JPS6238358A - Weighting method for ultrasonic probe - Google Patents

Weighting method for ultrasonic probe

Info

Publication number
JPS6238358A
JPS6238358A JP60178960A JP17896085A JPS6238358A JP S6238358 A JPS6238358 A JP S6238358A JP 60178960 A JP60178960 A JP 60178960A JP 17896085 A JP17896085 A JP 17896085A JP S6238358 A JPS6238358 A JP S6238358A
Authority
JP
Japan
Prior art keywords
weighting
elements
end parts
center part
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60178960A
Other languages
Japanese (ja)
Inventor
Yuichi Sugiyama
雄一 杉山
Kazuhiro Watanabe
一宏 渡辺
Yoshitaka Abe
芳孝 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60178960A priority Critical patent/JPS6238358A/en
Publication of JPS6238358A publication Critical patent/JPS6238358A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To reduce the side lobe of an ultrasonic wave by composing an array type ultrasonic probe of an array of plural piezoelectric elements and weighting transmission/reception sensitivity given to the respective elements curvedly so that the extent of the weighting is larger at the center part and smaller at both end parts. CONSTITUTION:More than tow piezoelectric elements are weighted equally at the center part (x1--X1) of the opening of the probe to obtain a flat characteristic, elements are weighted differently between the center part and both end parts (x1-X2 and -x1--x2) to obtain a steep characteristic, and elements are weighted at different pitches of >=2 elements at both end parts (x2-x3 and -x2--x3) to obtain slot characteristic. Thus, the weighting is carried out as shown by a polygonal line (dotted line) and approximated to a weighting function X(x) to simplify the circuit. Then, a constant voltage source 20 generates weighting levels W1, W2 ... and weight is selected according to the signal of memory 22 and inputted to switches 31=3N. Outputs of the switches 31-3N are supplied to buffers 41-4N to obtain their outputs EW1-EWN. Consequently, the weighting is performed stepwise to obtain an excellent sound pressure distribution.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、アレイ型超音波探触子の各素子に加える送受
信パルスの重み付け法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of weighting transmitted and received pulses applied to each element of an array type ultrasonic probe.

〔従来の技術〕[Conventional technology]

超音波診断装置では被検体に超音波を送出し、その反射
波又は透過波を受信して診断を行なうが、その超音波送
受信に用いる探触子(送、受信器)には圧電素子を複数
個配列し、各素子の駆動態様を変えてサイドローブの低
減、ビーム収束、又は電子的走査を行なうものがある。
Ultrasonic diagnostic equipment transmits ultrasonic waves to the subject and receives the reflected waves or transmitted waves to perform diagnosis. There are devices in which side lobes are reduced, beam convergence is achieved, or electronic scanning is performed by arranging individual elements and changing the driving mode of each element.

第6図はサイドローブを説明する図で、10はリニアア
レイ型探触子、1).12.・・・・・・INはその各
素子(PZTなどの圧電素子)である。これらの圧電素
子に共通のパルス電圧を印加して超音波を発生させ、そ
のX軸方向(素子配列方向)の音圧分布を求めると実線
曲線C1の如くなり、メインローブMLの他に多数のサ
イドローブSLが生じる。送信時には各圧電素子に印加
するパルス電圧を曲線C3で示すように中央のものは大
、両端部のものは小にすると点線曲線C2に示すように
サイドローブは低減する。受信時には各素子に対する受
信回路の増幅率を曲線C3のようにすれば同様な結果が
得られる。
FIG. 6 is a diagram explaining side lobes, 10 is a linear array type probe, 1). 12. . . . IN is each element (piezoelectric element such as PZT). When a common pulse voltage is applied to these piezoelectric elements to generate ultrasonic waves, and the sound pressure distribution in the X-axis direction (element arrangement direction) is determined, the solid line curve C1 shows that in addition to the main lobe ML, there are many ultrasonic waves. A side lobe SL occurs. When the pulse voltage applied to each piezoelectric element during transmission is made large at the center as shown by curve C3 and small at both ends, the side lobe is reduced as shown by dotted curve C2. During reception, similar results can be obtained by setting the amplification factor of the receiving circuit for each element as shown by curve C3.

アレイ型探触子では回路部の簡素化が重要な課題である
。即ち圧電素子毎に送、受信回路が付くので素子数が4
0〜50なら送信回路及び受信回路も同数必要になり、
回路規模は相当に大になる。
Simplification of the circuit section is an important issue in array type probes. In other words, each piezoelectric element has a transmitting and receiving circuit, so the number of elements is 4.
If it is 0 to 50, the same number of transmitting circuits and receiving circuits are required,
The circuit scale becomes considerably large.

リニアアレイ型探触子ではグレーティングローブ(gr
ating 1obe)が出ないようにすると素子数は
大になる。第7図は圧電素子のピッチを1.231mに
した場合C+、0.817mmにした場合C2,0,4
鶴にした場合C3、及び0.2 mにした場合04の音
圧分布を示しており、C1,C2では大きなグレーティ
ングローブ(曲線中間部のピークがそれ)が発生し、画
像に悪影響を与える。C3以降ではグレーティングロー
ブは殆んど発生しないので03以降が実用に適するが、
ピッチが小なので素子数は大である。素子数で言うと、
C+は16、C2は24、C3は49、C4は98であ
り、実用に適するC3以降では開口部だけでも送、受信
回路数は49以上になる。
In linear array type probes, grating lobes (gr)
The number of elements increases if the output (ating 1 obe) is prevented. Figure 7 shows C+ when the pitch of the piezoelectric element is 1.231 m, and C2, 0, 4 when the pitch is 0.817 mm.
The sound pressure distributions are C3 when the crane is used, and 04 when the distance is 0.2 m, and large grating lobes (the peak at the middle of the curve) are generated at C1 and C2, which adversely affects the image. Grating lobes hardly occur after C3, so 03 and above are suitable for practical use.
Since the pitch is small, the number of elements is large. In terms of number of elements,
C+ is 16, C2 is 24, C3 is 49, and C4 is 98, and after C3, which is suitable for practical use, the number of transmitting and receiving circuits is 49 or more even just for the aperture.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

リニアアレイ型探触子で各素子に重み付け(駆動電圧の
重み付け及び又は受信回路利得の重み付け)するとサイ
ドローブを低減することができるが、そのサイドローブ
低域に有効な重み付け曲線は第6図の曲線C3の如くで
あり、連続的に変化する曲線である。従って素子数が4
5なら、X軸上45点の曲線C3の値を求め、それを各
素子の重み付け係数とすることになるが、この部分の回
路量も相当に大となる。本発明はか−る点を改善し、回
路構成を簡略化し得る重み付け法を提供しようとするも
のである。
Side lobes can be reduced by weighting each element in a linear array probe (driving voltage weighting and/or receiver circuit gain weighting), but the effective weighting curve for the low side lobe range is shown in Figure 6. It is like the curve C3, which is a curve that changes continuously. Therefore, the number of elements is 4
5, the values of the curve C3 at 45 points on the X-axis are determined and used as the weighting coefficients for each element, but the amount of circuitry for this part is also considerably large. The present invention aims to improve these points and provide a weighting method that can simplify the circuit configuration.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、複数の圧電素子を配列したアレイ型超音波探
触子の各素子に与える送受信感度の重み付け法において
、送信又は受信時に選択された開口部の各圧電素子に対
する重み付け関数の近似として、開口中央部の素子には
2素子以上同じ重みを、開口両端部分では2素子以上の
ピンチで重みを変化させ、これらの間では1素子毎に異
なるmみを与えるようにして、重みづけの段数を減少さ
せて、重みづけ部分の回路構成を簡略化することを特徴
とするものである。
The present invention provides an approximation of the weighting function for each piezoelectric element in an aperture selected during transmission or reception in a method of weighting transmission and reception sensitivity to each element of an array-type ultrasonic probe in which a plurality of piezoelectric elements are arranged. The number of weighting stages is determined by applying the same weight to two or more elements in the center of the aperture, changing the weight by pinching two or more elements at both ends of the aperture, and giving a different m to each element between these. This feature is characterized in that the circuit configuration of the weighting part is simplified by reducing the weighting part.

〔作用〕[Effect]

重み付けの曲線を重み付け関数と呼び、W (X)で表
わす。本発明では重み付け曲線を第1図の点線の如く折
れ線で近似する。±X+、  ±x2は折曲点のX座標
、±x3は端点のX座標である。重み付け関数W (X
lは一般に図示の如(開口の中央部(X=0)で平坦で
、開口の両端でなだらか、これらの間で比較的急傾斜で
ある。そこで点線曲線は■−X l < X≦X+では
平坦(X軸に平行)、■X l < X≦X2.−XI
≧X≧−x2では急傾斜、■x2≦X≦X3.−X2≧
X≧−x3では緩傾斜の各直線とし、■では2素子以上
のピンチで重み係数を変化させ、■では1素子毎に重み
係数を変化させ、■でも複数素子毎に重み係数を変える
The weighting curve is called a weighting function and is represented by W (X). In the present invention, the weighting curve is approximated by a polygonal line such as the dotted line in FIG. ±X+, ±x2 are the X coordinates of the bending points, and ±x3 are the X coordinates of the end points. Weighting function W (X
As shown in the figure, l is generally flat at the center of the aperture (X=0), gentle at both ends of the aperture, and has a relatively steep slope between these. Therefore, the dotted curve is -X l < X≦X+ Flat (parallel to the X axis), ■X l < X≦X2.-XI
≧X≧−x2, the slope is steep; ■x2≦X≦X3. −X2≧
For X≧−x3, each straight line has a gentle slope, for ■, the weighting coefficient is changed in a pinch of two or more elements, for ■, the weighting coefficient is changed for each element, and for ■, the weighting coefficient is changed for each plurality of elements.

このようにすると重み付け回路の簡略化が可能になる。In this way, the weighting circuit can be simplified.

超音波ビームのリニア型電子走査をする場合はアレイ型
探触子の一部の圧電素子を駆動して該ビームを発生し、
該駆動圧電素子群の一端の1素子  ゛を外し、他端で
は非駆動素子を1つ取入れて新たな素子群としてこれを
駆動し、以下同様操作を繰り返して超音波ビームを該一
部より他端へ走査する、という手法をとるが、この場合
重み付け関数W (X)が与えられるのは同時駆動され
る素子群(開口部の素子群)である。
When linear electronic scanning of an ultrasonic beam is performed, the beam is generated by driving some piezoelectric elements of an array type probe.
Remove one element at one end of the driven piezoelectric element group, take in one non-driven element at the other end, drive this as a new element group, and repeat the same operation to direct the ultrasound beam from one part to another. A method of scanning toward the end is used, but in this case, the weighting function W (X) is given to the simultaneously driven element group (the aperture element group).

重み付け関数はD/A変換器で発生させることができる
が、この方式では±3%の誤差を許すとしてもD/A変
換器の入力は5ビツト以上必要になる。このDAC方式
よりは、複数個の重み付けレベルWl、W2.・・・・
・・Wmを予め用意し、アナログスイッチによりそれを
選択する方式の方が簡単である。このようにすれば8段
階の不等間隔の重み付けレベルも3ビツトの入力で選択
できる。
The weighting function can be generated by a D/A converter, but in this method, even if an error of ±3% is allowed, the input to the D/A converter requires 5 bits or more. This DAC method uses a plurality of weighting levels Wl, W2 .・・・・・・
...It is easier to prepare Wm in advance and select it using an analog switch. In this way, 8 levels of weighting levels at unequal intervals can be selected by inputting 3 bits.

第2図にそのハードウェアを示す。Figure 2 shows the hardware.

第2図で20は定電圧源であり、重み付けレベルWl、
W2.・・・・・・を発生する。31.32・・・・・
・は選択スイッチであり、定電圧源20の出力W + 
In FIG. 2, 20 is a constant voltage source, and the weighting level Wl,
W2. ...is generated. 31.32...
・ is a selection switch, and the output W + of the constant voltage source 20
.

W 2 、・・・・・・のうちの1つをメモリ22から
の信号により選択する。41,42.・・・・・・はバ
ッファであり、スイッチ31,32.・・・・・・が選
択した重み付けレベルを出力する。EWI、EV2.・
・・・・・がその出力である。重み付けレベルが8種(
N=8)の場合はメモリ22が出力するスイッチ制御信
号は3ビツトあればよく、ハードウェアの簡素化が図れ
る。電子走査をする場合容素子に加える重み付けは各走
査線で変化するが、メモリ22はこの目的のもので、各
走査線における各素子型み付けを記憶しており、走査線
アドレスで読み出されて当該走査線における重み付けレ
ベル選択出力を生じる。
One of W 2 , . . . is selected by a signal from the memory 22. 41, 42. . . . are buffers, and switches 31, 32 . . . . outputs the selected weighting level. EWI, EV2.・
...is the output. 8 weighting levels (
In the case of N=8), the switch control signal output from the memory 22 only needs to be 3 bits, and the hardware can be simplified. When electronic scanning is performed, the weighting applied to the capacitive elements changes for each scanning line, and the memory 22 is for this purpose, storing the patterning of each element in each scanning line, which is read out using the scanning line address. to produce a weighting level selection output for that scan line.

スイッチ31の構成例を第3図に示す。本例では重み付
けレベルを8種としており、3ビツトのスイッチ制御信
号Bo、B1.B2で選択する。
An example of the configuration of the switch 31 is shown in FIG. In this example, there are eight weighting levels, and the 3-bit switch control signals Bo, B1 . Select with B2.

スイッチ32・・・・・・3Nについても同様である。The same applies to the switches 32...3N.

出力Ew l 、 EV 2 、・・・・・・は送信時
には電力増幅されたのち送信パルスの電源となり、受信
時にはAGC回路に入って受信回路の利得を制御する。
The outputs Ew l , EV 2 , . . . are power amplified during transmission and then serve as power sources for transmission pulses, and during reception enter the AGC circuit to control the gain of the receiving circuit.

バッファ41は第4図に示すように接続して反転出力E
 w +を生じるようにしてもよい。
The buffer 41 is connected as shown in FIG.
w + may be generated.

グイナミソクフォーカスを行ない、開口を可変にする場
合は、W (X)とXの対応(スイッチ制御信号と走査
線アドレスとの対応)を変えて近似すればよ<、精度を
上げたい場合はダイナミックフォーカスの段数に応じて
定電圧をW1〜W8からW1〜W e ’へ、更にはW
I“〜W8“へ変更すればよい。このような変更を行な
っても、定電圧源は各素子に対して共通であるので、回
路の負担は大きくない。
If you want to make the aperture variable by performing GuinamiSoku focus, you can approximate it by changing the correspondence between W (X) and X (correspondence between the switch control signal and the scanning line address). Depending on the number of dynamic focus stages, the constant voltage is changed from W1 to W8 to W1 to W e', and further to W
It is sufficient to change it to I" to W8". Even if such a change is made, the load on the circuit is not large because the constant voltage source is common to each element.

第5図は8接点を持つスイッチ31で9段階の重み付け
レベルを発生する回路例を示す。
FIG. 5 shows an example of a circuit in which nine weighting levels are generated using a switch 31 having eight contacts.

〔実施例〕〔Example〕

重み付け曲線W (Xlは第1図に示したように本発明
では点線曲線で近似し、平坦な部分■では各素子の重み
を2素子以上同じにして、急傾斜部■では各素子毎に重
みを変え、緩傾斜部■では複数素子毎に重みを変えるが
、このようにした場合、しない場合の音圧分布のシミュ
レーション結果を第8図〜第1)図に示す。
In the present invention, the weighting curve W (Xl is approximated by a dotted line curve as shown in Fig. 1. In the flat part (■), the weight of each element is the same for two or more elements, and in the steep part (■), the weight is set for each element separately. 8 and 1), and the weights are changed for each of the plurality of elements in the gently sloped part (3). The simulation results of the sound pressure distribution with and without such a method are shown in FIGS. 8 to 1).

第8図はシミュレーションに用いた探触子の概要を示し
、圧電素子数は45、開口2aは2×9鰭である。Pは
観測点で、θは開口中心0を通る直線Zと、直線OPと
のなす角で第7図、第1O図および第1)図の横軸の角
度0”、10’、20°、・・・・・・はこの角θであ
る。重み付け関数はW(xi = e (1,3X”/
)2  とし、これを第9図(a)、 (b)、 (C
)の如(近似した。即ち(alでは開口中央部の素子1
7〜23(片側だけ示すが、実際は両側、以下同じ)の
重みを同じ、開口端から開口中央部近傍までの素子1−
16に対しては1素子毎に重みを変え、全体で17段階
の重み付けを行なった。(b)では開口中央部の素子9
〜23に対し同じ重みを与え、それ以外の素子1〜8に
対してはl素子毎に重みを変えた。(C)は本発明によ
る重み付けを行った例で、開口中央の素子17〜23に
は同じ重みを、また急傾斜部の素子13〜16に対して
は1素子毎に変えた重みを、また緩傾斜部の素子に対し
ては複数素子1〜4.5〜7.8〜10.1)〜12毎
に変えた重みを与えた。なお1素子又は複数素子毎に変
える重みは、所要重み付け関数を近似するもので、必ず
しも均一ステップで変るものではない。
FIG. 8 shows an outline of the probe used in the simulation, in which the number of piezoelectric elements is 45 and the aperture 2a has 2×9 fins. P is the observation point, and θ is the angle between the straight line Z passing through the aperture center 0 and the straight line OP; ... is this angle θ. The weighting function is W(xi = e (1,3X"/
)2, and this is shown in Figure 9 (a), (b), (C
) as (approximated), i.e. (for al, element 1
Elements 1-23 (only one side is shown, but actually both sides, the same applies hereafter) from the aperture end to the vicinity of the center of the aperture, with the same weight.
For No. 16, the weight was changed for each element, giving a total of 17 levels of weighting. In (b), element 9 at the center of the opening
The same weight was given to elements 1 to 23, and the other elements 1 to 8 were given different weights for each l element. (C) is an example of weighting according to the present invention, in which the same weight is applied to elements 17 to 23 in the center of the aperture, and weights that are changed for each element to elements 13 to 16 in the steeply sloped part, and For the elements in the gently sloped part, weights were given that were changed for each of the plurality of elements 1 to 4.5 to 7.8 to 10.1) to 12. Note that the weight that is changed for each element or multiple elements approximates the required weighting function, and does not necessarily change in uniform steps.

第9図(alの重み付けでは第6図及び第1)図の曲線
■の音圧分布が得られる。この音圧分布曲線では目立っ
たグレーティングローブもなく実用可能であるが、17
段階の重み付けは多過ぎる。第9図(blの重み付けは
9段階で、半減しているが、音圧分布曲線は第10図の
曲線■になり、*印を示して示すグレーティングローブ
が発生して音場が悪化している。第9図(C)は同じ9
段階であるが音圧分布曲線は第1)図の曲線■となり、
17段階の曲線■と殆んど変らなくなっている=このよ
うに本発明によれば、かなり大口径の開口(本例では1
8龍)でも、9段階という少数段階の重み付けで良好な
特性が得られる。
A sound pressure distribution of curve 1 in FIG. 9 (al weighted in FIGS. 6 and 1) is obtained. This sound pressure distribution curve has no noticeable grating lobes and is practical, but 17
The weighting of stages is too much. Figure 9 (The weighting of BL is in 9 stages, and it has been halved, but the sound pressure distribution curve becomes the curve ■ in Figure 10, and grating lobes are generated, which are marked with *, and the sound field is deteriorated. Figure 9 (C) shows the same 9
Although it is a stage, the sound pressure distribution curve becomes the curve ■ in Figure 1),
It is almost the same as the 17-step curve ■ = Thus, according to the present invention, the aperture with a fairly large diameter (in this example, 1
8), good characteristics can be obtained by weighting in a small number of stages, 9 stages.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば重み付けを少数段階
で行なって良質の音圧分布が得られ、重み付け回路を簡
単化できる利点が得られる。
As described above, according to the present invention, a high-quality sound pressure distribution can be obtained by performing weighting in a small number of steps, and the weighting circuit can be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の要部説明図、第2図は本発明のハード
ウェア部を示すブロック図、第3図〜第5図はスイッチ
の回路例を示す図、第6図はサイドローブの説明図、第
7図はグレーティングローブの説明図、第8図はシミュ
レーションに用いた素子の説明図、第9図は素子重み付
けの例を示す説明図、第10図および第1)図はシミュ
レーション結果を示すグラフである。 図面で、lOは探触子、1),12.・・・・・・はそ
の圧電素子、W (Xlは重み付け関数、31〜3Nは
アナログスイッチ、20は複数の重み付けレベルを発生
する回路である。
FIG. 1 is an explanatory diagram of the main parts of the present invention, FIG. 2 is a block diagram showing the hardware section of the present invention, FIGS. 3 to 5 are diagrams showing examples of switch circuits, and FIG. 6 is a side lobe An explanatory diagram, Fig. 7 is an explanatory diagram of grating lobes, Fig. 8 is an explanatory diagram of the elements used in the simulation, Fig. 9 is an explanatory diagram showing an example of element weighting, and Figs. 10 and 1) are simulation results. This is a graph showing. In the drawing, lO is a probe, 1), 12. ... is the piezoelectric element, W (Xl is a weighting function, 31 to 3N are analog switches, and 20 is a circuit that generates a plurality of weighting levels.

Claims (2)

【特許請求の範囲】[Claims] (1)複数の圧電素子を配列したアレイ型超音波探触子
の各素子に与える送受信感度の重み付け法において、 送信又は受信時に選択された開口部の各圧電素子に対す
る重み付け関数の近似として、開口中央部の素子には2
素子以上同じ重みを、開口両端部分では2素子以上のピ
ッチで異なる重みを、これらの間では1素子毎に異なる
重みを与えることを特徴とする超音波探触子の重み付け
法。
(1) In the weighting method of transmitting and receiving sensitivity given to each element of an array-type ultrasonic probe in which a plurality of piezoelectric elements are arranged, the aperture is 2 for the central element
A weighting method for an ultrasonic probe characterized in that the same weight is given to each element or more, different weights are given to the pitch of two or more elements at both ends of the aperture, and different weights are given to each element between these parts.
(2)各素子に与える重みは、重み付けを行なう段数分
の重み付けレベルを発生する回路の出力をアナログスイ
ッチにより選択することにより得ることを特徴とする、
特許請求の範囲第1項記載の超音波探触子の重み付け法
(2) The weight given to each element is obtained by selecting the outputs of a circuit that generates weighting levels corresponding to the number of weighting stages using an analog switch.
A weighting method for an ultrasound probe according to claim 1.
JP60178960A 1985-08-14 1985-08-14 Weighting method for ultrasonic probe Pending JPS6238358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60178960A JPS6238358A (en) 1985-08-14 1985-08-14 Weighting method for ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60178960A JPS6238358A (en) 1985-08-14 1985-08-14 Weighting method for ultrasonic probe

Publications (1)

Publication Number Publication Date
JPS6238358A true JPS6238358A (en) 1987-02-19

Family

ID=16057667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60178960A Pending JPS6238358A (en) 1985-08-14 1985-08-14 Weighting method for ultrasonic probe

Country Status (1)

Country Link
JP (1) JPS6238358A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109390A (en) * 2007-10-31 2009-05-21 Hitachi Engineering & Services Co Ltd Nondestructive inspection apparatus and nondestructive inspection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109390A (en) * 2007-10-31 2009-05-21 Hitachi Engineering & Services Co Ltd Nondestructive inspection apparatus and nondestructive inspection method

Similar Documents

Publication Publication Date Title
JP4172841B2 (en) Ultrasound imaging system, method of operating ultrasound imaging system and multiplexer motherboard
US5490512A (en) Elevation direction focusing in ultrasound transducer arrays
US6821251B2 (en) Multiplexer for connecting a multi-row ultrasound transducer array to a beamformer
US4215584A (en) Method for transmission and reception of ultrasonic beams using ultrasonic transducer element array
EP0430450A2 (en) 2-D phased array ultrasound imaging system with distributed phasing
JPS6150621B2 (en)
EP0302554A1 (en) Apodization of ultrasound transmission
US4448076A (en) Method and device for examination by means of ultrasonic beams
JPH0762670B2 (en) Ultrasonic device
US4779622A (en) Ultrasonic wave diagnostic apparatus employing interpolated values of weighting data
US5511423A (en) Ultrasonic diagnostic apparatuses and methods therefor
US7479110B2 (en) Ultrasonic diagnostic equipment
JPS6238358A (en) Weighting method for ultrasonic probe
EP0070139B1 (en) Arc scan ultrasonic imaging system having diverging lens and path-length compensator
US6592524B2 (en) Transmit beamformer delay architecture and method for diagnostic medical ultrasound
JP2722393B2 (en) Ultrasonic device
JPS6238357A (en) Weighting method for transmission pulse of ultrasonic probe
JP3244489B2 (en) Ultrasound diagnostic equipment
KR20020079140A (en) A focusing device for 2-dimensional array transducer and a 3 dimensional ultrasound imaging system using transducer grouping switches
JPS6048735A (en) Ultrasonic diagnostic apparatus
JPH01265945A (en) Ultrasonic signal transmission device
JPS6240019B2 (en)
JP2728580B2 (en) Ultrasonic receiver
JPH06125895A (en) Ultrasonic probe and change connector
CA1134491A (en) Dynamic array aperture and focus control for ultrasonic imaging systems