JPS6238365A - Velocity measuring instrument using laser beam - Google Patents

Velocity measuring instrument using laser beam

Info

Publication number
JPS6238365A
JPS6238365A JP17843585A JP17843585A JPS6238365A JP S6238365 A JPS6238365 A JP S6238365A JP 17843585 A JP17843585 A JP 17843585A JP 17843585 A JP17843585 A JP 17843585A JP S6238365 A JPS6238365 A JP S6238365A
Authority
JP
Japan
Prior art keywords
measured
laser
reflected
velocity
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17843585A
Other languages
Japanese (ja)
Other versions
JPH0588436B2 (en
Inventor
Hajime Kano
加野 元
Katsuji Hironaga
勝治 広永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KAGAKU KOGYO KK
Nippon Chemical Industrial Co Ltd
Original Assignee
NIPPON KAGAKU KOGYO KK
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KAGAKU KOGYO KK, Nippon Chemical Industrial Co Ltd filed Critical NIPPON KAGAKU KOGYO KK
Priority to JP17843585A priority Critical patent/JPS6238365A/en
Publication of JPS6238365A publication Critical patent/JPS6238365A/en
Publication of JPH0588436B2 publication Critical patent/JPH0588436B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To measure the velocity of the body to be measured correctly by adjusting the positions of the optical system and the body to be measured based on the reflecting light of two laser beams irradiated on the measuring face in the velocity measuring instrument using laser beam by dual beam mode. CONSTITUTION:A laser beam is divided into two parallel beams by a beam splitter 2 and irradiated on the body 6 to be measured through a condensing lens 3. In this case, a beam 20 is reflected by the body 6 to be measured and inputted into a photoelectric transducer 12 by being reflected with a half-mirror 5 passing through the condensing lens 3. A beam 21 is reflected by the body 6 to be measured similarly as well and inputted to a photoelectric transducer 11. The position of the body 6 to be measured is then adjusted so as to make the output difference minimum by inputting the output of two photoelectric transducers 11, 12 to a differential convertor 13. After this adjustment, the reflecting beam from the body 6 to be measured is received to a photoelectric transducer 9 via reflection lens 7, condensing lens 8 in the dual beam mode and then the velocity is measured by a signal processor 10. The velocity of the body to be measured can therefore be measured with high accuracy due to the position of the body to be measured being adjusted.

Description

【発明の詳細な説明】 〔発明の分野〕 本発明はレーザビームを用いたレーザ速度測定装置に関
し、いわゆるデュアルビームモードのレーザ速度測定装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a laser speed measuring device using a laser beam, and more particularly to a so-called dual beam mode laser speed measuring device.

〔従来技術とその問題点〕[Prior art and its problems]

従来より可干渉性及び単色性に優れたレーザ光の特徴に
着目してレーザ光を用いて粒子速度を測定する装置が提
案され、近年デュアルビームによるレーザ速度計が広く
用いられている。デュアルビームモードのレーザ速度計
は同一の偏波面を有するレーザビームを一点で交叉させ
て干渉縞を形成し、交叉領域を被測定物体が通過すると
きに生じる散乱光が干渉縞に対応した周期的な強度変化
を有することから物体の速度を測定するものである。と
ころでこのようなレーザ速度測定装置では、測定対象が
平面である場合には二本のレーザビームをその測定対象
の面に垂直に照射し検知面に沿った干渉縞を形成させる
必要があるが、光学系をこのように正しく設定すること
は困難であり、正しく設定されているか判断しに<<、
光学系の調整に手間がかかるという欠点があった。
BACKGROUND ART Conventionally, devices for measuring particle velocity using laser light have been proposed, focusing on the characteristics of laser light that is excellent in coherence and monochromaticity, and in recent years, dual-beam laser velocimeters have been widely used. A dual-beam mode laser velocimeter intersects laser beams with the same polarization plane at one point to form interference fringes, and the scattered light generated when the object to be measured passes through the intersection area has a periodic pattern corresponding to the interference fringes. It is used to measure the velocity of an object because it has a change in intensity. By the way, in such a laser speed measurement device, when the object to be measured is a flat surface, it is necessary to irradiate two laser beams perpendicularly to the surface of the object to be measured to form interference fringes along the detection surface. It is difficult to set the optical system correctly in this way, so it is difficult to determine whether it is set correctly.
The drawback was that it took time and effort to adjust the optical system.

〔発明の目的〕[Purpose of the invention]

本発明はこのような従来のレーザ速度測定装置の問題点
を解消するものであって、測定面に照射したレーザ光の
反射光に基づいて光学系と被測定物体との相対的な位置
を調整することによって、二本のレーザビームと測定面
との角度を正確に一致させることができる速度測定装置
を提供するものである。
The present invention solves these problems with conventional laser speed measuring devices, and adjusts the relative position between the optical system and the object to be measured based on the reflected light of the laser beam irradiated onto the measurement surface. By doing so, it is possible to provide a speed measuring device that can accurately match the angles between two laser beams and a measuring surface.

〔発明の構成と効果〕[Structure and effects of the invention]

本発明はレーザ光源と、レーザ光を二本のレーザビーム
に分離するビームスプリッタと、該二本のレーザビーム
を集束させる集束レンズとを有し、デュアルビームモー
ドにより散乱光の強度変化の周波数に基づいて速度を測
定するレーザ速度測定装置であって、レーザビームの通
過経路に挿入されレーザビームを透過させると共に、該
二本のレーザビームの反射光を夫々分離する第1.第2
の光学手段と、第1.第2の光学手段の反射光出力を夫
々その光強度に対応した電気信号に変換する第1.第2
の光電変換器と、第1.第2の光電変換器の出力差を増
幅する差動増幅器と、差動増幅器の出力を表示する表示
部と、を具備することを特徴とするものである。
The present invention has a laser light source, a beam splitter that separates the laser light into two laser beams, and a focusing lens that focuses the two laser beams, and uses a dual beam mode to adjust the frequency of the intensity change of the scattered light. This is a laser speed measurement device that measures speed based on a first laser beam, which is inserted into a passage path of a laser beam, transmits the laser beam, and separates the reflected lights of the two laser beams. Second
a first optical means; The first optical means converts the reflected light output of the second optical means into electrical signals corresponding to the respective optical intensities. Second
a photoelectric converter; The device is characterized in that it includes a differential amplifier that amplifies the output difference of the second photoelectric converter, and a display section that displays the output of the differential amplifier.

このように本発明による光学系の調整装置は、デュアル
ビームモードによるレーザ速度測定装置に容易に付加す
ることができる。本発明によれば二本のレーザビームの
反射光の強度差が常に表示部によって表示されるため、
その指示値が小さくなるように光学系の配置及び被測定
物の位置の調整をすることができる。そうしてその指示
値が零となれば二本のレーザビームの交叉領域、即ち干
渉縞が形成される領域に被測定物が位置し、且つ二本の
レーザビームと被測定物の表面とが正確に垂直になるよ
うな位置にあることが知られる。従ってこのような位置
調整を行った後デュアルビームモードで被測定物の速度
を測定すれば、正確な測定が可能となる。
As described above, the optical system adjustment device according to the present invention can be easily added to a dual beam mode laser velocity measuring device. According to the present invention, since the difference in intensity between the reflected lights of the two laser beams is always displayed on the display unit,
The arrangement of the optical system and the position of the object to be measured can be adjusted so that the indicated value becomes smaller. If the indicated value becomes zero, the object to be measured is located in the area where the two laser beams intersect, that is, the area where interference fringes are formed, and the two laser beams and the surface of the object to be measured are located. It is known that the position is exactly vertical. Therefore, if the speed of the object to be measured is measured in the dual beam mode after performing such position adjustment, accurate measurement becomes possible.

〔実施例の説明〕[Explanation of Examples]

第1図は本発明によるレーザ速度測定装置の一実施例を
示すブロック図である。本図においてレーザ光源1は単
一周波数のレーザ光源とし、レーザ出力をビームスプリ
ンタ2に与える。ビームスプリッタ2はレーザ光を信号
強度と偏光面の等しい二本の平行なレーザビームに分離
するものであって、それらのレーザビームは集束レンズ
3に与えられる。ビームスプリッタ2と集束レンズ3と
の間にはビームスプリッタ2がら集束レンズ3に向かう
レーザビームを透過させるハーフミラ−4゜5が設けら
れている。そして集束レンズ3の焦点位置には速度を検
知すべき物体の壁面が二本のレーザビームに垂直となる
ように速度測定装置の光学系と被測定物体6とを配置す
るものとする。ビームスプリッタ2と集束レンズ3との
間の二つのレーザビームの間には散乱光を反射させる反
射鏡7が設けられる。そして反射鏡7を介して集束レン
ズ3と対向する位置には散乱光を集光する集光レンズ8
が設けられ、集光レンズ8のの焦点位置には光電変換器
9が設けられる。光電変換器9は散乱光を電気信号に変
換するものであって、例えばアバランシェ型のフォトダ
イオード等から成り、光電変換した電気信号を信号処理
装置1oに与える。信号処理装置10は光電変換器9の
出力信号の周波数を測定することによって被測定物体6
の速度を求めて出力するものである。さて本発明ではビ
ームスプリッタ2と集束レンズ3との間に設けられたハ
ーフミラ−4,5の反射光を受光する位置に、更に二つ
の光電変換器11.12を設ける。光電変換器11.1
2は反射光強度のレベルを検知するものであって、その
出力は直流信号として差動増幅器13に与えられる。差
動増幅器13はこれらの出力レベルの電位差を増幅して
その増幅出力を電圧計14に与えるものである。
FIG. 1 is a block diagram showing an embodiment of a laser velocity measuring device according to the present invention. In this figure, a laser light source 1 is a single frequency laser light source and provides a laser output to a beam splinter 2. The beam splitter 2 separates the laser light into two parallel laser beams having the same signal intensity and plane of polarization, and these laser beams are applied to the focusing lens 3. A half mirror 4.degree. 5 is provided between the beam splitter 2 and the focusing lens 3 to transmit the laser beam directed from the beam splitter 2 toward the focusing lens 3. The optical system of the speed measuring device and the object to be measured 6 are arranged at the focal position of the focusing lens 3 so that the wall surface of the object whose speed is to be detected is perpendicular to the two laser beams. A reflecting mirror 7 is provided between the two laser beams between the beam splitter 2 and the focusing lens 3 to reflect the scattered light. A condenser lens 8 that condenses the scattered light is located at a position facing the condenser lens 3 via the reflector 7.
is provided, and a photoelectric converter 9 is provided at the focal position of the condenser lens 8. The photoelectric converter 9 converts scattered light into an electrical signal, and is made of, for example, an avalanche type photodiode, and provides the photoelectrically converted electrical signal to the signal processing device 1o. The signal processing device 10 detects the object to be measured 6 by measuring the frequency of the output signal of the photoelectric converter 9.
It calculates and outputs the speed of Now, in the present invention, two more photoelectric converters 11 and 12 are provided at positions for receiving reflected light from the half mirrors 4 and 5 provided between the beam splitter 2 and the focusing lens 3. Photoelectric converter 11.1
Reference numeral 2 detects the level of reflected light intensity, and its output is given to the differential amplifier 13 as a DC signal. The differential amplifier 13 amplifies the potential difference between these output levels and provides the amplified output to the voltmeter 14.

次に本実施例のレーザ速度測定装置の動作について説明
する。レーザ光源1より発振したレーザ光はビームスプ
リッタ2によって二本の平行なレーザビーム20.21
に分離され、それらが集束レンズ3を介して被測定物体
6の表面に照射される。ここで被測定物体6の表面が平
坦である場合には一方のレーザビーム20の反射光はそ
の表面と成す角度に等しい角度で反射し、再び集束レン
ズ3に与えられる。同様にして他方のレーザビーム21
は集束レンズ3を通って被測定物体6に与えられ、その
反射光が再び集束レンズ3に伝わる。
Next, the operation of the laser speed measuring device of this embodiment will be explained. The laser beam oscillated from the laser light source 1 is split into two parallel laser beams 20 and 21 by the beam splitter 2.
The light beams are separated into two and are irradiated onto the surface of the object to be measured 6 through the focusing lens 3. Here, if the surface of the object to be measured 6 is flat, the reflected light of one of the laser beams 20 is reflected at an angle equal to the angle formed with the surface, and is applied to the focusing lens 3 again. Similarly, the other laser beam 21
is applied to the object to be measured 6 through the focusing lens 3, and its reflected light is transmitted to the focusing lens 3 again.

ここでレーザビーム20と被測定物体6との表面のなす
角を図示のように01とすると、その反射光と被測定物
体6とのなす角度もθ1に等しい。
If the angle between the laser beam 20 and the surface of the object to be measured 6 is 01 as shown in the figure, the angle between the reflected light and the object to be measured 6 is also equal to θ1.

同様にレーザビーム21と被測定物体6の表面とのなす
角度を02とすると、その反射光と被測定物体6とのな
す角度もθ2に等しい。ハーフミラ−4,5はこれらの
反射光を夫々光電変換器11゜12に与える。光電変換
器11.12からは反射光強度に対応したレベルの信号
が得られ、その直流出力が差動増幅器13によって増幅
されて電圧計14によって表示される。ここで被測定物
体6を照射点を中心にして第1図に矢印Aで示すように
回動させ、電圧計14の値が最小となる位置を見出すよ
うにする。これが最小となる場合は二つのレーザビーム
20.21の反射光の強度差が最小となっている。次い
で被測定物体6を矢印B方向、即ちレーザビーム20.
21に対して前後に移動させ電圧計14の値が零となる
位置を見出す。
Similarly, if the angle between the laser beam 21 and the surface of the object to be measured 6 is 02, the angle between the reflected light and the object to be measured 6 is also equal to θ2. Half mirrors 4 and 5 provide these reflected lights to photoelectric converters 11 and 12, respectively. Signals having a level corresponding to the reflected light intensity are obtained from the photoelectric converters 11 and 12, and the DC output thereof is amplified by the differential amplifier 13 and displayed by the voltmeter 14. Here, the object to be measured 6 is rotated about the irradiation point as shown by arrow A in FIG. 1, and the position where the value of the voltmeter 14 is minimum is found. When this is the minimum, the difference in intensity between the reflected lights of the two laser beams 20 and 21 is the minimum. Next, the object to be measured 6 is directed in the direction of arrow B, that is, the laser beam 20.
21 and find the position where the value of the voltmeter 14 becomes zero.

二本のレーザビーム20.21が被測定物体6の表面で
交わり被測定物体6とのなす角度θ1.θ2が等しい場
合には、レーザビーム20の反射光がレーザビーム21
と等しい線を通過し、ハーフミラ−5によってレーザビ
ーム21と垂直に反射され最大の光量が光電変換器12
に与えられる。又この場合にはレーザビーム21は被測
定物体6の表面で反射してレーザビーム20と同一の線
を通過し、ハーフミラ−4によってレーザビーム20と
垂直に反射され、最大の光量が光電変換器11に与えら
れて電気信号に変換される。そしてこれらの電気信号出
力はθ1と02が等しい場合に等しくなるのでその電圧
差もOとなる。このようにして電圧計14の表示が零と
なる位置に被測定物体6を配置すれば、被測定物体6の
表面は二本のレーザビーム20.21に対して垂直であ
り、且つ交叉領域に位置するように配置される。従って
光学系をこのような配置に調整することが極めて容易と
なり、デュアルビームモードによるレーザ速度測定装置
により被測定物体6の速度を正確に測定することが可能
となる。
The two laser beams 20 and 21 intersect on the surface of the object to be measured 6 and form an angle θ1. When θ2 is equal, the reflected light of the laser beam 20 is the laser beam 21
The laser beam passes through a line equal to
given to. In this case, the laser beam 21 is reflected by the surface of the object to be measured 6, passes along the same line as the laser beam 20, and is reflected perpendicularly to the laser beam 20 by the half mirror 4, so that the maximum amount of light is transmitted to the photoelectric converter. 11 and is converted into an electrical signal. Since these electrical signal outputs are equal when θ1 and 02 are equal, the voltage difference between them is also O. If the object to be measured 6 is placed at a position where the display on the voltmeter 14 becomes zero in this way, the surface of the object to be measured 6 will be perpendicular to the two laser beams 20 and 21 and will be in the intersection area. be arranged to be located. Therefore, it is extremely easy to adjust the optical system to such an arrangement, and it becomes possible to accurately measure the speed of the object to be measured 6 using the dual beam mode laser speed measuring device.

尚本実施例では全ての光学系を直接被測定物に対して所
定の位置関係となるように配置するように構成したが、
レーザ光源1とビームスプリッタ2との間に偏光面を保
存する偏光面保存型の光ファイバを設け、更にハーフミ
ラ−4,5と光電変換器11.12との間及び集光レン
ズ8と光電変換器9との間を夫々光ファイバによって結
び、光学系と信号処理系を分離するように構成すること
も可能である。
In this example, all the optical systems were arranged so as to have a predetermined positional relationship directly with respect to the object to be measured.
A polarization-preserving optical fiber is provided between the laser light source 1 and the beam splitter 2, and a polarization-preserving optical fiber is provided between the half mirrors 4 and 5 and the photoelectric converters 11 and 12, and between the condenser lens 8 and the photoelectric converter. It is also possible to configure the optical system and the signal processing system to be separated from each other by connecting them to the device 9 through optical fibers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるレーザ速度測定装置の一実施例を
示すブロック図である。 1−−−−−−−レーザ光源  2−・・−ビームスプ
リッタ3・−一一一一一集束レンズ  4. 5−−−
−・ハーフミラ−6−−−−−−・被測定物体  7−
・・−反射@  8−・−集光レンズ  9 、 11
 、 12−−−−−−一光電変換器10・−−−−−
一信号処理装置  13・・・−・−・差動増幅器14
・−・・・・−電圧計
FIG. 1 is a block diagram showing an embodiment of a laser velocity measuring device according to the present invention. 1--------Laser light source 2--Beam splitter 3--11111 Focusing lens 4. 5---
−・Half mirror−6−−−−−・Object to be measured 7−
...-Reflection@8--Condensing lens 9, 11
, 12------One photoelectric converter 10------
- Signal processing device 13...--Differential amplifier 14
・-・・・・・・-Voltmeter

Claims (2)

【特許請求の範囲】[Claims] (1)レーザ光源と、前記レーザ光を二本のレーザビー
ムに分離するビームスプリッタと、該二本のレーザビー
ムを集束させる集束レンズとを有し、デュアルビームモ
ードにより散乱光の強度変化の周波数に基づいて速度を
測定するレーザ速度測定装置において、 前記レーザビームの通過経路に挿入されレーザビームを
透過させると共に、該二本のレーザビームの反射光を夫
々分離する第1、第2の光学手段と、 前記第1、第2の光学手段の反射光出力を夫々その光強
度に対応した電気信号に変換する第1、第2の光電変換
器と、 前記第1、第2の光電変換器の出力差を増幅する差動増
幅器と、 前記差動増幅器の出力を表示する表示部と、を具備する
ことを特徴とするレーザ速度測定装置。
(1) It has a laser light source, a beam splitter that separates the laser light into two laser beams, and a focusing lens that focuses the two laser beams, and uses a dual beam mode to change the frequency of the intensity of scattered light. A laser speed measuring device that measures speed based on the following: first and second optical means inserted into the passage path of the laser beam to transmit the laser beam and separate reflected lights of the two laser beams, respectively. and first and second photoelectric converters that convert reflected light outputs of the first and second optical means into electrical signals corresponding to the light intensities thereof, respectively; and of the first and second photoelectric converters. A laser speed measuring device comprising: a differential amplifier that amplifies an output difference; and a display section that displays the output of the differential amplifier.
(2)前記第1、第2の光学手段は、ハーフミラーであ
ることを特徴とする特許請求の範囲第1項記載のレーザ
速度測定装置。
(2) The laser speed measuring device according to claim 1, wherein the first and second optical means are half mirrors.
JP17843585A 1985-08-12 1985-08-12 Velocity measuring instrument using laser beam Granted JPS6238365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17843585A JPS6238365A (en) 1985-08-12 1985-08-12 Velocity measuring instrument using laser beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17843585A JPS6238365A (en) 1985-08-12 1985-08-12 Velocity measuring instrument using laser beam

Publications (2)

Publication Number Publication Date
JPS6238365A true JPS6238365A (en) 1987-02-19
JPH0588436B2 JPH0588436B2 (en) 1993-12-22

Family

ID=16048463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17843585A Granted JPS6238365A (en) 1985-08-12 1985-08-12 Velocity measuring instrument using laser beam

Country Status (1)

Country Link
JP (1) JPS6238365A (en)

Also Published As

Publication number Publication date
JPH0588436B2 (en) 1993-12-22

Similar Documents

Publication Publication Date Title
US4897536A (en) Optical axis displacement sensor with cylindrical lens means
EP0947834B1 (en) Detection of air flow speed and flow direction
JPH06186337A (en) Laser distance measuring equipment
JPS6238365A (en) Velocity measuring instrument using laser beam
JPS60243583A (en) Laser doppler speedometer
JPH0238808A (en) Photosensor
US4884888A (en) Method and device for contactless optical measurement of distance changes
JP3096795B2 (en) Tracking ranging system
JPH09281134A (en) Laser current meter
SU1091076A1 (en) Optical doppler meter of reynolds stresses in liquid or gas flow
JPS62156563A (en) Measuring device for speed and distance
JPS6154422A (en) Method and instrument for measuring mode field diameter of optical fiber
JPH0520195B2 (en)
JPS6262208A (en) Range-finding apparatuws and method
RU1796901C (en) Device for contact-free measuring items profile
SU1582039A1 (en) Device for determining position of focal plane of lens
RU2055309C1 (en) Device for measuring oscillations of object
JPH05107346A (en) Laser doppler speed meter
JPS6283604A (en) Displacement transducer
JPH084564Y2 (en) Optical displacement measuring instrument
RU2148790C1 (en) Method and device for precise contactless measurement of distance between surfaces
CN117805431A (en) Laser Doppler instantaneous rotating speed measuring device and method
SU739346A1 (en) Device for measuring vibration parameters
RU2091711C1 (en) Process of range measurement and device for its realization
JPS5965815A (en) Focus detector