と前記セル組立体との間に配置されて前記支持部材に対して前記セル組立体の位置を固定する位置決部材を有する、請求項2または3に記載の核燃料貯蔵用ラック。 4. A nuclear fuel storage rack according to claim 2, further comprising a positioning member disposed between said support member and said cell assembly for fixing the position of said cell assembly with respect to said support member. 対向する一対の側板と、対向する一対の前記側板どうしを接続するように配置される複数の仕切板とにより、核燃料が挿入可能に構成された収納領域を複数並設し、且つ各前記収納領域の間に冷却水が流動可能な第一冷却領域を形成する小セル組立体を複数構成する工程と、
隣合う前記小セル組立体において前記側板が対向するように複数の前記小セル組立体を並べて、隣合う前記小セル組立体の間に冷却水が流動可能な第二冷却領域を形成するセル組立体を構成する工程と、
を含み、
前記小セル組立体は、前記仕切板の一部が前記側板の外側に貫通する突出片を有し、前記突出片を介して前記セル組立体として接合し前記第二冷却領域を規定し、
前記突出片は、断続的に前記側板の外側に貫通して設けられ、複数の前記小セル組立体が前記セル組立体として接合された状態で、一方の前記小セル組立体の前記突出片と、他方の前記小セル組立体の前記突出片とが交互に配置される、
収納セルの製造方法。
A plurality of storage areas in which nuclear fuel can be inserted are arranged side by side by a pair of opposing side plates and a plurality of partition plates arranged to connect the pair of opposing side plates, and each of the storage areas forming a plurality of small cell assemblies forming a first cooling region between which cooling water can flow;
A cell set in which a plurality of small cell assemblies are arranged so that the side plates of the adjacent small cell assemblies face each other, thereby forming a second cooling region between the adjacent small cell assemblies in which cooling water can flow. a step of forming a solid;
including
The small cell assembly has a protruding piece that a part of the partition plate penetrates to the outside of the side plate, and is joined as the cell assembly through the protruding piece to define the second cooling region,
The protruding pieces are intermittently provided to penetrate the outside of the side plate, and in a state in which a plurality of the small cell assemblies are joined as the cell assembly, the protruding piece of one of the small cell assemblies , alternately arranged with the projecting pieces of the other small cell assembly,
A method of manufacturing a storage cell.
前記側板の外側に貫通した前記突出片に楔部材を挿入し、前記楔部材を抜け止めする抜止部材を前記楔部材に溶接する、請求項に記載の収納セルの製造方法。 6. The method of manufacturing a storage cell according to claim 5 , wherein a wedge member is inserted into said protruding piece penetrating to the outside of said side plate, and a retention member for retaining said wedge member is welded to said wedge member. 対向する一対の側板と、対向する一対の前記側板どうしを接続するように配置される複数の仕切板とにより、核燃料が挿入可能に構成された収納領域を複数並設し、且つ各前記収納領域の間に冷却水が流動可能な第一冷却領域を形成する小セル組立体を複数構成する工程と、
隣合う前記小セル組立体において前記側板が対向するように複数の前記小セル組立体を並べて、隣合う前記小セル組立体の間に冷却水が流動可能な第二冷却領域を形成するセル組立体を複数構成する工程と、
貯蔵ピットの床面に載置されるラック本体に、複数の前記セル組立体を並設するように配置し、且つ各前記セル組立体の間に冷却水が流動可能な第三冷却領域を形成する工程と、
を含み、
前記小セル組立体は、前記仕切板の一部が前記側板の外側に貫通する突出片を有し、前記突出片を介して前記セル組立体として接合し前記第二冷却領域を規定し、
前記突出片は、断続的に前記側板の外側に貫通して設けられ、複数の前記小セル組立体が前記セル組立体として接合された状態で、一方の前記小セル組立体の前記突出片と、他方の前記小セル組立体の前記突出片とが交互に配置される、
核燃料貯蔵用ラックの製造方法。
A plurality of storage areas in which nuclear fuel can be inserted are arranged side by side by a pair of opposing side plates and a plurality of partition plates arranged to connect the pair of opposing side plates, and each of the storage areas forming a plurality of small cell assemblies forming a first cooling region between which cooling water can flow;
A cell set in which a plurality of small cell assemblies are arranged so that the side plates of the adjacent small cell assemblies face each other, thereby forming a second cooling region between the adjacent small cell assemblies in which cooling water can flow. A step of forming a plurality of solids;
A plurality of the cell assemblies are arranged side by side on a rack body placed on the floor of the storage pit, and a third cooling area is formed between the cell assemblies in which cooling water can flow. and
including
The small cell assembly has a protruding piece that a part of the partition plate penetrates to the outside of the side plate, and is joined as the cell assembly through the protruding piece to define the second cooling region,
The protruding pieces are intermittently provided to penetrate the outside of the side plate, and in a state in which a plurality of the small cell assemblies are joined as the cell assembly, the protruding piece of one of the small cell assemblies , alternately arranged with the projecting pieces of the other small cell assembly,
A method of manufacturing a nuclear fuel storage rack.
前記ラック本体は、各前記セル組立体を並設して配置し且つ各前記セル組立体の間に前記第三冷却領域を確保する支持部材を有し、前記支持部材を介して各前記セル組立体を固定する、請求項に記載の核燃料貯蔵用ラックの製造方法。 The rack body has a support member for arranging the cell assemblies side by side and securing the third cooling region between the cell assemblies, 8. The method of manufacturing a nuclear fuel storage rack according to claim 7 , wherein the solid is fixed.
JP2019034648A 2019-02-27 2019-02-27 Storage cell, nuclear fuel storage rack, storage cell manufacturing method, and nuclear fuel storage rack manufacturing method Active JP7161960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019034648A JP7161960B2 (en) 2019-02-27 2019-02-27 Storage cell, nuclear fuel storage rack, storage cell manufacturing method, and nuclear fuel storage rack manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019034648A JP7161960B2 (en) 2019-02-27 2019-02-27 Storage cell, nuclear fuel storage rack, storage cell manufacturing method, and nuclear fuel storage rack manufacturing method

Publications (2)

Publication Number Publication Date
JP2020139807A JP2020139807A (en) 2020-09-03
JP7161960B2 true JP7161960B2 (en) 2022-10-27

Family

ID=72264813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019034648A Active JP7161960B2 (en) 2019-02-27 2019-02-27 Storage cell, nuclear fuel storage rack, storage cell manufacturing method, and nuclear fuel storage rack manufacturing method

Country Status (1)

Country Link
JP (1) JP7161960B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113921159B (en) * 2021-10-14 2023-12-22 中国核电工程有限公司 Spent fuel storage and transportation hanging basket

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014681A (en) 2008-07-07 2010-01-21 Toshiba Corp Spent fuel storage rack and manufacturing method therefor
JP2010243456A (en) 2009-04-10 2010-10-28 Toshiba Corp Spent fuel storage rack
WO2012105119A1 (en) 2011-02-04 2012-08-09 三菱重工業株式会社 Nuclear fuel storage rack
JP2013104853A (en) 2011-11-16 2013-05-30 Mitsubishi Heavy Ind Ltd Reinforcement structure for spent fuel rack
JP2013246075A (en) 2012-05-28 2013-12-09 Mitsubishi Heavy Ind Ltd Fuel storage rack linking device and fuel storage facility
JP2017031692A (en) 2015-08-03 2017-02-09 平和技研株式会社 Slipping-out preventive wedge metal fitting

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0868890A (en) * 1994-08-30 1996-03-12 Hitachi Ltd Spent fuel storage rack and spent fuel storage equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014681A (en) 2008-07-07 2010-01-21 Toshiba Corp Spent fuel storage rack and manufacturing method therefor
JP2010243456A (en) 2009-04-10 2010-10-28 Toshiba Corp Spent fuel storage rack
WO2012105119A1 (en) 2011-02-04 2012-08-09 三菱重工業株式会社 Nuclear fuel storage rack
JP2013104853A (en) 2011-11-16 2013-05-30 Mitsubishi Heavy Ind Ltd Reinforcement structure for spent fuel rack
JP2013246075A (en) 2012-05-28 2013-12-09 Mitsubishi Heavy Ind Ltd Fuel storage rack linking device and fuel storage facility
JP2017031692A (en) 2015-08-03 2017-02-09 平和技研株式会社 Slipping-out preventive wedge metal fitting

Also Published As

Publication number Publication date
JP2020139807A (en) 2020-09-03

Similar Documents

Publication Publication Date Title
US9728284B2 (en) Apparatus for supporting radioactive fuel assemblies and methods of manufacturing the same
US4143276A (en) Spent nuclear fuel storage racks
US7715517B2 (en) Apparatus and method for supporting fuel assemblies in an underwater environment having lateral access loading
US4096392A (en) Rack for storing spent nuclear fuel elements
US10847274B2 (en) Earthquake-resistant fuel storage rack system for fuel pools in nuclear plants
EP2112665B1 (en) Spent fuel storage rack
US10854346B2 (en) Fuel basket for spent nuclear fuel and container implementing the same
JP5197472B2 (en) Spent fuel storage rack
US11670430B2 (en) Nuclear fuel storage system with integral shimming
WO2016018928A1 (en) Apparatus for supporting spent nuclear fuel
US20200373031A1 (en) Rack for underwater storage of spent nuclear fuel
JP7161960B2 (en) Storage cell, nuclear fuel storage rack, storage cell manufacturing method, and nuclear fuel storage rack manufacturing method
JPH1164572A (en) Storage rack of nuclear fuel rod assembly
KR101015733B1 (en) Rack to store fuels from nuclear reactors
USRE31661E (en) Spent nuclear fuel storage racks
JP5058089B2 (en) Spent fuel storage rack and manufacturing method thereof
JP7149876B2 (en) Nuclear fuel storage rack and method for manufacturing nuclear fuel storage rack
JP7178280B2 (en) Restraint device, rack for nuclear fuel storage, and method for restraining rack for nuclear fuel storage
JP2019158399A (en) Spent fuel storage container
JP3080954B1 (en) Spent fuel storage rack
JPH0868890A (en) Spent fuel storage rack and spent fuel storage equipment
JP4043161B2 (en) Spent fuel storage rack
JP7195969B2 (en) NUCLEAR FUEL STORAGE RACK, METHOD FOR INSTALLING NUCLEAR FUEL STORAGE RACK, AND METHOD FOR MANUFACTURING NUCLEAR FUEL STORAGE RACK
JP3145085B2 (en) Spent fuel storage rack and manufacturing method thereof
Mollon Spent nuclear fuel storage racks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221017

R150 Certificate of patent or registration of utility model

Ref document number: 7161960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150