JPS6238369B2 - - Google Patents

Info

Publication number
JPS6238369B2
JPS6238369B2 JP55078304A JP7830480A JPS6238369B2 JP S6238369 B2 JPS6238369 B2 JP S6238369B2 JP 55078304 A JP55078304 A JP 55078304A JP 7830480 A JP7830480 A JP 7830480A JP S6238369 B2 JPS6238369 B2 JP S6238369B2
Authority
JP
Japan
Prior art keywords
formula
group
main chain
represented
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55078304A
Other languages
Japanese (ja)
Other versions
JPS575721A (en
Inventor
Yoshinori Kato
Hisashi Fukushima
Takeshi Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP7830480A priority Critical patent/JPS575721A/en
Priority to EP81302118A priority patent/EP0040506B1/en
Priority to DE8181302118T priority patent/DE3175151D1/en
Priority to US06/265,924 priority patent/US4385169A/en
Publication of JPS575721A publication Critical patent/JPS575721A/en
Publication of JPS6238369B2 publication Critical patent/JPS6238369B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、側鎖に多数のカルボキシル基(又は
その塩)を有すると共に、主鎖中又は主鎖のカル
ボキシル末端にジスルフイド結合含有基を有す
る、反応性に富んだ親水性重合体及びその製造法
に関する。そして、本発明の目的とするところ
は、腫瘍細胞等の標的物に結合能を有する抗腫瘍
抗体等と、制ガン剤等の細胞毒物を結合して標的
指向型制ガン剤(抗腫瘍剤)等を製造するに際
し、両者を有効かつ効率良く結合させるために用
いられる重合体を提供することにある。 従来、抗腫瘍抗体と細胞毒物を結合して標的指
向型制ガン剤を製造する際に、両者を効率良く結
合させるために反応性の重合体を媒介物として用
いることは公知である。 例えば、特開昭51−126281には、抗腫瘍免疫グ
ロブリンと、1分子当り制ガン剤を5〜500分子
共有結合しているポリマー担体(例えば、ポリグ
ルタミン酸)を、アミド結合によつて結合させて
抗腫瘍剤を得たことが開示されている。この方法
で得られた抗腫瘍剤は、腫瘍細胞と選択的に結合
し、腫瘍細胞に毒性を発揮することが期待される
ものであり、非常に興味のある薬剤である。 しかしながら、この公知の抗腫瘍剤の欠点は、
抗腫瘍抗体と細胞毒物(制ガン剤を結合したポリ
マー担体)との結合がアミド結合によつて、即ち
抗腫瘍抗体中の遊離のアミノ基又はカルボキシル
基を介した結合によつて行なわれているという点
である。免疫グロブリンはその抗原認識部位にも
多数のアミノ基やカルボキシル基を有している。
従つて、抗腫瘍免疫グロブリンに細胞毒物をアミ
ド結合によつて結合させる場合には、抗腫瘍免疫
グロブリンの抗原認識部位にも細胞毒物が結合す
ることになり、その結果、得られた抗腫瘍剤は最
早腫瘍細胞に対する結合能を全く失うかあるいは
低下せしめられるという問題が生じるのである。
また、特開昭51−126281号記載の方法では、抗体
分子内及びポリグルタミン酸の分子内、あるいは
同種分子間でもアミド結合が形成される。そし
て、これらの望ましくないアミド結合の形成の結
果、得られる抗腫瘍剤はその性能が低下し、更に
腫瘍の治療に用いるのが不適当な高分子量物質を
含むという問題も生じるのである。 本発明者らはかかる先行技術の欠点を解決する
ために鋭意研究を行なつた結果、免疫グロブリン
の限られた位置に存在するジスルフイド結合を利
用して細胞毒物を結合させれば、前記欠点のない
抗腫瘍剤が得られることを見い出した。そして本
発明は、かかる抗腫瘍剤あるいは又その他の標的
指向型薬剤を製造する際に最適に使用できる、親
水性重合体を提供するものである。 即ち、本発明は構成単位の60モル%以上が式
〔〕で表わされる構成単位からなり、 〔式〔〕において、Zは水素原子又は1価の
陽イオンを表わす。mは1〜4の整数を表わ
す。〕 式〔〕の構成単位が100モル%でないとき、
残りの構成単位は、式〔′〕 〔式〔′〕において、Rは−H,−CH3
The present invention relates to a highly reactive hydrophilic polymer having a large number of carboxyl groups (or salts thereof) in its side chain and a disulfide bond-containing group in the main chain or at the carboxyl end of the main chain, and a method for producing the same. Regarding. The purpose of the present invention is to manufacture target-directed anti-cancer drugs (anti-tumor drugs) by combining anti-tumor antibodies, etc. that have the ability to bind to targets such as tumor cells, and cytotoxic substances, such as anti-cancer drugs. The object of the present invention is to provide a polymer that can be used to effectively and efficiently combine the two. BACKGROUND ART Conventionally, it has been known to use a reactive polymer as a mediator in order to efficiently bind an antitumor antibody and a cytotoxin to produce a target-directed anticancer agent. For example, in JP-A No. 51-126281, an antitumor immunoglobulin and a polymer carrier (e.g., polyglutamic acid) to which 5 to 500 molecules of an anticancer drug are covalently bound per molecule are bonded to each other through an amide bond. It is disclosed that a tumor agent has been obtained. The antitumor agent obtained by this method is expected to selectively bind to tumor cells and exhibit toxicity to tumor cells, making it a very interesting drug. However, the drawbacks of this known antitumor agent are that
The point is that the binding between the anti-tumor antibody and the cytotoxic substance (polymer carrier bound to the anti-cancer drug) is carried out through an amide bond, that is, through a free amino group or carboxyl group in the anti-tumor antibody. It is. Immunoglobulins also have many amino groups and carboxyl groups in their antigen recognition sites.
Therefore, when a cytotoxin is bound to an antitumor immunoglobulin through an amide bond, the cytotoxin also binds to the antigen recognition site of the antitumor immunoglobulin, and as a result, the resulting antitumor agent The problem arises that the cells no longer have the ability to bind to tumor cells completely or are reduced.
Furthermore, in the method described in JP-A-51-126281, amide bonds are formed within antibody molecules, within polyglutamic acid molecules, or even between molecules of the same type. As a result of the formation of these undesirable amide bonds, the performance of the resulting antitumor agent is reduced, and there is also the problem that it contains high molecular weight substances that are unsuitable for use in tumor treatment. The present inventors have conducted extensive research to solve the drawbacks of the prior art, and have found that if cytotoxic substances are bound using disulfide bonds that exist in limited positions in immunoglobulins, the above-mentioned drawbacks can be overcome. It was discovered that an antitumor agent can be obtained. The present invention provides a hydrophilic polymer that can be optimally used in the production of such antitumor agents or other target-directed drugs. That is, in the present invention, 60 mol% or more of the structural units consist of structural units represented by the formula [], In [Formula [], Z represents a hydrogen atom or a monovalent cation. m represents an integer from 1 to 4. ] When the constituent units of formula [] are not 100 mol%,
The remaining structural units are expressed by the formula [′] [In formula [′], R is -H, -CH 3 ,

【式】または−CH2OHで表わされる 基である。〕 で表わされる構成単位からなり、そして主鎖中又
は主鎖のカルボキシル末端に式〔〕で表わされ
るジスルフイド結合含有基を有している、 〔式〔〕において、Wは炭素数1〜4のアル
キレン基を表わす、R1は水素原子又は炭素数1
〜4のアルキル基を表わす。R2は、式〔〕で
表わされる基が主鎖の末端基である場合には、ア
ルキル基、アラルキル基又はアリール基を表わ
し、式〔〕で表わされる基が主鎖中に存在する
場合には、
It is a group represented by [Formula] or -CH 2 OH. ], and has a disulfide bond-containing group represented by the formula [] in the main chain or at the carboxyl terminal of the main chain, In [Formula [], W represents an alkylene group having 1 to 4 carbon atoms, and R 1 is a hydrogen atom or an alkylene group having 1 to 4 carbon atoms.
~4 alkyl group. R 2 represents an alkyl group, an aralkyl group, or an aryl group when the group represented by the formula [] is a terminal group of the main chain, and when the group represented by the formula [] is present in the main chain, teeth,

【式】で表わされる2価の基で ある。但し、W′はWと同一又は異なる炭素数1
〜4のアルキレン基であり、式〔〕のSと結合
している。R1′はR1と同一又は異なり、水素原子
又は炭素数1〜4のアルキル基を表わす。〕 重合度が5〜3000親水性重合体である。 本発明の親水性重合体は、側鎖に存在する多数
のカルボキシル基(又はその塩)を利用してこれ
に制ガン剤等の細胞毒物を結合することが出来、
また主鎖中あるいは主鎖の片末端に存在するジス
ルフイド結合を利用してこれに抗腫瘍抗体等の免
疫グロブリンを結合することが出来るものであ
る。 式〔〕において、Zは水素原子又は1価の陽
イオン、例えばNa+,K+,NH4 +である。mは1
〜4の整数を表わすが、好ましいのはmが1又は
2の場合である。なお、本発明の親水性重合体中
には、式〔〕で表わされる構成単位のうち、例
えば、m=1のものとm=2のものが混在してい
ても良い。これらが合計で、全構成単位のうちの
60モル%以上、好ましくは80モル%以上あればよ
いのである。 本発明の親水性重合体中には、全構成単位の40
モル%未満の範囲で、式〔〕で表わされる構成
単位以外の構成単位が含まれていてもよい。これ
らの例としては、例えば、α位側鎖にカルボキシ
ル基(又はその塩)を有していないグリシン、ア
ラニン、フエニルアラニン、セリン等のα−アミ
ノ酸がある。 かかるα−アミノ酸からなる構成単位は、細胞
毒物との結合合には何ら関与しないが、親水性重
合体の水溶性や細胞毒物を結合して得られた重合
体の脂溶性や水溶性を調節するのに役立つ場合が
ある。従つて、脂溶性や水溶性の調節が格別に必
要ない場合には、かかるα−アミノ酸からなる構
成単位を含有しないものの方が実用的に有利であ
る。 式〔〕において、W及びW′は2価の有機基
を表わし、本発明の親水性重合体を得る過程及び
その後の反応過程で何ら反応に関与しない不活性
な基である限り特に限定されない。これらの基と
しては、例えば2−アミノエタンチオール残基
(−CH2CH2−)の如き直鎖の、あるいはシステ
インベンジルエステル残基
It is a divalent group represented by the formula: However, W′ has the same or different carbon number as W
It is an alkylene group of ~4 and is bonded to S of the formula []. R 1 ' is the same as or different from R 1 and represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. ] It is a hydrophilic polymer with a degree of polymerization of 5 to 3000. The hydrophilic polymer of the present invention can bind cytotoxic substances such as anticancer drugs to it by utilizing a large number of carboxyl groups (or salts thereof) present in the side chains,
Furthermore, it is possible to bind immunoglobulins such as antitumor antibodies to the disulfide bonds present in the main chain or at one end of the main chain. In formula [], Z is a hydrogen atom or a monovalent cation, such as Na + , K + , NH 4 + . m is 1
It represents an integer of ~4, but m is preferably 1 or 2. In addition, in the hydrophilic polymer of the present invention, among the structural units represented by the formula [], for example, those with m=1 and those with m=2 may be mixed. These are the total of all constituent units.
The content should be at least 60 mol%, preferably at least 80 mol%. The hydrophilic polymer of the present invention contains 40 of the total structural units.
Constituent units other than those represented by the formula [] may be contained within a range of less than mol%. Examples of these include α-amino acids, such as glycine, alanine, phenylalanine, and serine, which do not have a carboxyl group (or a salt thereof) in the α-position side chain. Such a constituent unit consisting of an α-amino acid does not participate in any way in binding with a cytotoxic substance, but it regulates the water solubility of a hydrophilic polymer and the lipid solubility and water solubility of a polymer obtained by binding a cytotoxic substance. It may be helpful to do so. Therefore, if there is no particular need to adjust fat solubility or water solubility, it is practically advantageous to use a product that does not contain such a constituent unit consisting of an α-amino acid. In formula [], W and W' represent divalent organic groups, and are not particularly limited as long as they are inert groups that do not participate in any reaction during the process of obtaining the hydrophilic polymer of the present invention and the subsequent reaction process. These groups include, for example, straight chain residues such as 2-aminoethanethiol residues (-CH 2 CH 2 -), or cysteine benzyl ester residues.

【式】やホモシステインベン ジルエステル残基[Formula] and homocysteineben Dyl ester residue

【式】の如 き側鎖を有するアルキレン基、4−アミノチオフ
エノール残基
Alkylene group having a side chain such as [Formula], 4-aminothiophenol residue

【式】の如き置換基を有し ない、あるいは置換基を有するフエニレン基が挙
げられるが、炭素数1〜4アルキレン基が特に好
ましい。R1及びR1′は水素原子又は炭素数1〜4
のアルキル基であるが、好ましいのは水素原子で
ある。R2は、式〔〕で表わされる基が主鎖の
末端基である場合には、アルキル基、アラルキル
基又はアリール基である。この場合には、本発明
の親水性重合体は下記の如く表わせる(但し、式
〔〕の構成単位が100モル%とする。) (nは構成単位の数を表わす。) R2は、式〔〕で表わされる基が主鎖中に存在
する場合には、
Phenylene groups having no substituents or having substituents as shown in the formula are exemplified, and alkylene groups having 1 to 4 carbon atoms are particularly preferred. R 1 and R 1 ' are hydrogen atoms or carbon atoms 1 to 4
is an alkyl group, and a hydrogen atom is preferred. R 2 is an alkyl group, an aralkyl group, or an aryl group when the group represented by the formula [] is a terminal group of the main chain. In this case, the hydrophilic polymer of the present invention can be expressed as shown below (however, the structural unit of formula [] is 100 mol%). (n represents the number of structural units.) When the group represented by the formula [] is present in the main chain, R2 is

〔γ−ベンジル−L−グルタメートN−カルボン酸無水物の合成〕[Synthesis of γ-benzyl-L-glutamate N-carboxylic acid anhydride]

無水テトラヒドロフラン120ml中に、γ−ベン
ジル−L−グルタミン酸10.0gを加へ分散液を調
製した。これとは別に窒素雰囲気下、クロロギ酸
トリクロロメチル20mlを、カーボンブラツク10.0
g上に徐々に70分かけて滴下しホスゲンを発生さ
せた、発生したホスゲンは、前記γ−ベンジル−
L−グルタミン酸の分散液に窒素雰囲気下で吸込
んだ。70分後に分散液は淡黄色透明液となつたの
で、ホスゲンを止め、その後窒素を1.5時間吸込
んで未反応のホスゲンを除去した。得られた透明
液から、窒素気流下減圧して溶媒を留去した
(140mmHg、27℃)。 残査に無水n−ヘキサン150mlを加えて溶解
し、その後氷浴上で5分間撹拌したところ白色固
体が析出した。この固体を窒素雰囲気下に酢酸エ
チル−n−ヘキサン(無水)の系で2回再沈澱に
より精製し、吸引ろ取後減圧乾燥して、γ−ベン
ジル−L−グルタメートN−カルボン酸無水物
(下記構造式を有する) 7.75gを白色固体として得た。このものの融点は
94.0〜94.℃(分解)であり、収率は69.8%であつ
た。 実施例 1 参考例で得られたγ−ベンジル−L−グルタメ
ートN−カルボン酸無水物7.75gを乾燥1,4−
ジオキサン185mlに窒素雰囲気下、撹拌しながら
溶解した。かくして得られた溶液に、95mgのシス
タミン(H2NCH2CH2SSCH2CH2NH2)を10mlの乾
燥ジオキサンに溶解して得られた溶液を添加混合
し、窒素雰囲気下に室温で24時間撹拌して重合反
応を行なわせた。反応後、反応混合物を4のイ
ソプロピルエーテル中に撹拌しながら加え、生成
した重合体を沈澱させた。沈澱した白色の重合体
を取し減圧下に乾燥したところ、収量は6.19g
で収率は95.9%であつた。得られた重合体の平均
分子量を粘度法(ジクロル酢酸、25.0℃)で求め
たところ47300であつた。(P.Dotyら、J.Am.
Chem.Soc.,78巻、947頁、1956年参照)。 得られた重合体は、用いた原料と開始剤及び反
応機構から、下記式のポリ−γ−ベンジル−L−
グルタメートを主体とするものであることが合理
的に推定され、また赤外吸収スペクトルによつて
も確認された。 上記で得られたポリ−γ−ベンジル−L−グル
タメートの3.11gを、トルフルオロ酢酸25.0mlと
アニソール4.5mlの混合液に溶解した。かくして
得られた溶液に、25.0mlのメタンスルホン酸を加
えて窒素雰囲気下氷浴上で20分間撹拌し、その後
室温で30分間撹拌して、γ−ベンジルエステルの
酸分解反応を行なつた。反応後、反応混合物を
450mlのイソプロピルエーテル中に撹拌しながら
加え、重合体を沈澱させた、沈澱した白色の重合
体を吸引取し、50mlの水に懸濁させた、これに
飽和重そう水約60mlを添加混合し、室温で30分間
撹拌してカルボキシル基の中和反応を行なつた。
その後、得られた反応液をセルロースチユーブを
用いて純水に対して4℃で3日間透析し、次いで
凍結乾燥して1.91gの白色固体を得た。得られた
固体を赤外吸収スペクトルで調べたところベンジ
ルエステルの吸収は消失しており、かつカルボキ
シル基がナトリウム塩になつていることも確認さ
れた。ポリ−L−グルタメートのナトリウム塩と
しての収率は89.3%であつた。また、粘度法(食
塩−燐酸バツフア−混合液、イオン強度0.11及び
1.01,25.5℃)により求めた平均分子量は29200
であつた。(R.B.Hawkinsら、Macromolecules,
5巻、294頁、1972年参照)。得られた重合体は、
下記式のポリ−L−グルタメートのナトリウム塩
を主体とするものである。 実施例 2 参考例で得られたγ−ベンジル−L−グルタメ
ートN−カルボン酸無水物5.50gを乾燥1,4−
ジオキサン150mlに窒素雰囲気下、撹拌しながら
溶解した。かくして得られた溶液に、n−プロピ
ル2−アミノエチルジスルフイド
(CH3CH2CH2SSCH2CH2NH2)142gを乾燥ジオ
キサン10mlに溶解して得られた溶液を加え、窒素
雰囲気下に室温で40時間撹拌して重合反応を行な
わせた。。反応後、反応混合物を4のイソプロ
ピルエーテル中に撹拌しつつ加え、生成した重合
体を沈澱させた。沈澱を取し、減圧下に乾燥し
たところ、収量は4.41gで収率は96.3%であつ
た。 次いで、得られた重合体4.00gを、トルフルオ
ロ酢酸35mlとアニソール5.0mlの混合液に溶解
し、さらに35mlのメタンスルホン酸を加えて、窒
素雰囲気下氷冷下で30分間、室温下で30分間撹拌
することにより、γ−ベンジルエステルを酸分解
した。反応終了後、反応混合物を、540mlのイソ
プロピルエーテル中に撹拌しつつ加え、重合体を
沈澱せしめ取した。これを5.0重そう水100mlに
溶解して、カルボキシル基の中和反応を行ない、
次いで、反応液をセルロースチユーブを用いて、
純水に対して4℃で3日間透析した。得られた溶
液を凍結乾燥したところ、ナトリウムポリ−L−
グルタメート2.33g(収率77.4%)が吸湿性綿状
固体として得られた。生成物の赤外吸収スペクト
ルに、ベンジルエステルの吸収は見られず、カル
ボキシル基がナトリウム塩になつていることが確
認された。平均分子量は、前記と同様な方法で測
定したところ16700であつた。得られた重合体
は、下記式のポリ−L−グルタメートのナトリウ
ム塩を主体とするものである。 実施例 3 参考例で得られたγ−ベンジル−L−グルタメ
ートN−カルボン酸無水物10.0gとL−アラニン
N−カルボン酸無水物0.23gを、乾燥1,4−ジ
オキサン280mlに窒素雰囲気下に加え、撹拌して
溶解した。かくして得られた溶液に、198mgの4
−アミノフエニルジスルフイドを10mlの乾燥ジオ
キサンに溶解して得られた溶液を添加混合し、窒
素雰囲気下に室温で24時間撹拌して重合反応を行
なわせた。反応後反応混合物を4のイソプロピ
ルエーテル中に撹拌しつつ加え、生成した重合体
を沈澱物とした。重合体の沈澱を取し、減圧下
に乾燥し、8.21gを得た。収率は97%であつた。
得られた重合体は、用いた原料、開始剤、及び反
応機構から下記のγ−ベンジル−L−グルタメー
トとL−アラニンの共重合体であることが合理的
に推定され、又、赤外吸収スペクトルによつても
確認された。 かくして得られた共重合体の4.0gを、トルフ
ルオロ酢酸30mlとアニソール5.0mlの混合液に溶
解した。得られた溶液に、30mlのメタンスルホン
酸を加えて、窒素雰囲気下氷浴上で20分間撹拌
し、その後室温で30分間撹拌して、γ−ベンジル
エステルの酸分解反応を行なつた。反応後、反応
混合物を600mlのイソプロピルエーテル中に撹拌
しながら加え、重合体を沈澱させた。沈澱した白
色の重合体を吸引取し、65mlの水に懸濁させ
た。これに飽和重そう水約80mlを添加混合し、室
温で30分間撹拌してカルボキシル基の中和反応を
行なうことにより均一溶液とした。得られた溶液
をセルロースチユーブを用いて純水に対して4℃
で3日間透析し、次いで凍結乾燥して2.45gの白
色固体を得た。得られた固体を赤外吸収スペクト
ルで調べたところ、ベンジルエステルの吸収は消
失しており、かつカルボキシル基がナトリウム塩
になつていることが確認された。ナトリウム塩と
しての収率は88%であつた。得られた重合体は下
記式で表わされるL−グルタメートとL−アラニ
ンの重合体のナトリウム塩と主体とするものであ
る。
A dispersion was prepared by adding 10.0 g of γ-benzyl-L-glutamic acid to 120 ml of anhydrous tetrahydrofuran. Separately, under a nitrogen atmosphere, add 20 ml of trichloromethyl chloroformate to carbon black 10.0
The generated phosgene was gradually added dropwise over 70 minutes to generate phosgene.
The dispersion of L-glutamic acid was sucked under a nitrogen atmosphere. After 70 minutes, the dispersion became a pale yellow transparent liquid, so the phosgene was stopped, and then nitrogen was sucked in for 1.5 hours to remove unreacted phosgene. The solvent was distilled off from the resulting transparent liquid under reduced pressure under a nitrogen stream (140 mmHg, 27°C). 150 ml of anhydrous n-hexane was added to the residue to dissolve it, and the mixture was stirred on an ice bath for 5 minutes to precipitate a white solid. This solid was purified by reprecipitation twice in a system of ethyl acetate-n-hexane (anhydrous) under a nitrogen atmosphere, collected by suction filtration, and dried under reduced pressure to produce γ-benzyl-L-glutamate N-carboxylic anhydride ( It has the following structural formula) Obtained 7.75 g as a white solid. The melting point of this thing is
The temperature was 94.0-94.°C (decomposition), and the yield was 69.8%. Example 1 7.75 g of γ-benzyl-L-glutamate N-carboxylic acid anhydride obtained in Reference Example was dried 1,4-
It was dissolved in 185 ml of dioxane under a nitrogen atmosphere with stirring. To the solution thus obtained, a solution obtained by dissolving 95 mg of cystamine (H 2 NCH 2 CH 2 SSCH 2 CH 2 NH 2 ) in 10 ml of dry dioxane was added and mixed, and the mixture was incubated at room temperature under nitrogen atmosphere for 24 hours. The mixture was stirred to carry out a polymerization reaction. After the reaction, the reaction mixture was added to the isopropyl ether of 4 with stirring to precipitate the produced polymer. When the precipitated white polymer was taken and dried under reduced pressure, the yield was 6.19g.
The yield was 95.9%. The average molecular weight of the obtained polymer was determined by the viscosity method (dichloroacetic acid, 25.0°C) and was found to be 47,300. (P. Doty et al., J. Am.
Chem.Soc., vol. 78, p. 947, 1956). The obtained polymer was determined from the raw materials, initiator, and reaction mechanism used to form a poly-γ-benzyl-L-
It was reasonably estimated that the substance was mainly composed of glutamate, and it was also confirmed by infrared absorption spectra. 3.11 g of poly-γ-benzyl-L-glutamate obtained above was dissolved in a mixed solution of 25.0 ml of trifluoroacetic acid and 4.5 ml of anisole. To the thus obtained solution, 25.0 ml of methanesulfonic acid was added, and the mixture was stirred for 20 minutes on an ice bath under a nitrogen atmosphere, and then stirred for 30 minutes at room temperature to carry out an acid decomposition reaction of the γ-benzyl ester. After the reaction, the reaction mixture
The polymer was precipitated by adding it to 450 ml of isopropyl ether with stirring. The precipitated white polymer was sucked out and suspended in 50 ml of water. Approximately 60 ml of saturated deuterated water was added to this and mixed. The mixture was stirred at room temperature for 30 minutes to carry out a neutralization reaction of carboxyl groups.
Thereafter, the obtained reaction solution was dialyzed against pure water at 4° C. for 3 days using a cellulose tube, and then freeze-dried to obtain 1.91 g of white solid. When the obtained solid was examined by infrared absorption spectrum, it was confirmed that the absorption of benzyl ester had disappeared and that the carboxyl group had become a sodium salt. The yield of poly-L-glutamate as sodium salt was 89.3%. In addition, viscosity method (salt-phosphoric acid buffer mixture, ionic strength 0.11 and
The average molecular weight determined by 1.01, 25.5℃) is 29200
It was hot. (RBHawkins et al., Macromolecules,
5, p. 294, 1972). The obtained polymer is
It is mainly composed of sodium salt of poly-L-glutamate of the following formula. Example 2 5.50 g of γ-benzyl-L-glutamate N-carboxylic acid anhydride obtained in Reference Example was dried 1,4-
It was dissolved in 150 ml of dioxane under a nitrogen atmosphere with stirring. A solution obtained by dissolving 142 g of n-propyl 2-aminoethyl disulfide (CH 3 CH 2 CH 2 SSCH 2 CH 2 NH 2 ) in 10 ml of dry dioxane was added to the solution obtained in this manner, and the mixture was heated under a nitrogen atmosphere. The mixture was stirred at room temperature for 40 hours to carry out a polymerization reaction. . After the reaction, the reaction mixture was added to the isopropyl ether of 4 with stirring to precipitate the produced polymer. When the precipitate was collected and dried under reduced pressure, the yield was 4.41 g, with a yield of 96.3%. Next, 4.00 g of the obtained polymer was dissolved in a mixture of 35 ml of trifluoroacetic acid and 5.0 ml of anisole, and 35 ml of methanesulfonic acid was added, and the mixture was incubated for 30 minutes under ice-cooling under a nitrogen atmosphere and for 30 minutes at room temperature. By stirring, the γ-benzyl ester was acid-decomposed. After the reaction was completed, the reaction mixture was added to 540 ml of isopropyl ether with stirring, and the polymer was precipitated and collected. This was dissolved in 100 ml of 5.0 deuterium soybean water and a carboxyl group neutralization reaction was carried out.
Next, the reaction solution was poured into a cellulose tube.
Dialysis was performed against pure water at 4°C for 3 days. When the obtained solution was freeze-dried, sodium poly-L-
2.33 g (77.4% yield) of glutamate was obtained as a hygroscopic flocculent solid. No benzyl ester absorption was observed in the infrared absorption spectrum of the product, confirming that the carboxyl group had become a sodium salt. The average molecular weight was 16,700 when measured using the same method as above. The obtained polymer is mainly composed of a sodium salt of poly-L-glutamate of the following formula. Example 3 10.0 g of γ-benzyl-L-glutamate N-carboxylic anhydride obtained in Reference Example and 0.23 g of L-alanine N-carboxylic acid anhydride were added to 280 ml of dry 1,4-dioxane under a nitrogen atmosphere. and stirred to dissolve. To the solution thus obtained, 198 mg of 4
A solution obtained by dissolving -aminophenyl disulfide in 10 ml of dry dioxane was added and mixed, and the mixture was stirred at room temperature under a nitrogen atmosphere for 24 hours to carry out a polymerization reaction. After the reaction, the reaction mixture was added to the isopropyl ether in step 4 with stirring, and the resulting polymer was used as a precipitate. The polymer precipitate was collected and dried under reduced pressure to obtain 8.21 g. The yield was 97%.
The obtained polymer is reasonably estimated to be a copolymer of γ-benzyl-L-glutamate and L-alanine as described below from the raw materials, initiator, and reaction mechanism used, and also has an infrared absorption property. It was also confirmed by spectra. 4.0 g of the thus obtained copolymer was dissolved in a mixed solution of 30 ml of trifluoroacetic acid and 5.0 ml of anisole. To the obtained solution, 30 ml of methanesulfonic acid was added, and the mixture was stirred for 20 minutes on an ice bath under a nitrogen atmosphere, and then stirred for 30 minutes at room temperature to carry out an acid decomposition reaction of the γ-benzyl ester. After the reaction, the reaction mixture was added to 600 ml of isopropyl ether with stirring to precipitate the polymer. The precipitated white polymer was suctioned off and suspended in 65 ml of water. Approximately 80 ml of saturated deuterated water was added and mixed to this, and the mixture was stirred at room temperature for 30 minutes to perform a neutralization reaction of carboxyl groups, thereby forming a homogeneous solution. The resulting solution was heated to pure water at 4°C using a cellulose tube.
for 3 days and then lyophilized to obtain 2.45 g of white solid. When the obtained solid was examined by infrared absorption spectrum, it was confirmed that the absorption of benzyl ester had disappeared and that the carboxyl group had become a sodium salt. The yield as sodium salt was 88%. The obtained polymer is mainly composed of a sodium salt of a polymer of L-glutamate and L-alanine represented by the following formula.

Claims (1)

【特許請求の範囲】 1 構成単位の60モル%以上が式〔〕で表わさ
れる構成単位からなり、 〔式中〔〕において、Zは水素原子又は1価
の陽イオンを表わす。mは1〜4の整数を表わす
る。〕 式〔〕の構成単位が100モル%でないとき、
残りの構成単位は、式〔′〕 〔式〔′〕において、Rは−H,−CH3
【式】または−CH2OHで表わされる 基である。〕 で表わされる構成単位からなり、そして主鎖中又
は主鎖のカルボキシル未端に式〔〕で表わされ
るジスルフイド結合含有基を有している、 〔式〔〕において、Wは炭素数1〜4のアル
キレン基を表わす。R1は水素原子又は炭素数1
〜4のアルキル基を表わす。R2は、式〔〕で
表わされる基が主鎖の末端基である場合には、ア
ルキル基、アラルキル基又はアリール基を表わ
し、式〔〕で表わされる基が主鎖中に存在する
場合には、【式】で表わされる2価の基で ある。但し、W′はWと同一又は異なる炭素数1
〜4のアルキレン基であり、式〔〕のSと結合
している。R1′はR1と同一又は異なり、水素原子
又は炭素数1〜4のアルキル基を表わす。〕重合
度が5〜3000の親水性重合体。 2 構成単位の60モル%以上が式〔〕で表わさ
れる構成単位からなり、 〔式〔〕において、Xはカルボキシル基の保
護基であり、炭素数1〜4のアルキル基、ベンジ
ル基、置換ベンジル基を表わす。mは1〜4の整
数を表わす。〕 式〔〕の構成単位が100モル%でないとき残り
の構成単位は、式〔′〕 〔式〔′〕において、Rは−H,−CH3
【式】または−CH2OHで表わされる 基である。〕 で表わされる構成単位からなり、そして主鎖中又
は主鎖のカルボキシル末端に式〔〕で表わされ
るジスルフイド結合含有基を有している、 〔式〔〕において、Wは炭素数1〜4アルキ
レン基を表わす。 R1は水素原子又は炭素数1〜4のアルキル基
を表わす。R2は、式〔〕で表わされる基が主
鎖の末端基である場合には、アルキル基、アラル
キル基又はアリール基を表わし、式〔〕で表わ
される基が主鎖中に存在する場合には、
【式】で表わされる2価の基である。但 し、W′はWと同一又は異なる炭素数1〜4のア
ルキレン基であり、式〔〕のSと結合してい
る。R1′はR1と同一又は異なり、水素原子又は炭
素数1〜4のアルキル基を表わす。〕 重合度が5〜3000の重合体を酸又はアルカリ分解
し、カルボキシル基の保護基Xを離脱させること
を特徴とする。構成単位の60モル%以上が式
〔〕で表わされる構成単位からなり、 〔式〔〕において、Zは水素原子又は1価の
陽イオンを表わす。mは1〜4の整数を表わ
す。〕 式〔〕の構成単位が100モル%でないとき、残
りの構成単位は、式〔′〕 〔式中、−Rの定義は、前記式〔′〕の場合と
同じ。〕 で表わされる構成単位からなり、そして主鎖中又
は主鎖のカルボキシル末端に式〔〕で表わされ
るジスルフイド結合含有期を有している、 〔式〔〕において、W,R1及びR2の定義は
前記式〔〕の場合と同じ。〕 重合度が5〜3000の親水性重合体の製造法。 3 式〔〕において、Xがメチル基又はベンジ
ル基である、特許請求の範囲第2項記載の親水性
重合体の製造法。
[Claims] 1. 60 mol% or more of the structural units consist of the structural units represented by the formula [], [In the formula [ ], Z represents a hydrogen atom or a monovalent cation. m represents an integer from 1 to 4. ] When the constituent units of formula [] are not 100 mol%,
The remaining structural units are expressed by the formula [′] [In formula [′], R is -H, -CH 3 ,
It is a group represented by [Formula] or -CH 2 OH. ], and has a disulfide bond-containing group represented by the formula [] in the main chain or at the carboxyl end of the main chain, In [Formula [], W represents an alkylene group having 1 to 4 carbon atoms. R 1 is a hydrogen atom or carbon number 1
~4 alkyl group. R 2 represents an alkyl group, an aralkyl group, or an aryl group when the group represented by the formula [] is a terminal group of the main chain, and when the group represented by the formula [] is present in the main chain, is a divalent group represented by [Formula]. However, W′ has the same or different carbon number as W
It is an alkylene group of ~4 and is bonded to S of the formula []. R 1 ' is the same as or different from R 1 and represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. ] Hydrophilic polymer with a degree of polymerization of 5 to 3000. 2 60 mol% or more of the structural units consist of the structural units represented by the formula [], In [Formula [], X is a protecting group for a carboxyl group, and represents an alkyl group having 1 to 4 carbon atoms, a benzyl group, or a substituted benzyl group. m represents an integer from 1 to 4. ] When the constituent units of formula [] are not 100 mol%, the remaining constituent units are of formula [′] [In formula [′], R is -H, -CH 3 ,
It is a group represented by [Formula] or -CH 2 OH. ], and has a disulfide bond-containing group represented by the formula [] in the main chain or at the carboxyl terminal of the main chain, In [Formula [], W represents an alkylene group having 1 to 4 carbon atoms. R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. R 2 represents an alkyl group, an aralkyl group, or an aryl group when the group represented by the formula [] is a terminal group of the main chain, and when the group represented by the formula [] is present in the main chain, teeth,
It is a divalent group represented by the formula: However, W' is an alkylene group having 1 to 4 carbon atoms, which is the same as or different from W, and is bonded to S in the formula []. R 1 ' is the same as or different from R 1 and represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. ] It is characterized in that a polymer having a degree of polymerization of 5 to 3000 is decomposed with an acid or alkali to remove the protecting group X of the carboxyl group. 60 mol% or more of the structural units consist of the structural units represented by the formula [], In [Formula [], Z represents a hydrogen atom or a monovalent cation. m represents an integer from 1 to 4. ] When the constituent units of formula [] are not 100 mol%, the remaining constituent units are of formula [′] [In the formula, the definition of -R is the same as in the above formula [']. ], and has a disulfide bond-containing period represented by the formula [] in the main chain or at the carboxyl terminal of the main chain, In [formula [], the definitions of W, R 1 and R 2 are the same as in the above formula []. ] A method for producing a hydrophilic polymer having a degree of polymerization of 5 to 3000. 3. The method for producing a hydrophilic polymer according to claim 2, wherein in formula [], X is a methyl group or a benzyl group.
JP7830480A 1980-05-21 1980-06-12 Hydrophilic polymer and its production Granted JPS575721A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7830480A JPS575721A (en) 1980-06-12 1980-06-12 Hydrophilic polymer and its production
EP81302118A EP0040506B1 (en) 1980-05-21 1981-05-13 Reactive polymer and process for the preparation thereof
DE8181302118T DE3175151D1 (en) 1980-05-21 1981-05-13 Reactive polymer and process for the preparation thereof
US06/265,924 US4385169A (en) 1980-05-21 1981-05-21 Reactive alpha amino acid polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7830480A JPS575721A (en) 1980-06-12 1980-06-12 Hydrophilic polymer and its production

Publications (2)

Publication Number Publication Date
JPS575721A JPS575721A (en) 1982-01-12
JPS6238369B2 true JPS6238369B2 (en) 1987-08-18

Family

ID=13658180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7830480A Granted JPS575721A (en) 1980-05-21 1980-06-12 Hydrophilic polymer and its production

Country Status (1)

Country Link
JP (1) JPS575721A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085494B2 (en) * 1990-07-19 1996-01-24 山中産業株式会社 Tetrahedral extraction bag

Also Published As

Publication number Publication date
JPS575721A (en) 1982-01-12

Similar Documents

Publication Publication Date Title
ES2404685T3 (en) Heterobifunctional poly (ethylene glycol) derivatives and methods for their preparation
AU723442B2 (en) Method for preparing drug complex
JP2745351B2 (en) Peptide derivatives and their uses
US4385169A (en) Reactive alpha amino acid polymer
JP4877225B2 (en) Polyoxyalkylene derivatives
CN101516969B (en) Targeted polylysine dendrimer therapeutic agent modified macromolecule 2
US20150105516A1 (en) Method for the preparation of high molecular weight oligo(alkylene glycol) functionalized polyisocyanopeptides
KR20010085742A (en) Polyamide chains of precise length, methods to manufacture them and their conjugates with proteins
CN110591079B (en) Preparation method of monofunctional nonlinear polyethylene glycol
BRPI0014652B1 (en) manufacture of therapeutic agent-polyglutamate conjugates
WO2006120914A1 (en) Polymeric derivative of cytidine metabolic antagonist
AU6488099A (en) Dds compounds and method for assaying the same
JPH04506203A (en) Aliphatic amino acids, homo- and hetero-oligomers, and their complexes
JPH09501674A (en) Drug Delivery Drugs Incorporating Mitomycin
JP4314229B2 (en) Amphiphilic cyclic phosphazene trimer having temperature sensitivity and biocompatibility and method for producing the same
US20090131589A1 (en) Controlled molecular weight amino acid polymers having functionalizable backbones and end groups and processes for preparing the same
CN111868096B (en) Reactive alginic acid derivatives
JPS6238369B2 (en)
JPS6238368B2 (en)
JP2017105794A (en) Diamine crosslinking agent, acidic polysaccharide crosslinked body, and medical material
AU2011248663A1 (en) Preparation of polypeptides and salts thereof
JPH0649013A (en) Amino acid derivative and its use
JPS6256898B2 (en)
JPS6219770B2 (en)
JP5286822B2 (en) Process for producing polyamino acid or polyamino acid copolymer