JP2010014681A - Spent fuel storage rack and manufacturing method therefor - Google Patents

Spent fuel storage rack and manufacturing method therefor Download PDF

Info

Publication number
JP2010014681A
JP2010014681A JP2008177441A JP2008177441A JP2010014681A JP 2010014681 A JP2010014681 A JP 2010014681A JP 2008177441 A JP2008177441 A JP 2008177441A JP 2008177441 A JP2008177441 A JP 2008177441A JP 2010014681 A JP2010014681 A JP 2010014681A
Authority
JP
Japan
Prior art keywords
spent fuel
storage rack
stainless steel
boron
fuel storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008177441A
Other languages
Japanese (ja)
Inventor
Takao Sato
孝男 佐藤
Tetsuo Takeshita
哲郎 竹下
Kaoru Takagi
薫 高木
Hidenobu Hasegawa
秀信 長谷川
Manabu Maeda
学 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008177441A priority Critical patent/JP2010014681A/en
Publication of JP2010014681A publication Critical patent/JP2010014681A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase the boron concentration, to prevent reduction in toughness of material, even if the boron concentration is increased, and to keep high strength with respect to excessive seismic force. <P>SOLUTION: This spent fuel storage rack 1 stores and holds a prism spent fuel in many cells 3 formed in a lattice shape. A flat plate made of stainless steel is assembled into a double-lattice shape, and a boron stainless plate 12 of high boron concentration exceeding 1% is stuck to the inner part of each lattice. The flat plate made of stainless steel is assembled into a double-lattice shape, and the boron stainless plate of high boron concentration exceeding 1% is stuck to the inner part of each lattice. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は原子炉から取り出された使用済み燃料を燃料貯蔵プール内に収容貯蔵する使用済み燃料貯蔵ラックおよびその製造方法に係り、特に未臨界性が高く安全確保が図れるとともに、加工を容易に行うことができる技術に関する。   The present invention relates to a spent fuel storage rack that accommodates and stores spent fuel taken out from a nuclear reactor in a fuel storage pool and a method for manufacturing the same. In particular, the invention is highly subcritical and can ensure safety, and can be easily processed. It can be related to technology.

一般に原子力発電プラントにおいては、原子炉を一定期間運転した後、炉心から取り出された使用済燃料を再処理するまでの間に、使用済燃料貯蔵プール内に設置される使用済燃料貯蔵ラックに収容貯蔵しておき、冷却および燃料の崩壊熱除去を行っている。   Generally, in a nuclear power plant, after a nuclear reactor is operated for a certain period, it is accommodated in a spent fuel storage rack installed in the spent fuel storage pool before the spent fuel taken out from the core is reprocessed. It is stored and cooled and the decay heat of the fuel is removed.

このような使用済み燃料貯蔵ラックの材質としては、中性子吸収能力に優れたボロンを含有するボロン添加ステンレス鋼が採用されており、その形状として四角柱状をなす角形状燃料を収容するため燃料貯蔵ラックも角筒構造のものが一般的であった(例えば、特許文献等1参照)。   As a material for such a spent fuel storage rack, boron-added stainless steel containing boron having excellent neutron absorption capability is adopted, and the fuel storage rack is used to accommodate a rectangular fuel having a quadrangular prism shape. Also, a rectangular tube structure was generally used (see, for example, Patent Document 1).

また、従来では、角柱形状の使用済み燃料収納用のセルを、多数のスリットを形成して複数のセル幅を有するボロン添加ステンレス鋼の平板と、この平板のスリットに挿入される櫛状の突部とを形成した1セル分の幅を有するボロン添加ステンレス鋼の平板とから構成し、この平板のスリットに挿入した平板のスリットから突出した突部と平板のスリットから突出した突部と平板とを溶接固定して組立てる技術が開示されている(例えば、特許文献2等参照)。
特開2000−56060号公報 特許第2939459号公報
In addition, conventionally, a prismatic-shaped spent fuel storage cell is made up of a boron-added stainless steel flat plate having a plurality of cell widths and a plurality of cell widths, and a comb-like protrusion inserted into the flat plate slit. And a boron-added stainless steel flat plate having a width corresponding to one cell, and a protrusion protruding from the flat plate slit inserted into the slit of the flat plate, and a protrusion protruding from the flat plate slit and the flat plate Has been disclosed (see, for example, Patent Document 2).
JP 2000-56060 A Japanese Patent No. 2939459

使用済み燃料貯蔵ラックの格子構造と配置とは、未臨界確保の観点から定められ、従来ではボロン添加ステンレス鋼製の角管を格子状に隣接配置し、各角管同士を一定の間隔に保つように格子状の枠板で位置決めした構造であった。   The lattice structure and arrangement of spent fuel storage racks are determined from the viewpoint of ensuring subcriticality. Conventionally, square tubes made of boron-added stainless steel are arranged adjacent to each other in a lattice shape, and the square tubes are kept at regular intervals. Thus, the structure was positioned with a grid-like frame plate.

このような従来採用されている構造では、角管のボロン濃度が0.7〜1%まで含有されているが、未臨界性が高い使用済燃料の収納に関しては安全性の面から、さらにボロン濃度を高める要望がある。すなわち、従来技術では、角管のボロン濃度が1%程度まで(例えば0.75パーセント程度)であるが、さらにボロン濃度を高めることが望まれている。   In such a conventionally adopted structure, the boron concentration of the square tube is contained in the range of 0.7 to 1%. However, in terms of safety with respect to the storage of spent fuel with high subcriticality, boron is further added. There is a demand to increase the concentration. That is, in the prior art, the boron concentration of the square tube is up to about 1% (for example, about 0.75%), but it is desired to further increase the boron concentration.

また、ボロン入り材料ではボロン濃度を高めると靭性が低下して脆くなり、過大な地震力が作用する場合には採用が困難となっていた。   Further, in the case of a material containing boron, when the boron concentration is increased, the toughness is lowered and the material becomes brittle, and it has been difficult to adopt when an excessive seismic force is applied.

さらに、高濃度のボロンステンレス鋼板に関し、曲げ加工あるいは溶接が禁止されている場合もある。   Furthermore, bending or welding may be prohibited for high-concentration boron stainless steel sheets.

本発明はこのような事情に鑑みてなされたものであり、未臨界性が高く、安全性を確保できるとともに、ステンレス鋼製の角筒の内側に吸収材を用いたものに比較して加工の容易化が図れ、しかも突起及びスリットを設けた板状の格子板を組合わせ結合することにより、燃料貯蔵セル間ピッチ精度を良好に保ち、かつ、組立てが容易で稠密度を高めることができる使用済み燃料貯蔵ラックおよびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, has high subcriticality, can ensure safety, and is processed in comparison with the one using an absorbent material inside a stainless steel square tube. Use that can be simplified, and that the pitch accuracy between fuel storage cells can be kept good by combining and combining plate-like lattice plates with protrusions and slits, and that the assembly can be easily performed and the density can be increased. An object of the present invention is to provide a spent fuel storage rack and a method for manufacturing the same.

前記の目的を達成するために、本発明では、角柱形の使用済み燃料を格子に形成した多数のセルに収納して保管する使用済み燃料貯蔵ラックであって、ステンレス鋼製の平板を二重格子状に組立て、各格子の内面部分に1%を超える高ボロン濃度のボロンステンレス板を貼り付ける構造としたことを特徴とする使用済燃料貯蔵ラックを提供する。   In order to achieve the above object, according to the present invention, there is provided a spent fuel storage rack for storing and storing prismatic spent fuel in a number of cells formed in a lattice. Provided is a spent fuel storage rack which is assembled in a lattice shape and has a structure in which a boron stainless steel plate having a high boron concentration exceeding 1% is attached to an inner surface portion of each lattice.

また、本発明では、1列毎に複数列の列ユニットを個別に製作し、各列ユニットを積重ね、外面を板または梁で固定する工程と、前記列ユニットを列方向に格子間の水空間を形成して2重格子構造とする工程と、列ユニット間に水空間ができるように、各列ユニット間に一定の隙間を開けて外面を板または梁で固定する工程と、各セルの内面にボロン添加ステンレス鋼板を貼り付ける工程と、各セルの間に一定間隔の水空間を形成する工程とを備え、強度部材を2重格子を形成するステンレス板と外面の板または梁とすることを特徴とする使用済み燃料貯蔵ラックの製造方法を提供する。   In the present invention, a plurality of column units are individually manufactured for each column, the column units are stacked, and the outer surface is fixed with a plate or a beam. Forming a double lattice structure, forming a certain gap between the row units so that a water space is formed between the row units, and fixing the outer surface with a plate or a beam, and the inner surface of each cell A step of affixing a boron-added stainless steel plate and a step of forming a water space of a constant interval between each cell, and making the strength member a stainless plate forming a double lattice and an outer plate or beam A method for manufacturing a spent fuel storage rack is provided.

本発明によれば、ステンレス鋼製の平板を二重格子状に組立て、各格子の内面部分に1%を超える高ボロン濃度のボロンステンレス板を貼り付けることにより、ボロン濃度を高めることができ、ボロン濃度を高めても材料の靭性が低下することがなく、過大な地震力に対しても高強度を保持することができる。すなわち、本発明においては、ボロンステンレス鋼板平板であり、曲げ加工、溶接などのじん性が問題となる加工を必要としない。また、強度部材はステンレス板部分であり、ボロン添加ステンレス板は地震荷重を受け持つ構成とする必要がない。   According to the present invention, it is possible to increase the boron concentration by assembling a flat plate made of stainless steel into a double lattice shape and attaching a boron stainless plate having a high boron concentration exceeding 1% to the inner surface portion of each lattice, Even if the boron concentration is increased, the toughness of the material does not decrease, and high strength can be maintained against excessive seismic force. That is, in the present invention, it is a boron stainless steel plate and does not require processing that causes toughness such as bending and welding. Further, the strength member is a stainless steel plate portion, and the boron-added stainless steel plate does not need to be configured to handle the seismic load.

以下、本発明に係る使用済み燃料貯蔵ラックおよびその製造方法の実施形態について、図面を参照して説明する。   Hereinafter, embodiments of a spent fuel storage rack and a method for manufacturing the same according to the present invention will be described with reference to the drawings.

図1は使用済み燃料貯蔵ラックの全体構成を一部切欠して示す側面図であり、図2は図1の平面図である。   FIG. 1 is a side view showing the entire configuration of the spent fuel storage rack with a part cut away, and FIG. 2 is a plan view of FIG.

図1および図2に示すように、本実施形態の使用済み燃料貯蔵ラック1は全体として縦長な四角柱状の箱形をなしており、複数枚のステンレス鋼製の縦長な平板2を互いに対向させ、各平板2の側縁部分を交差させて組立てることにより、使用済み燃料貯蔵ラック収納用の多数のセル3を形成する構成となっている。すなわち、本実施形態の使用済み燃料貯蔵ラック1では複数枚のステンレス鋼製の平板2が互いに対向し、この対向部位の相互間にスペーサ4が介在されて一定間隔の隙間5が形成され、これらの各隙間5部分が水空間として構成されている。また、使用済み燃料貯蔵ラック1の外周側は、上下所定幅の拘束部材6によって締結されている。   As shown in FIGS. 1 and 2, the spent fuel storage rack 1 of the present embodiment has a vertically long rectangular columnar box shape as a whole, and a plurality of stainless steel vertically long flat plates 2 are opposed to each other. A plurality of cells 3 for storing spent fuel storage racks are formed by crossing and assembling the side edge portions of the flat plates 2. That is, in the spent fuel storage rack 1 of the present embodiment, a plurality of stainless steel flat plates 2 are opposed to each other, and spacers 4 are interposed between the opposed portions to form gaps 5 having a predetermined interval. Each gap | interval 5 part is comprised as water space. Further, the outer peripheral side of the spent fuel storage rack 1 is fastened by a restraining member 6 having a predetermined vertical width.

図3は、図1に示した使用済み燃料貯蔵ラック1の単位ユニットを分離状態で2体例示した側面図であり、図4は図3の平面図である。   3 is a side view illustrating two unit units of the spent fuel storage rack 1 shown in FIG. 1 in a separated state, and FIG. 4 is a plan view of FIG.

図3および図4に示すように、使用済み燃料貯蔵ラック1は複数の単位ユニット1aから構成されている。この単位ユニット1aは、互いに対向する1対の幅広な側板7,7と、これらの側板7,7の長辺側の各端部を閉塞する1対の端板8,8とにより縦長な薄箱状とされており、その外側縦面には上述のスペーサ4が上下に所定の間隔を開けて突設してある。   As shown in FIGS. 3 and 4, the spent fuel storage rack 1 is composed of a plurality of unit units 1a. This unit unit 1a is a vertically long thin plate composed of a pair of wide side plates 7 and 7 that face each other and a pair of end plates 8 and 8 that close the ends on the long sides of the side plates 7 and 7. The spacer 4 has a box shape, and the above-described spacer 4 protrudes vertically at a predetermined interval.

また、薄箱内部には図4に示すように、長さ方向に一定の間隔をあけて、各セル3を区分構成する複数の仕切り板9が設けられている。これらの仕切り板9はセル3の幅よりも狭い一定の間隔を開けて互いに対向する1対のものが1組として構成されており、これにより単位ユニット1aは二重格子状に組立てられて鋼強度構造とされるとともに、近接する1対の仕切り板9の間に水間隙が形成されるようになっている。   In addition, as shown in FIG. 4, a plurality of partition plates 9 are provided in the thin box to configure each cell 3 with a certain interval in the length direction. These partition plates 9 are configured as a pair of one pair facing each other with a certain interval narrower than the width of the cell 3, whereby the unit units 1 a are assembled in a double lattice shape to form a steel plate. In addition to the strength structure, a water gap is formed between a pair of adjacent partition plates 9.

このように、各1対の仕切り板9,9の間格子は複数の使用済み燃料を一列配置で収納する列ユニットとされ、各セル3間には仕切り板9,9により水空間10が形成されており、かつ各ユニットが複数列で隣接配置可能とされている。   In this way, the lattice between each pair of partition plates 9 and 9 is a row unit that stores a plurality of spent fuels in a single row, and a water space 10 is formed between each cell 3 by the partition plates 9 and 9. In addition, each unit can be arranged adjacent to each other in a plurality of rows.

図5は、単位ユニット1aを複数揃えて組立て、使用済み燃料貯蔵ラック1とする構成を示す拡大斜視図である。   FIG. 5 is an enlarged perspective view showing a configuration in which a plurality of unit units 1 a are assembled and assembled to form a spent fuel storage rack 1.

この図5に示すように、本実施形態の使用済み燃料貯蔵ラック1では、上述の単位ユニット1aが、互いに側板7を対向する配置で複数連結することにより全体が構成される。   As shown in FIG. 5, in the spent fuel storage rack 1 of the present embodiment, the whole unit unit 1a is configured by connecting a plurality of the unit units 1a in such a manner that the side plates 7 face each other.

すなわち、使用済み燃料貯蔵ラック1は全体として縦長な四角柱状の箱形をなしており、複数枚のステンレス鋼製の縦長な平板2が互いに横方向で対向する。また、各平板2の側縁部分は互いに交差して組立てられ、使用済み燃料貯蔵ラック収納用の多数のセル3を形成する。このセルの内面側には、後述するボロン添加ステンレス製の中性子吸収板が貼り付けられる。   That is, the spent fuel storage rack 1 has a vertically long rectangular columnar box shape as a whole, and a plurality of stainless steel vertical plates 2 face each other in the lateral direction. Further, the side edge portions of each flat plate 2 are assembled so as to intersect with each other to form a large number of cells 3 for storing spent fuel storage racks. A boron-added stainless steel neutron absorbing plate, which will be described later, is attached to the inner surface side of the cell.

そして、複数枚のステンレス鋼製の平板2が互いに対向し、この対向部位の相互間にスペーサ4が介在されて一定間隔の隙間5が形成され、これらの各隙間5部分が水空間として構成される。また、使用済み燃料貯蔵ラック1の外周側は、上下方向所定長さの拘束部材6によって締結される。   A plurality of stainless steel flat plates 2 are opposed to each other, spacers 4 are interposed between the opposed portions to form gaps 5 having a constant interval, and these gaps 5 are configured as water spaces. The Further, the outer peripheral side of the spent fuel storage rack 1 is fastened by a restraining member 6 having a predetermined length in the vertical direction.

さらに、使用済み燃料貯蔵ラック1を構成する単位ユニット1aは、互いに対向する1対の幅広な側板7,7と、これらの側板7,7の長辺側の各端部を閉塞する1対の端板8,8とにより縦長な薄箱状とされ、その外側縦面には上述のスペーサ4が上下方向に所定の間隔を開けて突設してあり、薄箱内部には長さ方向に一定の間隔をあけて、各セル3を区分構成する複数の仕切り板9が設けられ、仕切り板9はセル3の幅よりも狭い一定の間隔を開け、互いに対向する1対のものが1組として構成され、単位ユニット1aは二重格子状に組立てられる。   Further, the unit unit 1a constituting the spent fuel storage rack 1 includes a pair of wide side plates 7 and 7 facing each other and a pair of the side plates 7 and 7 closing each end on the long side. The end plates 8 and 8 form a vertically long thin box shape, and the spacer 4 is projected on the outer vertical surface at a predetermined interval in the vertical direction. A plurality of partition plates 9 for partitioning and configuring each cell 3 are provided at a certain interval, and the partition plate 9 is spaced apart by a certain interval narrower than the width of the cell 3 and one pair of one pair facing each other. The unit unit 1a is assembled in a double lattice shape.

次に、図6〜図14により、上述の使用済み燃料貯蔵ラック1の組立構成、材料および製造方法について説明する。   Next, the assembly configuration, material, and manufacturing method of the above-described spent fuel storage rack 1 will be described with reference to FIGS.

図6は、使用済み燃料貯蔵ラック1の組立構成および製造方法の一例を説明するための平面図であり、図4の一部を拡大して示している。   FIG. 6 is a plan view for explaining an example of the assembly configuration and manufacturing method of the spent fuel storage rack 1, and shows a part of FIG. 4 in an enlarged manner.

この図6に示した使用済み燃料貯蔵ラック1は、ステンレス鋼製の平板(側板7、端板8および仕切り板9,9)を二重格子状に組立て、各格子のセル3の内面(4面)の部分全体に、1%を超える高ボロン濃度のボロンステンレス板12を貼り付けた構造としている。本実施形態では、高ボロン濃度のボロンステンレス板12の幅をセル3の内面の横幅全体に亘る幅に設定してある。このセル3の内面側に、燃料14が収納される。   The spent fuel storage rack 1 shown in FIG. 6 is constructed by assembling stainless steel flat plates (side plates 7, end plates 8 and partition plates 9 and 9) into a double lattice shape, and the inner surface (4 A boron stainless plate 12 having a high boron concentration exceeding 1% is attached to the entire surface. In this embodiment, the width of the boron stainless steel plate 12 having a high boron concentration is set to a width over the entire lateral width of the inner surface of the cell 3. Fuel 14 is stored on the inner surface side of the cell 3.

この場合、格子を構成する板のうち、端板8および仕切り板9,9の端部を側板7に櫛形に嵌め込む構造とし、端板8および仕切り板9,9の櫛形の先端部が側板7の外面より突き出す構造とし、突き出た部分9a,9aと側板7とを溶接部13により連結するものである。   In this case, of the plates constituting the lattice, the end portions of the end plate 8 and the partition plates 9 and 9 are fitted into the side plate 7 in a comb shape, and the end portions of the end plate 8 and the partition plates 9 and 9 are the side plates. The protruding portions 9 a and 9 a and the side plate 7 are connected by the welded portion 13.

この構成により、燃料貯蔵セル間ピッチ精度を良好に保ち、かつ、組立てが容易で稠密度を高めることができる。   With this configuration, the pitch accuracy between the fuel storage cells can be kept good, the assembly is easy, and the density can be increased.

図7〜図10には、端板8および仕切り板9,9の端部を側板7に櫛形に嵌め込む構造を具体的に示している。   7 to 10 specifically show a structure in which the end portions of the end plate 8 and the partition plates 9 and 9 are fitted into the side plate 7 in a comb shape.

図7は、互いに対向する1対の側板7,7に貫通孔15を形成し、これらの貫通孔15に側板7の突起部16を挿入することにより、端板8および仕切り板9,9の端部を側板7に櫛形に嵌め込み、溶接により固定する構造としている。   In FIG. 7, through-holes 15 are formed in a pair of side plates 7, 7 that face each other, and the protrusions 16 of the side plates 7 are inserted into these through-holes 15, so The end is fitted into the side plate 7 in a comb shape and fixed by welding.

すなわち、格子を構成する側板7の端部を櫛形嵌め込み構造とし、櫛形の先端部が側板7の外面より突出する構造とし、この突出部分と平板とを溶接により連結する構成としている。この構成により、セル内面のボロン添加ステンレス鋼板の端部を櫛形組立構造とし、4枚の板でボックス状としてある。   That is, the end portion of the side plate 7 constituting the lattice has a comb-like fitting structure, the tip portion of the comb shape protrudes from the outer surface of the side plate 7, and the protruding portion and the flat plate are connected by welding. With this configuration, the end portion of the boron-added stainless steel plate on the inner surface of the cell has a comb-shaped assembly structure and is formed into a box shape with four plates.

図8は、互いに対向する1対の側板7,7に貫通孔15を形成し、これらの貫通孔15に側板7の突起部16を挿入して貫通させた構成を示している。   FIG. 8 shows a configuration in which through holes 15 are formed in a pair of side plates 7 and 7 facing each other, and protrusions 16 of the side plates 7 are inserted through these through holes 15.

この構成により、端板8および仕切り板9,9の端部を側板7に櫛形に嵌め込んで貫通させ、突起部16の突出部分を溶接して、この溶接部により、さらに強固な構成とすることができる。   With this configuration, the end portions of the end plate 8 and the partition plates 9 and 9 are inserted into the side plate 7 in a comb shape and penetrated, and the protruding portion of the protruding portion 16 is welded, thereby further strengthening the structure. be able to.

このように、本実施形態では、格子を構成する側板2の端部を櫛形嵌め込み構造とし、櫛形の先端部が側板7の外面より突出する構造とし、この突出部分と平板である側板2とを溶接により連結する構成としている。この構成により、セル3内面のボロン添加ステンレス鋼板12の端部を櫛形組立構造とし、4枚の板でボックス状の構成とすることができる。   As described above, in the present embodiment, the end of the side plate 2 constituting the lattice has a comb-type fitting structure, and the comb-shaped tip portion protrudes from the outer surface of the side plate 7, and the protruding portion and the side plate 2 that is a flat plate are connected to each other. It is configured to be connected by welding. With this configuration, the end of the boron-added stainless steel plate 12 on the inner surface of the cell 3 can be a comb-shaped assembly structure, and a box-shaped configuration can be formed with four plates.

図9は、ボロン添加ステンレス鋼板12を格子構造側のステンレス鋼板である平板2の内側に貼り付けた構成を示す斜視図であり、図10は図9のA−A線縦断面図である。   FIG. 9 is a perspective view showing a configuration in which the boron-added stainless steel plate 12 is attached to the inside of the flat plate 2 that is a stainless steel plate on the lattice structure side, and FIG. 10 is a longitudinal sectional view taken along line AA in FIG.

これらの図に示すように、ボロン添加ステンレス鋼板12を格子構造側のステンレス鋼板2の内側に貼り付けた櫛形構造において、ボロン添加ステンレス鋼板12およびステンレス鋼板製側板2の両方に突起部2b、12bを設け、これらの突起部2b、12bを側板8の孔20に挿入して溶接部21により溶接する構成としている。   As shown in these drawings, in a comb structure in which a boron-added stainless steel plate 12 is attached to the inside of a stainless steel plate 2 on the lattice structure side, protrusions 2b and 12b are formed on both the boron-added stainless steel plate 12 and the side plate 2 made of stainless steel plate. The projections 2b and 12b are inserted into the holes 20 of the side plate 8 and welded by the welded portion 21.

この構成によれば、脆性を有するボロン添加ステンレス鋼板12をステンレス鋼製側板2と一体的に構成して強化することができ、側板7に挿入してステンレス鋼板による櫛形組立構造とした場合においても、荷重に対する十分な強度を得ることができる。   According to this configuration, the boron-added stainless steel plate 12 having brittleness can be integrally formed and strengthened with the side plate 2 made of stainless steel, and even when it is inserted into the side plate 7 to form a comb-shaped assembly structure made of stainless steel plates. A sufficient strength against the load can be obtained.

図11〜図13は、セル3内面のボロン添加ステンレス鋼板12を、溶接ではなく、締結部材であるボルト、ナット等によって固定する構成を示している。   FIGS. 11-13 has shown the structure which fixes the boron addition stainless steel plate 12 of the cell 3 inner surface with the volt | bolt, nut, etc. which are fastening members instead of welding.

図11は使用済み燃料貯蔵ラック1を示す平面図であり、図12は図11の一部であるボルト締結部を示す拡大図である。図13および図14は、それぞれ図11の変形例を示す平面図である。   FIG. 11 is a plan view showing the spent fuel storage rack 1, and FIG. 12 is an enlarged view showing a bolt fastening portion which is a part of FIG. 13 and 14 are plan views showing modifications of FIG.

図11および図12に示すように、この例ではセル3の内面の4隅を内側から溶接する構造において、溶接する部分にあたる櫛形のボロン添加ステンレス鋼板12の両端部を切欠き、セル3の内側角部の空間領域を広くすることにより、溶接時に使用する溶接装置のアクセスを容易に行えるようにしている。   As shown in FIGS. 11 and 12, in this example, in the structure in which the four corners of the inner surface of the cell 3 are welded from the inside, both ends of the comb-shaped boron-added stainless steel plate 12 corresponding to the welded portion are notched, By widening the space area of the corner, it is possible to easily access a welding apparatus used during welding.

また、図11および図12の例では、ボロン添加ステンレス鋼板12の幅を燃料14の幅と略同一とし、セル3の内面の幅よりも狭くしてある。また、セル3の内面のボロン添加ステンレス鋼板12を、ボルト18およびナット19からなる締結部材で固定する構成としてある。   11 and 12, the width of the boron-added stainless steel plate 12 is substantially the same as the width of the fuel 14 and is narrower than the width of the inner surface of the cell 3. Further, the boron-added stainless steel plate 12 on the inner surface of the cell 3 is fixed with a fastening member including a bolt 18 and a nut 19.

この構成することにより、セル3内面のボロン添加ステンレス鋼板12を締結部材で固定し、前記の凹凸による櫛形の使用を省略できる構成としている。この構成により、簡素な構成とし、溶接装置のアクセスを容易に行うことができる。   With this configuration, the boron-added stainless steel plate 12 on the inner surface of the cell 3 is fixed with a fastening member, and the use of the comb shape due to the unevenness can be omitted. With this configuration, the welding apparatus can be easily accessed with a simple configuration.

また、図13に示す変形例では、ボロン添加ステンレス鋼板12の幅を燃料14の幅と略同一以上とし、セル3の内面のボロン添加ステンレス鋼板12を、ボルト18およびナット19からなる締結部材で固定する構成としてある。   Further, in the modification shown in FIG. 13, the width of the boron-added stainless steel plate 12 is made substantially equal to or greater than the width of the fuel 14, and the boron-added stainless steel plate 12 on the inner surface of the cell 3 is a fastening member made up of a bolt 18 and a nut 19. The configuration is fixed.

この構成によれば、ボロン添加ステンレス鋼板12の幅を燃料14の幅と略同一以上とすることにより、中性子吸収機能を高めることができる。   According to this configuration, the neutron absorption function can be enhanced by making the width of the boron-added stainless steel plate 12 substantially equal to or greater than the width of the fuel 14.

さらに、図14に示す変形例では、ボロン添加ステンレス鋼板12の幅を燃料14の幅と略同一以上とする点では図13の構成と同一であるが、セル3を構成する側板7および端板8、仕切板9の内面にボロン添加ステンレス鋼板12を接着する構成とし、ボルトおよびナット等の締結部材を省略できる構成としてある。   Further, in the modification shown in FIG. 14, the side plate 7 and the end plate constituting the cell 3 are the same as the configuration of FIG. 13 in that the width of the boron-added stainless steel plate 12 is approximately equal to or greater than the width of the fuel 14. 8. It is set as the structure which adhere | attaches the boron addition stainless steel plate 12 to the inner surface of the partition plate 9, and it is set as the structure which can omit fastening members, such as a bolt and a nut.

図15および図16はボロン添加ステンレス鋼板12の外側角部を溶接する構成を示している。図15はラック外面角部を示す斜視図であり、図16は図15の一部を示す拡大図である。   15 and 16 show a configuration in which the outer corner of the boron-added stainless steel plate 12 is welded. 15 is a perspective view showing a corner portion of the rack outer surface, and FIG. 16 is an enlarged view showing a part of FIG.

この図15および図16の例では、仮想線で示したように、ボロン添加ステンレス鋼板12の外側角部に切欠部22を形成し、この部分を溶接するものである。これにより、単に組立てによって接合した場合に比し、切欠部22の溶接により組立部の接合強度を高めることができ、ひいてはラック全体の構造強度を高めることができ、大型化等を図る場合に対応することができる。   In the example of FIGS. 15 and 16, as indicated by the phantom line, a notch 22 is formed at the outer corner of the boron-added stainless steel plate 12 and this portion is welded. This makes it possible to increase the bonding strength of the assembled portion by welding the notch portion 22 and to increase the structural strength of the entire rack as compared with the case where the bonding is simply performed by assembly. can do.

以上の構成を有する使用済み燃料貯蔵ラックを製造する場合には、まず、1列毎に複数列の列ユニットを個別に製作する。   When manufacturing a spent fuel storage rack having the above configuration, first, a plurality of column units are manufactured individually for each column.

次に、各列ユニットを積重ね、外面を板または梁で固定する。その後、列ユニットを列方向に格子間の水空間を形成して2重格子構造とする。そして、列ユニット間に水空間ができるように、各列ユニット間に一定の隙間を開けて外面を板または梁で固定する。   Next, each row unit is stacked and the outer surface is fixed with a plate or a beam. Thereafter, the column unit forms a water space between lattices in the column direction to form a double lattice structure. Then, the outer surface is fixed with a plate or a beam with a certain gap between the row units so that a water space is formed between the row units.

また、各セルの内面にボロン添加ステンレス鋼板を貼り付ける。この後、各セルの間に一定間隔の水空間を形成する。強度部材は、2重格子を形成するボロン添加ステンレス鋼板と外面の板または梁とする。以上の工程を順次に行うことにより、使用済み燃料貯蔵ラックを効率良く、製造することができる。   Further, a boron-added stainless steel plate is attached to the inner surface of each cell. Thereafter, water spaces with a constant interval are formed between the cells. The strength member is a boron-added stainless steel plate forming a double lattice and an outer plate or beam. By sequentially performing the above steps, the spent fuel storage rack can be efficiently manufactured.

以上のように、本実施形態によれば、ボロンステンレス鋼板平板であり、曲げ加工、溶接などのじん性が問題となる加工を必要とせず、また、強度部材はステンレス板部分であり、ボロン添加ステンレス板は地震荷重を受け持つ構成とする必要がなく、しかもボロン濃度を高めることができ、ボロン濃度を高めても材料の靭性が低下することなく、過大な地震力に対しても高強度を保持することができる。使用済み燃料貯蔵ラックを効率良く製造することができる。   As described above, according to the present embodiment, it is a boron stainless steel plate and does not require processing that causes toughness such as bending and welding, and the strength member is a stainless steel plate portion, and boron is added. Stainless steel plates do not need to be configured to handle seismic loads, and can increase the boron concentration. Even if the boron concentration is increased, the toughness of the material does not decrease, and high strength is maintained against excessive seismic forces. can do. A spent fuel storage rack can be efficiently manufactured.

本発明の一実施形態によるラック構造を示す全体構成図。1 is an overall configuration diagram showing a rack structure according to an embodiment of the present invention. 図1の平面図。The top view of FIG. 図1に示した使用済み燃料貯蔵ラック1の単位ユニットを例示する側面図。The side view which illustrates the unit unit of the spent fuel storage rack 1 shown in FIG. 図3の平面図。FIG. 4 is a plan view of FIG. 3. 本発明の一実施形態による単位ユニットを複数揃えて組立て、ラックとする構成を示す拡大斜視図。FIG. 2 is an enlarged perspective view showing a configuration in which a plurality of unit units according to an embodiment of the present invention are assembled and assembled to form a rack. 本発明の一実施形態による格子板組立て説明図。The lattice plate assembly explanatory drawing by one Embodiment of this invention. 本発明の一実施形態によるラックユニット要部拡大斜視図。The rack unit principal part expansion perspective view by one Embodiment of this invention. ラックユニットの変形例を示す要部拡大斜視図。The principal part expansion perspective view which shows the modification of a rack unit. ボロン添加ステンレス鋼板を格子構造側のステンレス鋼板である平板の内側に貼り付けた構成を示す斜視図。The perspective view which shows the structure which affixed the boron addition stainless steel plate on the inner side of the flat plate which is a stainless steel plate of the lattice structure side. 図9のA−A線縦断面図。FIG. 10 is a longitudinal sectional view taken along line AA in FIG. 9. 使用済み燃料貯蔵ラックを示す平面図。The top view which shows a spent fuel storage rack. 図11の一部であるボルト締結部を示す拡大図。The enlarged view which shows the bolt fastening part which is a part of FIG. 図11の変形例を示す平面図。The top view which shows the modification of FIG. 図11の変形例を示す平面図。The top view which shows the modification of FIG. ラック外面角部を示す斜視図。The perspective view which shows a rack outer surface corner | angular part. 図15の一部を示す拡大図。The enlarged view which shows a part of FIG.

符号の説明Explanation of symbols

1‥使用済み燃料貯蔵ラック、1a‥単位ユニット、2‥平板、3‥セル、4‥スペーサ、5‥隙間、6‥拘束部材、7‥側板、8‥端板、9‥仕切り板、10‥水空間、12‥高ボロン濃度のボロンステンレス板、13‥溶接部、14‥燃料、15‥孔、16‥突起部、17‥溶接部、18‥ボルト、19‥ナット。   DESCRIPTION OF SYMBOLS 1 ... spent fuel storage rack, 1a unit unit, 2 flat plate, 3 cell, 4 spacer, 5 gap, 6 restraining member, 7 side plate, 8 end plate, 9 partition plate, 10 Water space, 12 ... Boron stainless steel plate with high boron concentration, 13 ... weld, 14 ... fuel, 15 ... hole, 16 ... projection, 17 ... weld, 18 ... bolt, 19 ... nut.

Claims (10)

角柱形の使用済み燃料を格子状に形成した多数のセルに収納して保管する使用済み燃料貯蔵ラックであって、ステンレス鋼製の平板を二重格子状に組立て、各格子の内面部分に1%を超える高ボロン濃度のボロンステンレス板を貼り付ける構造としたことを特徴とする使用済燃料貯蔵ラック。 A spent fuel storage rack for storing and storing prismatic spent fuel in a large number of cells formed in a grid. A stainless steel flat plate is assembled in a double grid and 1 is attached to the inner surface of each grid. A spent fuel storage rack characterized by a structure in which a boron stainless steel plate having a high boron concentration exceeding 50% is attached. 二重格子状に組立てた格子は、複数の使用済み燃料を一列配置で収納する列ユニットとされ、各セル間に水空間が形成されており、かつ各ユニットが複数列で隣接配置可能とされている請求項1記載の使用済燃料貯蔵ラック。 The lattice assembled in a double lattice shape is a row unit that stores a plurality of spent fuels in a single row, a water space is formed between each cell, and each unit can be placed adjacent in multiple rows. The spent fuel storage rack according to claim 1. 前記列ユニット間には、相互の隙間を一定に保つスペーサが設けられている請求項2記載の使用済燃料貯蔵ラック。 The spent fuel storage rack according to claim 2, wherein a spacer is provided between the row units so as to keep a mutual gap constant. 前記セルの内面4隅部は、その内側から溶接により接合されている請求項2記載の使用済燃料貯蔵ラック。 The spent fuel storage rack according to claim 2, wherein the four corners of the inner surface of the cell are joined from the inside by welding. 前記格子を構成する板の端部を櫛形嵌め込み構造とし、櫛形の先端部が板の外面より突き出す構造とし、突き出た部分と前記板とを溶接により連結した請求項2記載の使用済み燃料貯蔵ラック。 The spent fuel storage rack according to claim 2, wherein the ends of the plates constituting the lattice have a comb-like fitting structure, the tip ends of the comb shape protrude from the outer surface of the plates, and the protruding portions and the plates are connected by welding. . 前記セル内面のボロン添加ステンレス鋼板の端部を櫛形組立構造とし、4枚の板でボックス状とした請求項1ないし請求項3のいずれか1項記載の使用済み燃料貯蔵ラック。 The spent fuel storage rack according to any one of claims 1 to 3, wherein an end of the boron-added stainless steel plate on the inner surface of the cell has a comb-shaped assembly structure and is formed into a box shape with four plates. 前記セルの内面の4隅を内側から溶接する構造において、溶接する部分にあたる前記櫛形の端部を切欠き、溶接装置のアクセスを可能とした請求項4または請求項6記載の使用済み燃料貯蔵ラック。 The spent fuel storage rack according to claim 4 or 6, wherein, in a structure in which the four corners of the inner surface of the cell are welded from the inside, the comb-shaped end corresponding to the welded portion is cut out to allow access to the welding device. . 前記セル内面のボロン添加ステンレス鋼板を、締結部材で固定した請求項1ないし3のいずれか1項記載の使用済み燃料貯蔵ラック。 The spent fuel storage rack according to any one of claims 1 to 3, wherein the boron-added stainless steel plate on the inner surface of the cell is fixed with a fastening member. 前記セルの内面4隅を内側から溶接する構造において、溶接する部分にあたるボロン添加ステンレス鋼板端部を切欠いて板幅を小さくし、溶接装置のアクセスを可能とした請求項4項記載の使用済み燃料貯蔵ラック。 5. The spent fuel according to claim 4, wherein in the structure in which the four inner corners of the cell are welded from the inside, the end of the boron-added stainless steel plate corresponding to the welded portion is cut away to reduce the plate width, thereby enabling access to the welding apparatus. Storage rack. 1列毎に複数列の列ユニットを個別に製作し、各列ユニットを積重ね、外面を板または梁で固定する工程と、前記列ユニットを列方向に格子間の水空間を形成して2重格子構造とする工程と、列ユニット間に水空間ができるように、各列ユニット間に一定の隙間を開けて外面を板または梁で固定する工程と、各セルの内面にボロン添加ステンレス鋼板を貼り付ける工程と、各セルの間に一定間隔の水空間を形成する工程とを備え、強度部材を2重格子を形成するステンレス板と外面の板または梁とすることを特徴とする使用済み燃料貯蔵ラックの製造方法。 A plurality of row units are individually produced for each row, the row units are stacked, the outer surface is fixed with a plate or a beam, and the row unit is doubled by forming a water space between lattices in the row direction. A process of making a lattice structure, a process of fixing the outer surface with a plate or a beam with a certain gap between the row units so that a water space is formed between the row units, and a boron-added stainless steel plate on the inner surface of each cell A spent fuel comprising a step of attaching and a step of forming water spaces at regular intervals between each cell, wherein the strength member is a stainless steel plate forming a double lattice and an outer plate or beam. Storage rack manufacturing method.
JP2008177441A 2008-07-07 2008-07-07 Spent fuel storage rack and manufacturing method therefor Pending JP2010014681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008177441A JP2010014681A (en) 2008-07-07 2008-07-07 Spent fuel storage rack and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008177441A JP2010014681A (en) 2008-07-07 2008-07-07 Spent fuel storage rack and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2010014681A true JP2010014681A (en) 2010-01-21

Family

ID=41700910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008177441A Pending JP2010014681A (en) 2008-07-07 2008-07-07 Spent fuel storage rack and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2010014681A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9437332B2 (en) 2011-02-04 2016-09-06 Mitsubishi Heavy Industries, Ltd. Nuclear fuel storage rack
JP2020139807A (en) * 2019-02-27 2020-09-03 三菱重工業株式会社 Storage cell, rack for nuclear fuel storage, manufacturing method of storage cell, and manufacturing method of rack for nuclear fuel storage
CN114260572A (en) * 2021-12-13 2022-04-01 上海第一机床厂有限公司 Welding method for nuclear fuel transfer equipment box body
CN114473330A (en) * 2020-11-12 2022-05-13 西安核设备有限公司 Spent fuel storage grillage square tube grid pitch size precision control device

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51114600A (en) * 1975-03-17 1976-10-08 Combustion Eng Nuclear fission mass storage unit and storage rack
JPS5323899U (en) * 1976-08-07 1978-02-28
JPS551532A (en) * 1978-06-21 1980-01-08 Hitachi Ltd Fuel storage rack
JPS5696297A (en) * 1979-10-24 1981-08-04 Babcock & Wilcox Co Module type nuclear fuel assembly rack
JPS59220684A (en) * 1983-05-30 1984-12-12 株式会社日立製作所 Nuclear fuel storage rack
JPS60165896U (en) * 1984-04-12 1985-11-02 三菱重工業株式会社 Racksel of spent fuel racks
JPS61186895A (en) * 1985-02-14 1986-08-20 株式会社東芝 Fuel storage rack
JPH0238996A (en) * 1988-07-29 1990-02-08 Hitachi Ltd Spent fuel storage rack
JPH02165099A (en) * 1988-12-20 1990-06-26 Toshiba Corp Feul assembly storage
JPH1114785A (en) * 1997-06-05 1999-01-22 Atea Soc Atlantique De Technic Avancees Storage rack for nuclear fuel assembly and manufacture thereof
JPH11153691A (en) * 1997-11-19 1999-06-08 Toshiba Corp Spent fuel storage rack and its production
JP2939459B2 (en) * 1998-03-12 1999-08-25 株式会社東芝 Spent fuel storage rack and its manufacturing method
JP2000056060A (en) * 1998-08-03 2000-02-25 General Electric Co <Ge> Clamp device
JP2000121782A (en) * 1999-11-24 2000-04-28 Hitachi Ltd Rack for storing spent fuel and method for manufacturing such rack
JP2001208887A (en) * 2000-01-28 2001-08-03 Toshiba Corp Fuel storing rack material and fuel storing rack
JP2002257978A (en) * 2001-03-05 2002-09-11 Toshiba Corp Spent fuel storage rack and manufacturing method for the same
JP2002296384A (en) * 2001-03-29 2002-10-09 Mitsubishi Heavy Ind Ltd Square pipe for containing spent fuel, basket and spent fuel container vessel
JP2006200939A (en) * 2005-01-18 2006-08-03 Hitachi Ltd Spent fuel container basket and spent fuel storage vessel
JP2007024609A (en) * 2005-07-14 2007-02-01 Hitachi Ltd Manufacturing method of spent fuel storage rack

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51114600A (en) * 1975-03-17 1976-10-08 Combustion Eng Nuclear fission mass storage unit and storage rack
JPS5323899U (en) * 1976-08-07 1978-02-28
JPS551532A (en) * 1978-06-21 1980-01-08 Hitachi Ltd Fuel storage rack
JPS5696297A (en) * 1979-10-24 1981-08-04 Babcock & Wilcox Co Module type nuclear fuel assembly rack
JPS59220684A (en) * 1983-05-30 1984-12-12 株式会社日立製作所 Nuclear fuel storage rack
JPS60165896U (en) * 1984-04-12 1985-11-02 三菱重工業株式会社 Racksel of spent fuel racks
JPS61186895A (en) * 1985-02-14 1986-08-20 株式会社東芝 Fuel storage rack
JPH0238996A (en) * 1988-07-29 1990-02-08 Hitachi Ltd Spent fuel storage rack
JPH02165099A (en) * 1988-12-20 1990-06-26 Toshiba Corp Feul assembly storage
JPH1114785A (en) * 1997-06-05 1999-01-22 Atea Soc Atlantique De Technic Avancees Storage rack for nuclear fuel assembly and manufacture thereof
JPH11153691A (en) * 1997-11-19 1999-06-08 Toshiba Corp Spent fuel storage rack and its production
JP2939459B2 (en) * 1998-03-12 1999-08-25 株式会社東芝 Spent fuel storage rack and its manufacturing method
JP2000056060A (en) * 1998-08-03 2000-02-25 General Electric Co <Ge> Clamp device
JP2000121782A (en) * 1999-11-24 2000-04-28 Hitachi Ltd Rack for storing spent fuel and method for manufacturing such rack
JP2001208887A (en) * 2000-01-28 2001-08-03 Toshiba Corp Fuel storing rack material and fuel storing rack
JP2002257978A (en) * 2001-03-05 2002-09-11 Toshiba Corp Spent fuel storage rack and manufacturing method for the same
JP2002296384A (en) * 2001-03-29 2002-10-09 Mitsubishi Heavy Ind Ltd Square pipe for containing spent fuel, basket and spent fuel container vessel
JP2006200939A (en) * 2005-01-18 2006-08-03 Hitachi Ltd Spent fuel container basket and spent fuel storage vessel
JP2007024609A (en) * 2005-07-14 2007-02-01 Hitachi Ltd Manufacturing method of spent fuel storage rack

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9437332B2 (en) 2011-02-04 2016-09-06 Mitsubishi Heavy Industries, Ltd. Nuclear fuel storage rack
JP2020139807A (en) * 2019-02-27 2020-09-03 三菱重工業株式会社 Storage cell, rack for nuclear fuel storage, manufacturing method of storage cell, and manufacturing method of rack for nuclear fuel storage
JP7161960B2 (en) 2019-02-27 2022-10-27 三菱重工業株式会社 Storage cell, nuclear fuel storage rack, storage cell manufacturing method, and nuclear fuel storage rack manufacturing method
CN114473330A (en) * 2020-11-12 2022-05-13 西安核设备有限公司 Spent fuel storage grillage square tube grid pitch size precision control device
CN114260572A (en) * 2021-12-13 2022-04-01 上海第一机床厂有限公司 Welding method for nuclear fuel transfer equipment box body

Similar Documents

Publication Publication Date Title
EP2112665B1 (en) Spent fuel storage rack
KR101313328B1 (en) Used-fuel storage rack
JP2010014681A (en) Spent fuel storage rack and manufacturing method therefor
JPH1164572A (en) Storage rack of nuclear fuel rod assembly
JP5537353B2 (en) Spent fuel storage rack
JP5058089B2 (en) Spent fuel storage rack and manufacturing method thereof
KR20030074475A (en) Rack to store fuels from nuclear reactors
EP2680273B1 (en) Nuclear fuel storage rack
JP5491852B2 (en) Spent fuel storage rack
JP5150083B2 (en) Basket, design method and manufacturing method thereof, and basket design program
JP2001183491A (en) Spent fuel storage rack
JP2002116285A (en) Rack for storing spent fuel
JP3080954B1 (en) Spent fuel storage rack
JP2000121783A (en) Spent fuel storage rack and its production method
JPH0868890A (en) Spent fuel storage rack and spent fuel storage equipment
JP2007500339A (en) Fuel assemblies for pressurized water reactors
JP2002040192A (en) Fuel assembly container
JPS58140679A (en) Isolation lattice for nuclear fuel element
JP6933593B2 (en) Support structure of spent nuclear fuel, manufacturing method of support structure and spent nuclear fuel container
JP2939459B2 (en) Spent fuel storage rack and its manufacturing method
JPH11304986A (en) Spent fuel storage rack and its production method
JP2002107485A (en) Rack for storing spent fuel
JP2807361B2 (en) Spent fuel storage rack and its manufacturing method
JP2004138483A (en) Spent fuel storage rack and arrangement method of spent fuel
KR20140082104A (en) Cask for storaging nuclear fuel rod

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130402

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130802