JPS6237910B2 - - Google Patents

Info

Publication number
JPS6237910B2
JPS6237910B2 JP56152499A JP15249981A JPS6237910B2 JP S6237910 B2 JPS6237910 B2 JP S6237910B2 JP 56152499 A JP56152499 A JP 56152499A JP 15249981 A JP15249981 A JP 15249981A JP S6237910 B2 JPS6237910 B2 JP S6237910B2
Authority
JP
Japan
Prior art keywords
layer
active layer
pbte
type
crystal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56152499A
Other languages
Japanese (ja)
Other versions
JPS5853878A (en
Inventor
Hirokazu Fukuda
Koji Shinohara
Yoshio Kawabata
Yoshito Nishijima
Kosaku Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15249981A priority Critical patent/JPS5853878A/en
Publication of JPS5853878A publication Critical patent/JPS5853878A/en
Publication of JPS6237910B2 publication Critical patent/JPS6237910B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3222Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIVBVI compounds, e.g. PbSSe-laser

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 本発明は赤外線レーザ素子の改良に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in infrared laser elements.

鉛を含む化合物半導体、例えばテルル化鉛
(PbTe)テルル化錫鉛(Pb1-xSnxTe)テルル化
セレン鉛(PbTe1-ySey)等はそのエネルギーギ
ヤツプが狭く赤外線レーザ素子の材料として用い
られている。
Compound semiconductors containing lead, such as lead telluride (PbTe), tin lead telluride (Pb 1-x Sn x Te, and lead selenium telluride (PbTe 1-y Se y )) have narrow energy gaps and are suitable for infrared laser devices. It is used as a material.

このような鉛を含む化合物半導体を用いて形成
した赤外線レーザ素子の構造を第1図および第2
図に示す。
The structure of an infrared laser device formed using such a compound semiconductor containing lead is shown in Figures 1 and 2.
As shown in the figure.

まず第1図に示すように従来の赤外線レーザ素
子の構造はP型のPbTeの基板1上にPb1-xSnxTe
の結晶層が第1のクラツド層2として、その上に
X値を変化させたPb1-xSnxTeの結晶層がレーザ
発光の領域となる活性層3として、その上にX値
を変化させたPb1-xSnxTeの結晶層が第2のクラ
ツド層4としてそれぞれ液相エピタキシヤル成長
方法によつて形成されている。
First, as shown in Figure 1, the structure of a conventional infrared laser element is a Pb 1-x Sn x Te substrate 1 on a P-type PbTe substrate 1.
A crystal layer of Pb 1-x Sn x Te with varying X values is formed as the first cladding layer 2, and a crystal layer of Pb 1-x Sn x Te with varying X values forms the active layer 3, which is the laser emission region. The Pb 1-x Sn x Te crystal layer is formed as the second cladding layer 4 by a liquid phase epitaxial growth method.

このように活性層3の上下を該活性層と組成の
異なる結晶層2,4ではさむようにするのは、該
活性層3と結晶層2,4の界面でそれぞれの結晶
層のバンドギヤツプと屈折率を変化させて、活性
層内に注入キヤリアや発生光を閉じこめて発光効
率を高めるためで、このような構造のレーザ素子
をダブルヘテロ型レーザ素子と称している。
The reason why the active layer 3 is sandwiched between the upper and lower parts of the crystal layers 2 and 4 having a composition different from that of the active layer is that the band gap and refractive index of each crystal layer are determined at the interface between the active layer 3 and the crystal layers 2 and 4. This is because the injected carriers and the generated light are confined within the active layer by changing the wavelength, thereby increasing the luminous efficiency. A laser element with such a structure is called a double hetero type laser element.

ところで上述したような構造のレーザ素子は、
活性層を形成するPb1-xSnxTeの結晶層と第1お
よび第2のクラツド層を形成するPb1-xSnxTeの
結晶層とは格子定数が異なつており、したがつて
活性層3とクラツド層2,4を液相エピタキシヤ
ル成長で形成する際活性層3とクラツド層2,4
との界面5,6でそれぞれの結晶間の格子が整合
しない格子不整合の状態となつている。このよう
な格子不整合の状態は、その部分で格子欠陥を生
じやすくその部分で注入キヤリアがトラツプされ
ることになりレーザ発光を開始するための素子の
しきい値電流密度が増加する欠点を生じる。
By the way, the laser element with the structure described above is
The Pb 1-x Sn x Te crystal layer forming the active layer and the Pb 1-x Sn x Te crystal layer forming the first and second cladding layers have different lattice constants, and therefore the active layer When forming layer 3 and cladding layers 2 and 4 by liquid phase epitaxial growth, active layer 3 and cladding layers 2 and 4 are formed by liquid phase epitaxial growth.
A state of lattice mismatch occurs in which the lattices between the respective crystals do not match at the interfaces 5 and 6 with the crystals. Such a state of lattice mismatch tends to cause lattice defects in that part, causing injected carriers to be trapped in that part, resulting in an increase in the threshold current density of the device for starting laser emission. .

ここでこのような欠点を改良したレーザ素子の
構造を第2図に示す。
FIG. 2 shows the structure of a laser device that has improved this drawback.

図示するようにP型のPbTeの基板11上には
P型のセレン化テルル鉛(Pb1-ySey)の結晶層
が第1のクラツド層12として形成され、その上
にはP型のテルル化錫鉛(Pb1-xSnxTe)の結晶
層が活性層13として形成され、その上にN型の
セレン化テルル鉛(PbTe1-ySey)の結晶層が第
2のクラツド層14として形成されている。
As shown in the figure, a P-type lead tellurium selenide (Pb 1-y Sey) crystal layer is formed as a first cladding layer 12 on a P-type PbTe substrate 11, and a P-type tellurium crystal layer is formed on the first clad layer 12. A crystal layer of lead tin oxide (Pb 1-x Sn x Te) is formed as the active layer 13, and an N-type lead tellurium selenide (PbTe 1-y Se y ) crystal layer is formed thereon as a second cladding layer. 14.

ここで活性層13とクラツド層12,14とは
組成は異なるが格子定数は合致しているので、前
述したように活性層13とクラツド層12,14
との界面で格子整合による格子欠陥は形成されな
いので発光を開始する素子のしきい値電流密度は
従来の約1/5でよいようになつた。
Here, although the active layer 13 and the cladding layers 12 and 14 have different compositions, their lattice constants match, so as mentioned above, the active layer 13 and the cladding layers 12 and 14
Since lattice defects due to lattice matching are not formed at the interface with the material, the threshold current density of the device that starts emitting light can now be reduced to about 1/5 of that of the conventional device.

しかし上述したクラツド層12,14を形成す
るPbTe1-ySeyの結晶層は、その結晶層中にセレ
ン(Se)が含有されるため結晶自体がもろくて
クラツクが生じやすく該基板上にそれぞれの結晶
層を形成してから、レーザ素子を形成するための
チツプを劈開によつて取り出す際に鏡面に劈開さ
れなかつたり、あるいは前記成長した結晶層にク
ラツクが生じたりする欠点がある。特に基板11
と活性層13にはさまれたクラツド層によりクラ
ツクが発生しやすくこれは前記クラツド層12が
組成の異なる結晶によつてはさまれているので劈
開するために結晶に力を加えた時ひずみがそのク
ラツド層12の部分で生じるためと考えられる。
However, the PbTe 1-y Se y crystal layer forming the above-mentioned cladding layers 12 and 14 contains selenium (Se) in the crystal layer, so the crystal itself is brittle and easily cracks. When a chip for forming a laser element is taken out by cleavage after forming a crystal layer, the crystal layer may not be cleaved to a mirror surface, or cracks may occur in the grown crystal layer. Especially the board 11
Cracks are likely to occur due to the cladding layer sandwiched between the active layer 13 and the active layer 13. This is because the cladding layer 12 is sandwiched between crystals with different compositions, so when force is applied to the crystals to cleave them, strain occurs. It is thought that this is because it occurs in the cladding layer 12 portion.

本発明は上述した欠点を除去するような赤外線
レーザ素子を提供することを目的とするものであ
る。
An object of the present invention is to provide an infrared laser device that eliminates the above-mentioned drawbacks.

かかる目的は本発明によればPbxTeよりなる基
板上のPb1-xSnxTeよりなる第1クラツド層、該
第1クラツド層とは組成係数xの異なる同一導電
型のPb1-xSnxTeよりなる活性層、該活性層の上
部にあつて活性層と反対導電型のPbTe1-xSey
りなる第2クラツド層よりなり、活性層と第2ク
ラツド層との格子定数を合致させるようにしてこ
とを特徴とする赤外線レーザ素子によつて達成さ
れる。
According to the present invention, this purpose is to provide a first cladding layer made of Pb 1-x Sn x Te on a substrate made of Pb x Te, and a first cladding layer made of Pb 1-x of the same conductivity type with a different composition coefficient x from the first cladding layer. The active layer consists of an active layer made of Sn x Te, and a second clad layer made of PbTe 1-x Se y , which is of the opposite conductivity type to the active layer, and the lattice constant between the active layer and the second clad layer is This is achieved by an infrared laser element characterized by matching.

以下図面を用いて本発明の一実施例につき詳細
に説明する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第3図は本発明の赤外線レーザ素子の構造を示
す断面図で、4図は前記レーザ素子を形成するの
に用いる装置の断面図である。
FIG. 3 is a sectional view showing the structure of the infrared laser device of the present invention, and FIG. 4 is a sectional view of the apparatus used to form the laser device.

第3図に示すように本発明のレーザ素子はP型
のPbTeの基板21上にはP型のPb1-xSnxTeの結
晶層が第1のクラツド層22として、またその上
にはP型のPb1-xSnxTeの結晶層が活性層23と
して更にその上にはN型のPbTe1-ySeyの結晶層
が第2のクラツド層24としてそれぞれ液相エピ
タキシヤル法によつて形成されている。このよう
にレーザ発光するPN接合部の格子整合を行うこ
とによつて、この第2クラツド層による光の閉じ
込め効果も有効に達成され、又この第2クラツド
層のみをPbTe1-ySeyで構成するので、劈開の際
のクラツクの生ずる問題も解決する。
As shown in FIG. 3, the laser device of the present invention has a P-type Pb 1-x Sn x Te crystal layer as a first clad layer 22 on a P-type PbTe substrate 21, and a P-type Pb 1-x Sn x Te crystal layer as a first cladding layer 22. A P-type Pb 1-x Sn x Te crystal layer is used as an active layer 23, and an N-type PbTe 1-y Se y crystal layer is formed as a second cladding layer 24 on top of the active layer 23 by liquid phase epitaxial method. It is formed by twisting. By performing lattice matching of the PN junction that emits laser light in this way, the light confinement effect by this second cladding layer is effectively achieved, and only this second cladding layer is made of PbTe 1-y Se y. This solves the problem of cracks occurring during cleavage.

このようなレーザ素子を形成するには第4図に
示すようなカーボンよりなるスライド部材31と
支持台32とからなる液相エピタキシヤル成長装
置を用いて製造する。すなわち前記支持台にはタ
リウム(Tl)を添加したP型のPbTeの基板33
とダミー用のPbTeの薄板34とを埋設し、スラ
イド部材に設けた液だめ35にはP型の
Pb1-xSnxTeの材料を、液だめ36にはX値を変
えたP型Pb1-xSnxTeの材料を、液だめ37には
N型PbTe1-ySeyの材料をそれぞれ充填し、この
装置を水素(Hz)ガス雰囲気内の反応管中に導入
し該反応管を約500℃の温度で加熱する。
In order to form such a laser element, a liquid phase epitaxial growth apparatus comprising a slide member 31 made of carbon and a support stand 32 as shown in FIG. 4 is used. That is, the support table includes a P-type PbTe substrate 33 doped with thallium (Tl).
and a dummy PbTe thin plate 34, and a P-type liquid reservoir 35 provided on the slide member.
Pb 1-x Sn x Te material is used for the liquid reservoir 36, P-type Pb 1-x Sn x Te material with different X value is used for the liquid reservoir 37, and N-type PbTe 1-y Se y material is used for the liquid reservoir 37. The apparatus is introduced into a reaction tube in a hydrogen (Hz) gas atmosphere, and the reaction tube is heated at a temperature of about 500°C.

その後温度を下げながらスライド部材31を矢
印A方向に移動させ、ダミー薄板34上に液だめ
35を静置させ液だめ内のPb1-xSnxTeの液相に
ダミー薄板の成分を飽和させる。その後更にスラ
イド部材を矢印A方向に移動させ、液だめ35を
基板33上に静置して、基板上にP型の
Pb1-xSnxTeの結晶層を第1のクラツド層として
形成する。その後更にスライド部材を矢印A方向
に移動させて、液だめ36を基板33上に静置し
て基板上にP型のPb1-xSnxTeの結晶層を活性層
として形成する。次に更にスライド部材を矢印A
方向に移動させて、液だめ37を基板上に静置し
て基板上N型のPbTe1-ySeyの結晶層を第2のク
ラツド層として形成する。
After that, the slide member 31 is moved in the direction of arrow A while lowering the temperature, and the liquid reservoir 35 is left still on the dummy thin plate 34, so that the components of the dummy thin plate are saturated with the liquid phase of Pb 1-x Sn x Te in the liquid reservoir. . After that, the slide member is further moved in the direction of arrow A, the liquid reservoir 35 is placed on the substrate 33, and a P-type is placed on the substrate.
A crystal layer of Pb 1-x Sn x Te is formed as the first cladding layer. Thereafter, the slide member is further moved in the direction of arrow A, and the liquid reservoir 36 is placed on the substrate 33 to form a P-type Pb 1-x Sn x Te crystal layer as an active layer on the substrate. Next, move the slide member further by arrow A
The liquid reservoir 37 is placed on the substrate, and an N-type PbTe 1-y Se y crystal layer is formed on the substrate as a second cladding layer.

このようにすれば活性層を形成する
Pb1-xSnxTeの結晶層の上部のみがPbTe1-ySey
結晶層で形成されているので従来のように該結晶
を劈開する際に生じるクラツクは殆んど生じなく
なりエピタキシヤル成長後の結晶を劈開してチツ
プを取り出す際の歩留が向上する。
In this way, an active layer will be formed.
Since only the upper part of the Pb 1-x Sn x Te crystal layer is formed of the PbTe 1-y Se y crystal layer, there are almost no cracks that occur when the crystal is cleaved as in the conventional method, and the epitaxial Yield is improved when the grown crystal is cleaved and chips are taken out.

また活性層領域でレーザ発光をする領域はその
上の第2クラツド層とのP―N接合界面近傍であ
るので第2クラツド層のみ活性層と格子整合する
ようにしておけばその界面近傍に格子欠陥が形成
されることがないのでレーザ発光効率が低下する
こもない。
In addition, since the region in the active layer region that emits laser light is near the P-N junction interface with the second clad layer above it, if only the second clad layer is lattice matched with the active layer, the lattice near the interface will be Since no defects are formed, there is no reduction in laser emission efficiency.

以上述べたように本発明の赤外線レーザ素子の
構造にすると素子形成用のチツプ製造の歩留が向
上し低コストの赤外線レーザ素子が得られる利点
を生じる。
As described above, the structure of the infrared laser device of the present invention has the advantage that the yield of manufacturing chips for device formation is improved and a low-cost infrared laser device can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来の赤外線レーザ素子の構
造を示す図、第3図は本発明による赤外線レーザ
素子の構造を示す図、第4図は本発明の赤外線レ
ーザ素子を形成するための装置を示す図である。 図において1,11,21,33はPbTeの基
板、2,12,22は第1のクラツド層、3,1
3,23は活性層4,14,24は第2のクラツ
ド層、5,6は結晶界面、31はスライド部材、
32は支持台、34はダミー用薄板、35,3
6,37は液だめ、Aはスライド方向を示す矢印
である。
1 and 2 are diagrams showing the structure of a conventional infrared laser device, FIG. 3 is a diagram showing the structure of an infrared laser device according to the present invention, and FIG. 4 is a diagram showing the structure of an infrared laser device according to the present invention. It is a figure showing an apparatus. In the figure, 1, 11, 21, 33 are PbTe substrates, 2, 12, 22 are first clad layers, 3, 1
3, 23 are active layers 4, 14, 24 are second cladding layers, 5, 6 are crystal interfaces, 31 is a slide member,
32 is a support stand, 34 is a dummy thin plate, 35, 3
6 and 37 are liquid reservoirs, and A is an arrow indicating the sliding direction.

Claims (1)

【特許請求の範囲】[Claims] 1 PbTeよりなる基板上のPb1-xSnxTeよりなる
第1クラツド層、該第1クラツド層とは組成係数
xの異なる同一導電型のPb1-xSnxTeよりなる活
性層、該活性層の上部にあつて活性層と反対導電
型のPbTe1-ySeyよりなる第2クラツド層よりな
り、活性層と第2クラツド層との格子定数を合致
させるようにしたことを特徴とする赤外線レーザ
素子。
1 A first clad layer made of Pb 1-x Sn x Te on a substrate made of PbTe, an active layer made of Pb 1-x Sn x Te of the same conductivity type with a different composition coefficient x from the first clad layer, and It is characterized by comprising a second clad layer on top of the active layer made of PbTe 1-y Se y of a conductivity type opposite to that of the active layer, and the lattice constants of the active layer and the second clad layer are made to match. Infrared laser element.
JP15249981A 1981-09-25 1981-09-25 Infrared laser element Granted JPS5853878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15249981A JPS5853878A (en) 1981-09-25 1981-09-25 Infrared laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15249981A JPS5853878A (en) 1981-09-25 1981-09-25 Infrared laser element

Publications (2)

Publication Number Publication Date
JPS5853878A JPS5853878A (en) 1983-03-30
JPS6237910B2 true JPS6237910B2 (en) 1987-08-14

Family

ID=15541794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15249981A Granted JPS5853878A (en) 1981-09-25 1981-09-25 Infrared laser element

Country Status (1)

Country Link
JP (1) JPS5853878A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5289079A (en) * 1976-01-20 1977-07-26 Matsushita Electric Ind Co Ltd Semiconductor hetero junction laser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5289079A (en) * 1976-01-20 1977-07-26 Matsushita Electric Ind Co Ltd Semiconductor hetero junction laser

Also Published As

Publication number Publication date
JPS5853878A (en) 1983-03-30

Similar Documents

Publication Publication Date Title
JP2708183B2 (en) Compound semiconductor light emitting device
JP3270476B2 (en) Ohmic contacts, II-VI compound semiconductor devices, and methods of manufacturing these devices
JPH0652807B2 (en) Quaternary II-VI group materials for photon devices
WO2008027896A2 (en) Improved films and structures for metal oxide semiconductor light emitting devices and methods
US4255755A (en) Heterostructure semiconductor device having a top layer etched to form a groove to enable electrical contact with the lower layer
US4160258A (en) Optically coupled linear bilateral transistor
US4183035A (en) Inverted heterojunction photodiode
KR101247415B1 (en) Photonic devices formed on substrates and their fabrication methods
JPS6237910B2 (en)
US5323027A (en) Light emitting device with double heterostructure
US3975751A (en) Monolithic light-emitting diode and modulator
JPH0897466A (en) Light emitting device
JP2001274454A (en) Light emitting diode and its manufacturing method
JPH03268360A (en) Semiconductor device
McLane et al. Vacuum deposited epitaxial layers of PbS l− x Se x for laser devices
JP3033625B2 (en) Quantized Si optical semiconductor device
JPH08139358A (en) Epitaxial wafer
US4722087A (en) Lead-strontium-chalcogenide diode laser
JPH06164057A (en) Emiconductor laser and its manufacture
JP3646706B2 (en) Boron phosphide-based semiconductor light-emitting diode and manufacturing method thereof
JP2534945B2 (en) Method for manufacturing semiconductor device
JP3315378B2 (en) Semiconductor laser device
JPS6152600B2 (en)
JPS6244717B2 (en)
JPS5870587A (en) Semiconductor substrate