JPS6238388A - Composite coated tube for nuclear fuel - Google Patents

Composite coated tube for nuclear fuel

Info

Publication number
JPS6238388A
JPS6238388A JP60177491A JP17749185A JPS6238388A JP S6238388 A JPS6238388 A JP S6238388A JP 60177491 A JP60177491 A JP 60177491A JP 17749185 A JP17749185 A JP 17749185A JP S6238388 A JPS6238388 A JP S6238388A
Authority
JP
Japan
Prior art keywords
tube
cladding tube
cladding
composite
composite cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60177491A
Other languages
Japanese (ja)
Inventor
鈴木 成光
和志 小松
尾形 静雄
馬場 利和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Atomic Power Industries Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Atomic Power Industries Inc, Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Atomic Power Industries Inc
Priority to JP60177491A priority Critical patent/JPS6238388A/en
Publication of JPS6238388A publication Critical patent/JPS6238388A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、核、燃料集合体を構成する燃料要素、即ち燃
料棒に関し、特に該燃料棒の被覆管に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel element constituting a nuclear fuel assembly, that is, a fuel rod, and particularly to a cladding tube of the fuel rod.

[従来の技術] 原子力発電プラントの原子炉で使用される燃料集合体は
、一般的に、ウラン酸化物の柱状焼結体(ペレットと呼
ぶ)をジルコニウム合金の被覆管で被覆し、被覆管両端
を端栓で封止した棒状の燃料要素、即ち燃料棒から構成
されている。
[Prior Art] Fuel assemblies used in nuclear power plant reactors generally consist of columnar sintered bodies (called pellets) of uranium oxide that are covered with a zirconium alloy cladding tube, with both ends of the cladding tube covered with a zirconium alloy cladding tube. It consists of a rod-shaped fuel element, that is, a fuel rod, which is sealed with an end plug.

原子力発電プラントの運転中においては、燃料棒の外表
面は高温・高圧の冷却水と接触しており、燃料棒の内部
はジルコニウム合金製の被覆管により冷却水から隔離さ
れた状態にある。燃料棒は冷却水圧力が燃料棒内圧より
高い条件で使用されているため、被覆管材料のクリープ
により燃料棒外径が減少する。また、燃料の燃焼が進む
につれて、ヨウ素等の核分裂生成物がペレット内に蓄積
され、スウェリングと呼ばれるペレットの体積膨張によ
り、ペレットの外径が増大する。従って、運転初期にペ
レット外面と被覆管内面との間に存在した径方向のギャ
ップは、燃焼が進むにつれて減少し、ペレット外面と被
覆管内面とが接触する状態になる。
During operation of a nuclear power plant, the outer surface of the fuel rod is in contact with high-temperature, high-pressure cooling water, and the inside of the fuel rod is isolated from the cooling water by a zirconium alloy cladding tube. Since fuel rods are used under conditions where the pressure of cooling water is higher than the internal pressure of the fuel rod, the outer diameter of the fuel rod decreases due to creep of the cladding material. Further, as the combustion of the fuel progresses, fission products such as iodine accumulate within the pellet, and the outer diameter of the pellet increases due to volumetric expansion of the pellet called swelling. Therefore, the radial gap that existed between the outer surface of the pellet and the inner surface of the cladding tube at the beginning of operation decreases as combustion progresses, and the outer surface of the pellet and the inner surface of the cladding tube come into contact.

このような状態下で原子炉の出力を急上昇した場合、ペ
レットの温度上昇によりペレット外径は更に増加し、被
覆管に大きな応力が負荷される。
If the power of the nuclear reactor is suddenly increased under such conditions, the outside diameter of the pellet will further increase due to the increase in temperature of the pellet, and a large stress will be applied to the cladding tube.

また、ペレット温度の上昇により、ペレット内に蓄積さ
れたヨウ素等の核分裂生成物ガスが放出され、燃料棒内
は腐食性雰囲気になる。
Furthermore, due to the increase in pellet temperature, fission product gas such as iodine accumulated in the pellet is released, creating a corrosive atmosphere inside the fuel rod.

ヨウ素等の腐食性ガス雰囲気下でジルコニウム合金製の
被覆管に過大な応力が負荷された場合、被覆管が破損す
る応力腐食割れという現象の起こる可能性があることが
分かっており、原子炉での出力急上昇時にジルコニウム
合金製被覆管の応力腐食割れに起因する燃料破損が起こ
ることが考えられる。
It is known that if excessive stress is applied to a zirconium alloy cladding tube in an atmosphere of corrosive gases such as iodine, a phenomenon called stress corrosion cracking, which causes the cladding tube to break, may occur. It is conceivable that fuel damage may occur due to stress corrosion cracking of the zirconium alloy cladding when the output suddenly increases.

そこで、燃料被覆管の応力腐食割れによる燃料破損を防
止するため、燃料に対して種々の改良が加えられている
が、その−例として、ジルコニウム合金製被覆管の内面
に、全肉厚のlO%程度となるような厚さにほぼ純粋な
ジルコニウム金属を冶金的に内張すした複合被覆管(以
下、単に被覆管ともいう)が開発されている。
In order to prevent fuel damage due to stress corrosion cracking of the fuel cladding tube, various improvements have been made to the fuel. For example, the inner surface of the zirconium alloy cladding tube is coated with lO Composite cladding tubes (hereinafter simply referred to as cladding tubes) have been developed that are metallurgically lined with substantially pure zirconium metal to a thickness of about 1.5%.

[発明が解決しようとする問題点] ところが、このような複合被覆管では、内面に内張すし
た純ジルコニウム金属はジルコニウム合金に比べ酸化性
雰囲気下での耐食性が劣るため、被覆管の内外面を貫通
する欠陥状態が発生し冷却水が被覆管内部に侵入した場
合、内張りのないジルコニウム合金被覆管に比べ、純ジ
ルコニウム金属内面での腐食反応量が大きい。
[Problems to be Solved by the Invention] However, in such a composite cladding tube, the pure zirconium metal lining the inner surface has inferior corrosion resistance in an oxidizing atmosphere compared to a zirconium alloy, so the inner and outer surfaces of the cladding tube are If a defective state occurs and cooling water enters the cladding tube, the amount of corrosion reaction on the pure zirconium metal inner surface will be greater than in a zirconium alloy cladding tube without a lining.

ジルコニウム金属が腐食すると、ジルコニウム酸化物を
形成すると共に、発生した水素がジルコニウム合金から
なる被覆管の母材に吸収され水素化物として析出する。
When zirconium metal corrodes, zirconium oxide is formed, and the generated hydrogen is absorbed into the base material of the cladding made of a zirconium alloy and precipitated as hydride.

被覆管に多量の水素化物が析出すると、当業者周知のよ
うに被覆管の機械的特性は低下し、燃料棒の形状維持機
能力(損なわれる可能性がある。複合被覆管の母材に吸
収される水素ガス量は、発生水素量を支配する内張すし
たジルコニウム金属の厚さ、即ち容易に腐食反応を生じ
るジルコニウム金属の体積に左右される。
If a large amount of hydride is deposited on the cladding, the mechanical properties of the cladding will deteriorate and the ability of the fuel rod to maintain its shape may be impaired, as is well known to those skilled in the art. The amount of hydrogen gas generated depends on the thickness of the zirconium metal lining, which controls the amount of hydrogen generated, that is, the volume of the zirconium metal that easily causes corrosion reactions.

従来のかかる複合被覆管では、内張すした純ジルコニウ
ム金属の厚さが被覆管全肉厚の約lO%を占めており、
その部分が全て腐食によって酸化膜を形成した場合、被
覆管母材への水素吸収量が多量になり、被覆管の機械的
健全性の低下が問題となる。
In such conventional composite cladding, the thickness of the pure zirconium metal lining accounts for about 10% of the total wall thickness of the cladding,
If all of these parts form an oxide film due to corrosion, a large amount of hydrogen will be absorbed into the cladding tube base material, causing a problem of deterioration of the mechanical integrity of the cladding tube.

従って、純ジルコニウム金属を使用する複合被覆管の改
良効果である応力腐食割れに対する抵抗性を減すること
なく、被覆管内面での純ジルコニウム金属の腐食により
被覆管母材へ吸収される水素量を抑制する複合被覆管の
開発が望まれており、本発明はかかる複合被覆管を提供
することを目的とするものである。
Therefore, without reducing the resistance to stress corrosion cracking, which is an improvement effect of composite cladding using pure zirconium metal, the amount of hydrogen absorbed into the cladding base material due to corrosion of pure zirconium metal on the inner surface of the cladding can be reduced. It has been desired to develop a composite cladding tube that suppresses the oxidation, and an object of the present invention is to provide such a composite cladding tube.

[問題点を解決するための手段] この目的から、本発明は、ジルコニウム合金を母材とし
て形成された外管と、該外管の内面に冶金的に内張りさ
れた純ジルコニウム金属の内管とから構成される原子燃
料用の複合被覆管において、前記内管の径方向肉厚は、
該複合被覆管全体の径方向肉厚の3〜5%に設定されて
いることを特徴とするものである。
[Means for Solving the Problems] For this purpose, the present invention provides an outer tube formed using a zirconium alloy as a base material, and an inner tube made of pure zirconium metal whose inner surface is metallurgically lined. In the composite cladding tube for nuclear fuel, the inner tube has a radial wall thickness of
It is characterized in that the thickness is set to 3 to 5% of the radial wall thickness of the entire composite cladding tube.

[作用] 容易に腐食を生じる純ジルコニウム金属からなる内管の
厚さを薄肉化しであるため、複合被覆管の内面での純ジ
ルコニウム金属の腐食により発生する水素が複合被覆管
の母材、即ち外管へ吸収される量が抑制される。例えば
、種々の肉厚比の複合被覆管について、腐食性雰囲気の
条件を同一とし、また、複合被覆管の外管及び内管材料
として使用するジルコニウム合金及び純ジルコニウム金
属の化学組成を同一として比較すると、内管の肉厚を1
/2にした場合、内管内面での純ジルコニウム金属の腐
食によって複合被覆管の外管に吸収される水素量は約1
/2に低減される。そのため、複合被覆管の肉厚を貫通
する欠陥が発生した場合でも、内部に浸入した冷却水と
の腐食反応量及び水素ガス発生量が抑えられる。
[Function] Since the thickness of the inner tube made of pure zirconium metal, which easily corrodes, is reduced, the hydrogen generated by the corrosion of pure zirconium metal on the inner surface of the composite cladding tube is transferred to the base material of the composite cladding tube, i.e. The amount absorbed into the outer tube is suppressed. For example, comparing composite cladding tubes with various wall thickness ratios under the same corrosive atmosphere conditions and with the same chemical compositions of the zirconium alloy and pure zirconium metal used as the outer and inner tube materials of the composite cladding tube. Then, the wall thickness of the inner tube is 1
/2, the amount of hydrogen absorbed into the outer tube of the composite cladding due to the corrosion of pure zirconium metal on the inner surface of the inner tube is approximately 1.
/2. Therefore, even if a defect that penetrates the thickness of the composite cladding tube occurs, the amount of corrosion reaction with the cooling water that has entered the interior and the amount of hydrogen gas generated can be suppressed.

一方、純ジルコニウム金属の内張り厚さを薄くし過ぎる
と、複合被覆管の応力腐食割れに対する改良効果が期待
されたほど発揮されない可能性があるが、内管の肉厚を
3〜5%に設定することによってこの可能性を排除しう
ろことが確認された。
On the other hand, if the thickness of the pure zirconium metal lining is made too thin, the improvement effect on stress corrosion cracking of the composite cladding may not be as expected, but the wall thickness of the inner tube is set at 3 to 5%. It was confirmed that this possibility could be eliminated by doing so.

[実施例] 次に、本発明の好適な実施例について添付図面を参照し
て詳細に説明するが、図中、同一符号は      口
開−又は対応部分を示すものとする。
[Embodiments] Next, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, in which the same reference numerals indicate openings or corresponding parts.

第1図において、本発明による複合被覆管lは、ジルコ
ニウム合金から形成された外管2と、はぼ純粋なジルコ
ニウム金属から形成されると共に、外管2に周知の態様
で冶金的に結合された内管3とから構成されている。ジ
ルコニウム合金はASTM(アメリカ材料試験学会)B
−353で定められるUNSナンバーR60802又は
R60901が好適であり、また、純ジルコニウム金属
はASTM B−353で定められるINSナンバーR
60802の原子炉グレードのものがよい。
In FIG. 1, a composite cladding 1 according to the invention is shown with an outer tube 2 formed from a zirconium alloy and an outer tube 2 made of nearly pure zirconium metal and metallurgically bonded to the outer tube 2 in a known manner. It consists of an inner tube 3. Zirconium alloy is ASTM (American Society for Testing and Materials) B
-353, UNS number R60802 or R60901 is preferred, and pure zirconium metal has INS number R, defined by ASTM B-353.
60802 nuclear reactor grade is best.

第1図において鎖線で囲んだ領域IAを示す第1A図か
ら諒解されるように、複合被覆管1全体の径方向肉厚を
Wt、内管3の径方向肉厚をWzrとすると、Wzr/
Wt比は、本発明に従って0.03〜0.05に設定さ
れている。この比は第2図及び第2A図に示す従来の場
合、約0.1である。
As can be understood from FIG. 1A showing the area IA surrounded by the chain line in FIG. 1, if the radial wall thickness of the entire composite cladding tube 1 is Wt and the radial wall thickness of the inner tube 3 is Wzr,
The Wt ratio is set between 0.03 and 0.05 according to the present invention. This ratio is approximately 0.1 in the conventional case shown in FIGS. 2 and 2A.

原子力発電プラントの運転中に、かかる複合被覆管1を
使用した燃料棒に何等かの要因によって複合被覆管Iの
肉厚を貫通する欠陥が発生した場。
When a defect that penetrates the thickness of the composite cladding tube I occurs due to some factor in a fuel rod using the composite cladding tube I during operation of a nuclear power plant.

合、この欠陥部分から冷却水が燃料棒内に浸入し、複合
被覆管1の内管3の内面では下記の反応を生じる。
In this case, cooling water infiltrates into the fuel rod through this defective portion, and the following reaction occurs on the inner surface of the inner tube 3 of the composite cladding tube 1.

Zr+2H7O→ZrO2+2H2↑ 上記反応によって発生した水素は複合被覆管1の外管2
に吸収されるが、吸収量は発生水素量に左右される。即
ち、ジルコニウム金属で形成される内管3の体積(厚さ
と考えてよい)を小さくすると発生水素量は減少し、複
合被覆管lの水素吸収量は抑制される。
Zr+2H7O→ZrO2+2H2↑ The hydrogen generated by the above reaction is transferred to the outer tube 2 of the composite cladding tube 1.
The amount of hydrogen absorbed depends on the amount of hydrogen generated. That is, by reducing the volume (which can be considered as the thickness) of the inner tube 3 made of zirconium metal, the amount of hydrogen generated decreases, and the amount of hydrogen absorbed by the composite cladding tube 1 is suppressed.

本発明では、この知見に基づき、ジルコニウム金属で形
成された内管3の肉厚Wzrを従来に比べ173〜1/
2に薄肉化することにより、複合被覆管1の水素吸収量
を同様な割合で減少し、水素化物析出による複合被覆管
の機緘的特性の低下を軽減している。一方、内管3を薄
肉化することによって、複合被覆管lの耐応力腐食割れ
特性の低下を来−す可能性があるが、本発明はそれを防
止するために、内管3の肉厚を前述した通り被覆管全体
の3〜5%とした。
In the present invention, based on this knowledge, the wall thickness Wzr of the inner tube 3 made of zirconium metal is reduced by 173 to 1/3 compared to the conventional one.
By reducing the thickness to 2, the hydrogen absorption amount of the composite cladding tube 1 is reduced at a similar rate, and the deterioration of the mechanical properties of the composite cladding tube due to hydride precipitation is reduced. On the other hand, by reducing the thickness of the inner tube 3, there is a possibility that the stress corrosion cracking resistance of the composite cladding tube l will deteriorate. As mentioned above, the amount was set at 3 to 5% of the total cladding tube.

第3図は従来の複合被覆管と本発明のものとの耐応力腐
食割れ特性の比較試験の結果を示す線図であり、横軸は
内管の肉厚が全肉厚に占める割合(%)を表し、縦軸は
、被覆管の内面をヨウ素雰囲気条件とし、周方向歪みを
負荷して被覆管が破損に至るまでの歪み量を測定し、こ
れを従来の複合被覆管(内管肉厚的10%)の破損歪み
量に対する比で表している。内管肉厚を3〜5%とした
本発明の複合被覆管1の破損歪みは従来のものの破損歪
みと実質的に同等であり、内管肉厚を3〜5%とするこ
とによって、従来同様の耐応力腐食割れ特性を確保しう
ろことがわかる。
Figure 3 is a diagram showing the results of a comparative test of stress corrosion cracking resistance between a conventional composite cladding tube and that of the present invention. ), and the vertical axis is the amount of strain that the cladding undergoes until it breaks by applying strain in the circumferential direction with the inner surface of the cladding tube in an iodine atmosphere. It is expressed as a ratio to the amount of failure strain (thickness: 10%). The failure strain of the composite cladding tube 1 of the present invention with an inner tube wall thickness of 3 to 5% is substantially the same as that of the conventional one; It can be seen that similar stress corrosion cracking resistance characteristics can be ensured.

[発明の効果コ 以上のように、複合被覆管の純ジルコニウム金属からな
る内管の肉厚を本発明に従って被覆管の全肉厚の3〜5
%にすることにより、被覆管全肉厚の約10%を占める
ジルコニウム金属層の内管を有する従来の複合被覆管に
比べ、被覆管肉厚を貫通する欠陥が発生した場合の被覆
管水素吸収量を、耐応力腐食割れ特性を実質的に損なう
ことなく約173〜1/2に抑制することができる。
[Effects of the Invention] As described above, the wall thickness of the inner tube made of pure zirconium metal of the composite cladding tube is adjusted to 3 to 5% of the total wall thickness of the cladding tube according to the present invention.
%, compared to conventional composite cladding which has an inner tube with a zirconium metal layer that accounts for approximately 10% of the total cladding wall thickness, the cladding hydrogen absorption in the event of a defect penetrating the cladding wall thickness is reduced. The amount can be suppressed to about 173 to 1/2 without substantially impairing stress corrosion cracking resistance properties.

従って、原子力発電プラントの出力急昇時における燃料
破損を防止できるだけでなく、何等かの要因によって被
覆管の肉厚を貫通する欠陥が発生した場合でも、燃料棒
の形状維持性能を確保することが可能になる。
Therefore, it is possible to not only prevent fuel damage when the output of a nuclear power plant suddenly increases, but also to ensure the ability to maintain the shape of the fuel rod even if a defect that penetrates the wall thickness of the cladding tube occurs due to some reason. It becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による複合被覆管の横断面図、第1A図
は第1図において鎖線IAで囲まれた領域の拡大断面図
、第2図は従来の複合被覆管の第1図に相当する断面図
、第2A図において鎖線2Aで囲まれた領域の拡大断面
図、第3図は従来の複合被覆管と本発明のものとの耐応
力腐食割れ特性を比較して示す線図である。 ■ ・・・複合被覆管   2・・・外管3 ・・・内
管      11t・・・被覆管全肉厚Wzr・・・
内管肉厚 出願人   三菱重工業株式会社 同 上   三菱原子カニ業株式会社 代理人   曾 我  道 照1耶b 第1図      第2図 第1A図       第2A図 Wz、                Wzr−=o
、o3〜0.05       −:0.1tWt 第3図
Fig. 1 is a cross-sectional view of a composite cladding tube according to the present invention, Fig. 1A is an enlarged sectional view of the area surrounded by a chain line IA in Fig. 1, and Fig. 2 corresponds to Fig. 1 of a conventional composite cladding tube. 2A is an enlarged sectional view of the area surrounded by the chain line 2A, and FIG. 3 is a diagram comparing the stress corrosion cracking resistance of a conventional composite cladding tube and that of the present invention. . ■...Composite cladding tube 2...Outer tube 3...Inner tube 11t...Full wall thickness of cladding tube Wzr...
Inner tube wall thickness Applicant: Mitsubishi Heavy Industries, Ltd. Same as above Mitsubishi Atomic Crab Industry Co., Ltd. Agent: Teru Sogado Figure 1 Figure 2 Figure 1A Figure 2A Wz, Wzr-=o
, o3~0.05 -:0.1tWt Figure 3

Claims (1)

【特許請求の範囲】[Claims] ジルコニウム合金を母材として形成された外管と、該外
管の内面に冶金的に内張りされた純ジルコニウム金属の
内管とから構成される原子燃料用の複合被覆管において
、前記内管の径方向肉厚は、該複合被覆管全体の径方向
肉厚の3〜5%に設定されていることを特徴とする原子
燃料用複合被覆管。
In a composite cladding tube for nuclear fuel consisting of an outer tube formed using a zirconium alloy as a base material and an inner tube made of pure zirconium metal metallurgically lined on the inner surface of the outer tube, the diameter of the inner tube is A composite cladding tube for nuclear fuel, wherein the thickness in the direction is set to 3 to 5% of the thickness in the radial direction of the entire composite cladding tube.
JP60177491A 1985-08-14 1985-08-14 Composite coated tube for nuclear fuel Pending JPS6238388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60177491A JPS6238388A (en) 1985-08-14 1985-08-14 Composite coated tube for nuclear fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60177491A JPS6238388A (en) 1985-08-14 1985-08-14 Composite coated tube for nuclear fuel

Publications (1)

Publication Number Publication Date
JPS6238388A true JPS6238388A (en) 1987-02-19

Family

ID=16031826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60177491A Pending JPS6238388A (en) 1985-08-14 1985-08-14 Composite coated tube for nuclear fuel

Country Status (1)

Country Link
JP (1) JPS6238388A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5715290A (en) * 1993-07-01 1998-02-03 Hitachi, Ltd. Reactor water control method in BWR power plant, BWR power plant having low radioactivity concentration reactor water and fuel clad tube for BWR
JP2014010022A (en) * 2012-06-29 2014-01-20 Hitachi-Ge Nuclear Energy Ltd Fuel assembly, and nuclear reactor core

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5715290A (en) * 1993-07-01 1998-02-03 Hitachi, Ltd. Reactor water control method in BWR power plant, BWR power plant having low radioactivity concentration reactor water and fuel clad tube for BWR
JP2014010022A (en) * 2012-06-29 2014-01-20 Hitachi-Ge Nuclear Energy Ltd Fuel assembly, and nuclear reactor core

Similar Documents

Publication Publication Date Title
US4029545A (en) Nuclear fuel elements having a composite cladding
US4200492A (en) Nuclear fuel element
US4045288A (en) Nuclear fuel element
US3925151A (en) Nuclear fuel element
US4022662A (en) Nuclear fuel element having a metal liner and a diffusion barrier
US4372817A (en) Nuclear fuel element
US4406012A (en) Nuclear fuel elements having a composite cladding
JPH01267493A (en) Fuel element having acid resisting cover
JPH0658412B2 (en) Corrosion resistant coatings for fuel rods
JP2846266B2 (en) Cladding tube
JPH0213280B2 (en)
KR910003286B1 (en) Zirconium alloy barrier having improved corrosion resistance
JPH033917B2 (en)
JPS6238388A (en) Composite coated tube for nuclear fuel
GB1569078A (en) Nuclear fuel element
JPS6247582A (en) Composite coated tube for nuclear fuel
JPS61210987A (en) Coated tube for nuclear fuel element
JPS58216988A (en) Buried zirconium layer
Armijo Nuclear fuel element
JPS6049270B2 (en) nuclear fuel elements
CA1209727A (en) Buried zirconium layer
JPS5958389A (en) Nuclear fuel element
JP2521328B2 (en) Zirconium-based alloy nuclear fuel cladding
Klepfer Nuclear fuel element
Adamson et al. Zirconium alloy barrier having improved corrosion resistance