JPS6238311B2 - - Google Patents

Info

Publication number
JPS6238311B2
JPS6238311B2 JP57078028A JP7802882A JPS6238311B2 JP S6238311 B2 JPS6238311 B2 JP S6238311B2 JP 57078028 A JP57078028 A JP 57078028A JP 7802882 A JP7802882 A JP 7802882A JP S6238311 B2 JPS6238311 B2 JP S6238311B2
Authority
JP
Japan
Prior art keywords
fiber
potassium titanate
fibers
inorganic
examples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57078028A
Other languages
Japanese (ja)
Other versions
JPS58194757A (en
Inventor
Norio Shimizu
Noryuki Shimizu
Akiji Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkan Industries Co Ltd
Original Assignee
Nikkan Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkan Industries Co Ltd filed Critical Nikkan Industries Co Ltd
Priority to JP7802882A priority Critical patent/JPS58194757A/en
Priority to US06/493,271 priority patent/US4524100A/en
Publication of JPS58194757A publication Critical patent/JPS58194757A/en
Publication of JPS6238311B2 publication Critical patent/JPS6238311B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、電気絶縁物に適する無機物複合体に
関する。 〔従来の技術〕 現在、電気絶縁物は生産性および機械加工性の
観点から有機系複合材料が多用されている。 〔発明が解決しようとする問題点〕 しかし、有機系複合材料を用いた電気絶縁物は
耐熱性に劣り、高温での絶縁抵抗および優れた誘
電特性が得られず、使用範囲が限定される欠点が
ある。また無機材料を用いた電気絶縁物は耐熱性
があり、熱に対する寸法変化が極めて小さく、か
つ温湿度に対する電気特性が安定している反面、
マイカ等のように強度が低く、またアルミナ磁
器、ジルコニウム磁器等のように切削加工、穴明
け加工等の機械加工性が悪い欠点があつた。 このため、炭素繊維で強化したガラスよりなる
無機物複合体(特公昭47―37682号公報)、シリコ
ンカーバイイト繊維で強化したガラスよりなる無
機物複合体(特開昭56―169152号公報)の技術が
提案されている。 しかし、これらの無機物繊維は無機酸化物では
なくケイ酸塩化合物を含むガラス材料に対して化
学的に安定ではなく、なじみ性もよくなかつた。 このため、これらの無機物繊維強化ガラスを製
造するためには真空中あるいは不活性ガス中でホ
ツトプレスを行うというように雰囲気コントロー
ルを必要とした。また、焼結反応によつて繊維形
態を失う問題があつた。 本発明はこれらの欠点を解決するもので、ガラ
ス材料に対して安定なチタン酸カリウム系繊維を
用いることにより、機械加工性が向上し、耐熱性
あるいは温湿度に対する電気的安定性を有し、絶
縁抵抗、誘導率等の所望の電気特性を選択でき、
焼結反応によつて繊維形状を失うことがなく、低
い焼成温度で製造できてなおかつ焼成温度より高
温で使用できる無機物複合体を提供することを目
的とする。 〔問題点を解決するための手段〕 本発明は、チタン酸カリウム系繊維をその繊維
形状を保ちながら等方性固体ガラス状無機物中に
混在してなることを特徴とする。 〔補足説明〕 本発明をさらに補足説明すると、本発明に用い
られるチタン酸カリウム性繊維は、化学式K2O・
nTiO2あるいはK2O・nTiO2・mH2Oで表され、
径に対する長さの比が10倍以上の繊維形状を有す
る。但し上記n、mは必ずしも整数でなくてもよ
い。この種のチタン酸カリウム系繊維は、近年安
価に量産される製法が開発され、繊維径に対する
繊維長の比が1000以上もあるものも容易に得られ
るようになつている。上記チタン酸カリウム系繊
維には、チタン酸カリウム繊維を酸処理して得ら
れる水和酸化チタン繊維(TiO2・mH2O)および
これを焼成して得られる二酸化チタン繊維
(TiO2)もチタン酸カリウム繊維誘導体として含
まれる。この水和チタン酸カリウム繊維はもとよ
り水和酸化チタン酸カリウム繊維においても、水
分子が焼成段階で取除かれ安定した無機物とな
る。 さらに上記以外のチタン酸カリウム繊維誘導体
としては、チタン酸カリウム繊維を出発原料とし
てこのチタン酸カリウム繊維とバリウム、ストロ
ンチウム等とを反応させて合成される繊維状のチ
タン酸バリウムあるはチタン酸ストロンチウム等
がある。 上記チタン酸カリウム系繊維は、特に耐熱性と
機械的強度に優れその融点は約1300℃であり、そ
の引張強度はガラス繊維の約3倍にも及ぶ性質が
ある。 なお、繊維状の結晶形状には繊維形状に類似す
る細管状、短冊状の結晶形状も含まれる。 このチタン酸カリウム系繊維は、耐熱性に優れ
強度が高い特徴があるが、それぞれ単独で成型物
になり得る温度が高く、この高い温度でそれぞれ
焼成すると、その繊維形態が崩れ、一般的な無機
質焼結物と同様に機械加工性等が劣るようにな
る。 また、ガラス状無機物としては、一般ガラスが
全て考えられるが、代表的なガラス状無機物とし
て第1表に示されるものがある。これらの各種ガ
ラス状無機物は、第2表に示す特性を有する。 このガラス状無機物の選択は、以下に述べる無
機物複合体の用途によりなされる。
[Industrial Field of Application] The present invention relates to an inorganic composite suitable for electrical insulating materials. [Prior Art] Currently, organic composite materials are often used for electrical insulators from the viewpoint of productivity and machinability. [Problems to be solved by the invention] However, electrical insulators using organic composite materials have poor heat resistance, cannot provide insulation resistance at high temperatures and excellent dielectric properties, and have the disadvantage that their range of use is limited. There is. In addition, electrical insulators made of inorganic materials are heat resistant, have extremely small dimensional changes due to heat, and have stable electrical properties with respect to temperature and humidity.
Unlike mica, it has low strength, and like alumina porcelain, zirconium porcelain, etc., it has poor machinability such as cutting and drilling. For this reason, the technology of inorganic composites made of glass reinforced with carbon fibers (Japanese Patent Publication No. 1982-37682) and inorganic composites made of glass reinforced with silicon carbide fibers (Japanese Patent Laid-Open No. 169152/1983) has been developed. is proposed. However, these inorganic fibers are not chemically stable and have poor compatibility with glass materials containing silicate compounds rather than inorganic oxides. For this reason, in order to manufacture these inorganic fiber reinforced glasses, it was necessary to control the atmosphere by performing hot pressing in a vacuum or in an inert gas. In addition, there was a problem in that the fiber form was lost due to the sintering reaction. The present invention solves these drawbacks, and by using potassium titanate-based fibers that are stable for glass materials, it has improved machinability, heat resistance, and electrical stability against temperature and humidity. Desired electrical properties such as insulation resistance and dielectric constant can be selected.
An object of the present invention is to provide an inorganic composite that does not lose its fiber shape due to a sintering reaction, can be produced at a low firing temperature, and can be used at a higher temperature than the firing temperature. [Means for Solving the Problems] The present invention is characterized in that potassium titanate fibers are mixed in an isotropic solid glassy inorganic material while maintaining the fiber shape. [Supplementary explanation] To further explain the present invention, the potassium titanate fiber used in the present invention has the chemical formula K 2 O.
Represented by nTiO 2 or K 2 O・nTiO 2・mH 2 O,
The fiber shape has a length to diameter ratio of 10 times or more. However, the above n and m do not necessarily have to be integers. This type of potassium titanate-based fiber has recently been developed with a manufacturing method that allows it to be mass-produced at low cost, and it has become easy to obtain fibers with a ratio of fiber length to fiber diameter of 1000 or more. The potassium titanate fibers mentioned above include hydrated titanium oxide fibers (TiO 2 mH 2 O) obtained by acid treatment of potassium titanate fibers and titanium dioxide fibers (TiO 2 ) obtained by firing the same. Contained as an acid potassium fiber derivative. In this hydrated potassium titanate fiber as well as in the hydrated potassium titanate oxide fiber, water molecules are removed during the firing step and the fiber becomes a stable inorganic substance. Further, potassium titanate fiber derivatives other than those mentioned above include fibrous barium titanate or strontium titanate, etc., which are synthesized by using potassium titanate fibers as a starting material and reacting the potassium titanate fibers with barium, strontium, etc. There is. The above-mentioned potassium titanate fiber has particularly excellent heat resistance and mechanical strength, and its melting point is about 1300° C., and its tensile strength is about three times that of glass fiber. Note that the fibrous crystal shape also includes tubule-like and strip-like crystal shapes that are similar to the fibrous shape. These potassium titanate fibers are characterized by excellent heat resistance and high strength, but the temperature at which they can be made into molded products by themselves is high, and when fired at these high temperatures, the fiber morphology collapses, resulting in the formation of general inorganic As with sintered products, machinability etc. become inferior. Further, as the glassy inorganic substance, all general glasses can be considered, but there are some typical glassy inorganic substances shown in Table 1. These various glassy inorganic substances have the properties shown in Table 2. The selection of this glassy inorganic material is made depending on the use of the inorganic material composite described below.

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明は、 (イ) チタン酸カリウム系繊維がガラス状無機物に
対して安定であるため、焼成によつてその繊維
形状が失わなわれず、焼成時に雰囲気コントロ
ールを必要とせずにその製造が容易な無機物複
合体が得られる、 (ロ) チタン酸カリウム系繊維はガラス状無機物に
対してなじみ性がよいため、ガラス状無機物と
の混練が容易であり、繊維に特別の処理を行う
必要がなく、無機物複合体の製造が容易とな
る、 (ハ) 切削加工、ドリルによる穴明け加工等の機械
加工が可能となり、かつ設計寸法に対する最終
製品の寸法精度が高い、 (ニ) チタン酸カリウム系繊維とガラス状無機物と
の混合比を変えることにより所望の機械加工性
および電気特性を得ることができ、その性質を
可変に選定できる、 (ホ) またガラス状無機物のみ結晶化することによ
り、焼成温度以上の温度に対しても耐熱性があ
り、機械的強度が高く、しかも温湿度に対して
電気的特性が安定し得る 優れた効果がある。 〔実施例および比較例の説明〕 以下本発明の態様を明確にするために、実施例
および比較例を示してさらに具体的に説明する
が、ここに示す例はあくまでも一例であつてこれ
により本発明の範囲を限定するものではない。 〔実施例および比較例の製造条件の説明〕 実施例1〜実施例13の出発原料および製造条件
を第3表に示す。次の点は実施例1〜実施例13に
共通の製造条件のため、表からその記載を省いて
ある。 (イ) ガラス状無機物は全て100メツシユのパウダ
である。 (ロ) 混練機には全てボールミルを用いた。 (ハ) 成型物の形状および厚さは全て板状で2mm厚
さである。 (ニ) 成型機には全て加圧圧縮成型機を用いた。 (ホ) 焼成雰囲気は全て酸化雰囲気で行つた。 比較例1〜比較例3の出発原料および製造条件
を第4表に示す。成型物の形状および厚さは、前
記実施例と同様に板状で2mm厚である。混練機お
よび成型機は前記実施例と同じである。 〔実施例および比較例の製造物の説明〕 実施例1〜実施例13および比較例1〜3の製造
物について第5表に示す。 第5表の結果より明らかなことは、 (a) チタン酸カリウム繊維(K2O・6TiO2)に加
えるガラス状無機物の種類によつて誘電率は変
化する(実施例1、3、4、5)。 (b) チタン酸カリウム繊維の長径を特定方向に配
向させると、機械的強度が上がり、配向方向の
収縮率が小さくなる(実施例2)。 (c) ガラス状無機物にAガラスを用いると、絶縁
抵抗および誘電正接が若干劣る(実施例4)。 (d) チタン酸カリウム繊維誘導体の水和物は焼成
時にH2O分子が取除かれ、安定した特性を保持
する(実施例6、7)。 (e) チタン酸バリウム繊維は誘電率を高くするこ
とができる(実施例8)。 (f) チタン酸カリウム繊維にホウ酸を加えると誘
電率を低くすることができる(実施例9)。 (g) 焼成条件を変化させることは、焼結性に差が
生じて高温での焼成は不利である。機械加工性
が劣る(実施例10、11)。 (h) 第三の添加物として二酸化チタン粉末を加え
ても誘電率を高くすることができる(実施例
12)。 (i) チタン酸カリウム繊維に針状のメタケイ酸カ
ルシウムを混合して使用しても特性に問題はな
く、価格上より有利となる(実施例13)。 以上の実施例結果から出発原料の種類および混
合比率によつて、広範囲の誘電特性および絶縁抵
抗の各種を選択でき、機械加工性を有する無機物
複合体を得た。 第5表に示した出発原料の混合比は、この値の
±10%の混合比においても、同等の結果が得られ
た。 また比較例では、本実施例と比較して機械加工
性が劣り、かつ誘電特性を任意に選択することが
でないことが明らかとなつた。
As described above, the present invention has the following advantages: (a) Since the potassium titanate fiber is stable against glassy inorganic substances, the fiber shape is not lost during firing, and atmosphere control is not required during firing. (b) Potassium titanate fibers have good compatibility with glassy inorganic materials, so they can be easily kneaded with glassy inorganic materials, and the fibers have special properties. (c) Machining such as cutting and drilling is possible, and the dimensional accuracy of the final product is high relative to the design dimensions. ) Desired machinability and electrical properties can be obtained by changing the mixing ratio of the potassium titanate fiber and the glassy inorganic material, and the properties can be variably selected. By doing so, there are excellent effects such as heat resistance even at temperatures higher than the firing temperature, high mechanical strength, and stable electrical characteristics with respect to temperature and humidity. [Explanation of Examples and Comparative Examples] In order to clarify the aspects of the present invention, Examples and Comparative Examples will be shown and explained in more detail below. It is not intended to limit the scope of the invention. [Explanation of manufacturing conditions for Examples and Comparative Examples] Starting materials and manufacturing conditions for Examples 1 to 13 are shown in Table 3. The following points are omitted from the table because they are common manufacturing conditions for Examples 1 to 13. (a) All glassy inorganic substances are powders of 100 mesh. (b) A ball mill was used for all kneading machines. (c) The shape and thickness of the molded products are all plate-like and 2 mm thick. (d) All molding machines used were pressurized compression molding machines. (e) All firings were carried out in an oxidizing atmosphere. Starting materials and manufacturing conditions for Comparative Examples 1 to 3 are shown in Table 4. The shape and thickness of the molded product were plate-like and 2 mm thick, similar to the previous example. The kneading machine and molding machine were the same as in the previous example. [Description of Products of Examples and Comparative Examples] Products of Examples 1 to 13 and Comparative Examples 1 to 3 are shown in Table 5. What is clear from the results in Table 5 is that (a) the dielectric constant changes depending on the type of glassy inorganic substance added to the potassium titanate fiber (K 2 O 6TiO 2 ) (Examples 1, 3, 4, 5). (b) Orienting the long axis of potassium titanate fibers in a specific direction increases mechanical strength and reduces shrinkage in the orientation direction (Example 2). (c) When A glass is used as the glassy inorganic material, the insulation resistance and dielectric loss tangent are slightly inferior (Example 4). (d) The hydrated potassium titanate fiber derivative retains stable properties because H 2 O molecules are removed during firing (Examples 6 and 7). (e) Barium titanate fibers can have a high dielectric constant (Example 8). (f) Adding boric acid to potassium titanate fibers can lower the dielectric constant (Example 9). (g) Changing the firing conditions will cause a difference in sinterability, and firing at high temperatures is disadvantageous. Poor machinability (Examples 10 and 11). (h) The dielectric constant can also be increased by adding titanium dioxide powder as a third additive (Example
12). (i) Even if acicular calcium metasilicate is used in combination with potassium titanate fiber, there is no problem with the properties and it is more advantageous in terms of cost (Example 13). From the results of the above examples, a wide variety of dielectric properties and insulation resistances could be selected depending on the types and mixing ratios of starting materials, and inorganic composites with machinability were obtained. Equivalent results were obtained even when the mixing ratio of the starting materials shown in Table 5 was within ±10% of this value. Furthermore, it became clear that the comparative example had inferior machinability compared to the present example, and that the dielectric properties could not be arbitrarily selected.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 チタン酸カリウム系繊維がその繊維状形態を
保ちながら等方性固体ガラス状無機物中に混在し
てなることを特徴とする無機物複合体。
1. An inorganic composite comprising potassium titanate fibers mixed in an isotropic solid glassy inorganic material while maintaining its fibrous form.
JP7802882A 1982-05-10 1982-05-10 Inorganic composite material Granted JPS58194757A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7802882A JPS58194757A (en) 1982-05-10 1982-05-10 Inorganic composite material
US06/493,271 US4524100A (en) 1982-05-10 1983-05-10 Inorganic composite and the preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7802882A JPS58194757A (en) 1982-05-10 1982-05-10 Inorganic composite material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2654687A Division JPS62191443A (en) 1987-02-06 1987-02-06 Inorganic material composite

Publications (2)

Publication Number Publication Date
JPS58194757A JPS58194757A (en) 1983-11-12
JPS6238311B2 true JPS6238311B2 (en) 1987-08-17

Family

ID=13650352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7802882A Granted JPS58194757A (en) 1982-05-10 1982-05-10 Inorganic composite material

Country Status (1)

Country Link
JP (1) JPS58194757A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169152A (en) * 1980-05-07 1981-12-25 United Technologies Corp Silicon carbide fiber reinforced glass composite material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169152A (en) * 1980-05-07 1981-12-25 United Technologies Corp Silicon carbide fiber reinforced glass composite material

Also Published As

Publication number Publication date
JPS58194757A (en) 1983-11-12

Similar Documents

Publication Publication Date Title
JPH0478583B2 (en)
US4524100A (en) Inorganic composite and the preparation thereof
US2643192A (en) Electrical insulator
US5538925A (en) Si3 N4 reinforced monoclinic BaO.Al2 O3 2S2 and SrO.Al2 O3.2SiO2 ceramic composites
US3431124A (en) Ceramic dielectric
JPS6238311B2 (en)
JPS6238312B2 (en)
US3468680A (en) Ceramic dielectrics
JPS6128619B2 (en)
KR20190052797A (en) HIGH THERMAL CONDUCTIVE MgO COMPOUNDS AND MgO CERAMICS
JPS61146735A (en) Manufacture of glass ceramic
JPS6272556A (en) Manufacture of fine polycrystal mgal2o4 spinel
KR102143817B1 (en) HIGH THERMAL CONDUCTIVE MgO COMPOUNDS AND MgO CERAMICS
JPS6236987B2 (en)
JPS62191444A (en) Production of inorganic material composite
JPH0226863A (en) Cordierite-based ceramic and production thereof
JPH01115876A (en) Oxidation-resistant sintered form of high strength
JPH06227859A (en) Heat-resistant sintered mullite
US2586113A (en) Dielectric and process of making
JPS60101803A (en) Composition for high dielectric constant porcelain material
RU2130000C1 (en) Electrostrictive material
JPH01122963A (en) Micro-motor shaft
JPS6217805B2 (en)
KR970001053B1 (en) Process for preparation cordierite matrix ceramics
JPS62187162A (en) Dielectric ceramic composition