JPS5853878A - Infrared laser element - Google Patents
Infrared laser elementInfo
- Publication number
- JPS5853878A JPS5853878A JP15249981A JP15249981A JPS5853878A JP S5853878 A JPS5853878 A JP S5853878A JP 15249981 A JP15249981 A JP 15249981A JP 15249981 A JP15249981 A JP 15249981A JP S5853878 A JPS5853878 A JP S5853878A
- Authority
- JP
- Japan
- Prior art keywords
- crystal layer
- crystal
- layer
- type
- active layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/3222—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIVBVI compounds, e.g. PbSSe-laser
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は赤外線レーデ素子の改良に関するものである。[Detailed description of the invention] The present invention relates to improvements in infrared radar elements.
ギーゼヤツプが侠〈赤外線レーデ葉子の材料として弔や
られている。Giesejap is mourned as a material for chivalry (infrared red leaf).
このような鉛を含む化合物牛導体を用いて形成した赤外
線レーザ素子の構造を第1!!]および第2図に示す。The structure of an infrared laser element formed using such a lead-containing compound conductor is the first! ! ] and shown in FIG.
まず第1mK示すように従来の赤外線レーザ素子の構造
はP型のPbTe tv基f?’K Pb r −z8
nzTsの結晶層が第1のクラッド層2として、その上
にX値を変化させたPb>−x8nxTeの結晶層がレ
ーデ発光の領域となる活性層3として、その上KX値を
変化させ九PI)t−48n3cT6の結晶層が第2の
クラッド層4としてそれぞれ液相エビクキシャル成長方
法によって形成されている。First, as shown in the first mK, the structure of the conventional infrared laser element is P-type PbTe tv-based f? 'K Pb r -z8
A crystal layer of nzTs serves as a first cladding layer 2, and a crystal layer of Pb>-x8nxTe with a changed X value serves as an active layer 3 serving as a region for Raded emission. ) T-48n3cT6 crystal layers are each formed as the second cladding layer 4 by a liquid phase eviaxial growth method.
このように活性層3の上下を該活性層と組成の異なる結
晶層2,4ではさむようにするのは、該活性層3と結晶
N2.4の界面でそれぞれの結晶層のバントキャップと
屈折率を変化させて、活性着肉に注入キャリアや発生光
を閉じこめて発光効率を高めるえめで、このよう1kI
14造のレーザ素子をダブルへテロ型レーデ素子と称し
ている。The reason why the active layer 3 is sandwiched between the upper and lower crystal layers 2 and 4 having a composition different from that of the active layer is that the bunt cap and refractive index of each crystal layer are determined at the interface between the active layer 3 and the crystal N2.4. In this way, the 1kI
The No. 14 laser element is called a double hetero type Rade element.
ところで上述したような構造のレーザ素子は、活性層を
形成するPbr−x8nxTeの結晶層と第1および第
2のクラッド層を形成するPb5−z8nxT・の結晶
層とけ格子定数が異なっており、したがって活性層3と
クラッド層2.4.を液相エピタキシャル成長で形成す
る際活性層3とクラッド層2.4との界面6.6でそれ
ぞれの結晶間の格子が整合しない格子不整合の状態とな
って−る。このような格子不整合猷態は、その部分で格
子欠陥を生じやすくその部分で注入キャリアがトラップ
されることになりレーデ発光を開始するための素子のし
きμ値電流密度が増加する欠点を生じる〇
ここでこのような欠点1改良し九レーザ素子の構造を第
2図に示す〇
図示するようにP型のPbTρ基板11上にはP型1の
クラッド層12として形成され、その上にはP型のテル
ル化錫鉛(Pb凰−x8nzTa)の結晶層が活性層1
3として形成され、その上KN型のセレン化テルル鉛(
PbT@t−y8sy)の結晶層が第2のクラッド層1
4として形成されている。By the way, in the laser element having the structure described above, the Pbr-x8nxTe crystal layer forming the active layer and the Pb5-z8nxT crystal layer forming the first and second cladding layers have different lattice constants. Active layer 3 and cladding layer 2.4. When the active layer 3 and the cladding layer 2.4 are formed by liquid phase epitaxial growth, a state of lattice mismatch occurs in which the lattices between the respective crystals do not match at the interface 6.6 between the active layer 3 and the cladding layer 2.4. Such a lattice mismatch state tends to cause lattice defects in that part, causing injected carriers to be trapped in that part, resulting in an increase in the threshold μ value current density of the device for starting Radical emission. 〇 Figure 2 shows the structure of a nine-laser device that improves this defect 1.〇 As shown in the figure, a P-type 1 cladding layer 12 is formed on a P-type PbTρ substrate 11, and a The active layer 1 is a P-type lead tin telluride (Pb-x8nzTa) crystal layer.
3, as well as KN type lead tellurium selenide (
The crystal layer of PbT@t-y8sy) is the second cladding layer 1.
It is formed as 4.
ここで活性jl13とクラッド層12 、14とは組成
は異なるが格子定数は合致しているので、前述したよう
に活性層13とクラッド1112.14との界面で格子
不整合による格子欠陥は形成されないので発光を開始す
る素子のしきい値電流密度は従来の約%でよいようにな
った。Here, although the active layer 13 and the cladding layers 12 and 14 have different compositions, their lattice constants match, so lattice defects due to lattice mismatch are not formed at the interface between the active layer 13 and the cladding 1112.14, as described above. Therefore, the threshold current density of the device that starts emitting light can now be about % of the conventional value.
しかし上述したクラッド112 、14を形成するPb
Ta+−y8eyの結晶層は、その結晶層中にセレン(
8e)が含有される丸め結晶自体がもろくてクラックが
生じやすく該基板上にそれぞれの結晶層を形してから、
レーザ素子を形成するためのチップを勇開によって取り
出す際に鏡面に労開されなかつ光秒、あるいは前記成長
し大結晶層にクラックが生じたりする欠点がある口特に
基板11と活性−13にはさまれ九クラッド層によ抄ク
ラックが発生しやすくこれは前記クラッド層12が組成
の興なる結晶によってはさまれているので勇開するため
に結晶に力を加えた時ひずみがそのクラッド層120部
分で生じるためと考えられる・
本発明は上述した欠点を除去するような赤外線レーザ素
子を提供することを目的とするものである0
かかる目的を達成するための本発明のレーデ素子は船を
含む化合物牛導体基板上に結晶層を順次積層し、レーデ
発光の領域となる結晶層の上下を該結晶層の組成と異な
る結晶層で形成する赤外線レーザ素子において、前記レ
ーザ賦の領域となる結晶層の上部の結晶層の格子定数を
前記レーデ発光領域の結晶層の格子定数と合致させ九こ
とを特徴とするものである。However, the Pb forming the claddings 112 and 14 mentioned above
The crystal layer of Ta+-y8ey contains selenium (
After forming each crystal layer on the substrate, the rounded crystal itself containing 8e) is brittle and easily cracks.
Particularly, the substrate 11 and the active layer 13 have the drawback that when a chip for forming a laser element is taken out by a rifling process, the mirror surface is not pierced and cracks occur in the grown large crystal layer. Cracks tend to occur in the sandwiched 9 cladding layer. This is because the cladding layer 12 is sandwiched between crystals of different compositions, so when force is applied to the crystals to open them, strain occurs in the cladding layer 120. The object of the present invention is to provide an infrared laser device that eliminates the above-mentioned drawbacks. In an infrared laser element in which crystal layers are sequentially laminated on a compound conductor substrate, and the upper and lower portions of the crystal layer serving as a region for laser emission are formed with crystal layers having a composition different from that of the crystal layer, the crystal layer serving as the region for laser emission. The lattice constant of the upper crystal layer is made to match the lattice constant of the crystal layer of the Rade emission region.
以下図面を用いて本発明の一実施例につき詳細に説明す
る。An embodiment of the present invention will be described in detail below with reference to the drawings.
第3図は本発明の赤外線レーデ素子の構造を示す断面図
で、第4図は前記シー1子を形成するのに用いる装置の
断面図である。FIG. 3 is a sectional view showing the structure of the infrared radar element of the present invention, and FIG. 4 is a sectional view of the apparatus used to form the sheet element.
第3図に示すように本発明のレーデ素子はP型のPbT
、 の基板21上にはP型のPb+−z8nzTaノ結
晶層が第1のクラッド層22として、またその上にはP
型のPbトx8nxTeの結晶層が活性層23として更
にその上KdN型のPbTe+−y8eyの結晶層が第
2のクラッド層24としてそれぞれ液相エピタキシイル
法によって形成されている。As shown in FIG. 3, the Rade element of the present invention is a P-type PbT
, on the substrate 21 is a P-type Pb+-z8nzTa crystal layer as the first cladding layer 22, and on top of that is a P-type Pb+-z8nzTa nanocrystal layer 22.
A Pb-type Pb-x8nxTe crystal layer is formed as an active layer 23, and a KdN-type PbTe+-y8ey crystal layer is formed as a second cladding layer 24 by liquid phase epitaxy.
このようなレーザ素子を形成するには第4図に示すよう
なカーボンよりなるスライド部材31と支持台32とか
らなる液相エピタキシ勢成長装置を用いて製造する。す
なわち前記支持台にはタリクA(Tj)を添加したP型
のPbTeの基板おとダミー用のPbTeの薄板潤とを
埋設し、スライド部材に設けた液だめ35KtiP型の
Pbt−x8nxT6の材料を、液だめ36KtiX値
を変えたPIPbt−x8nxTeの材料を、液だめ3
7tlN型PbTat−y8eyの材料をそれぞれ充填
し、この装置を水素■ガス雰闘気内の反応管中に導入し
該反応管を約500℃の温度で加熱する。In order to form such a laser element, a liquid phase epitaxial growth apparatus as shown in FIG. 4 is used, which comprises a slide member 31 made of carbon and a support stand 32. That is, a P-type PbTe substrate doped with Tariq A (Tj) and a dummy PbTe thin plate were embedded in the support base, and a 35KtiP type Pbt-x8nxT6 material was embedded in the liquid reservoir provided on the slide member. , PIPbt-x8nxTe materials with different KtiX values were added to the liquid reservoir 3.
7tlN-type PbTat-y8ey materials were respectively filled, the apparatus was introduced into a reaction tube in a hydrogen gas atmosphere, and the reaction tube was heated at a temperature of about 500°C.
その後温度を下けながらスライド部材31を矢印A方向
に移動させ、ダミー薄板詞上に液だめあを静置させ液だ
め内のPb1−z8nxTeのwI相にダミー薄板の成
分を飽和させる。その後更にスライド部材を矢印入方向
に移動させ、液だめ35を基板お上に静置して、基板上
KP型のPb5−18nxTeの結晶層を第1のクラッ
ド層として形成する。その後更にスライド部材を矢印ム
方向KM動させて、液だめあを基板お上に静置して基鈑
上KP型のPb5−x8nXT、の結、晶層な活性層と
して形成する0次に更にスライド部材を矢印A方向に移
動させて、液だこのようにすれに活性層を形成するPb
’−!8nxTeの結晶層の上部のみがPbTet−y
geyの結晶層で形成されているので従来のように該結
晶を労開する際に生じるクラックは殆んど生じなくなり
エピタキシャル成長後の結晶を男開してチップを取抄出
す際の歩留が向上する。Thereafter, the slide member 31 is moved in the direction of arrow A while lowering the temperature, and the liquid reservoir is left still on the dummy thin plate to saturate the wI phase of Pb1-z8nxTe in the liquid reservoir with the components of the dummy thin plate. Thereafter, the slide member is further moved in the direction indicated by the arrow, and the liquid reservoir 35 is placed on the substrate to form a KP type Pb5-18nxTe crystal layer on the substrate as a first cladding layer. After that, the slide member is further moved in the arrow direction KM, and the liquid reservoir is placed on the substrate to form a crystalline active layer of KP type Pb5-x8nXT on the substrate. Move the slide member in the direction of arrow A to form an active layer like a puddle of Pb.
'-! Only the top of the 8nxTe crystal layer is PbTet-y
Since it is formed of a crystal layer of GEY, there are almost no cracks that occur when the crystal is opened as in the past, and the yield is improved when opening the crystal after epitaxial growth to extract chips. do.
オ九活性層領域でレーデ発光をする領域はその上の第2
のクラッド層とのP−N接合界面近傍であるので第2の
クラッド層のみ活性層と格子整合するようにしておけば
その界面近傍に格子欠陥が形成されることがないのでレ
ーザ発光効率が低下することもない。The region that emits Radical light in the active layer region is the second region above it.
Since it is near the P-N junction interface with the cladding layer, if only the second cladding layer is lattice matched with the active layer, lattice defects will not be formed near the interface, resulting in a decrease in laser emission efficiency. There's nothing to do.
以E述べえように本発明の赤外線レーデ素子の構造にす
ると素子形成用のチップ製造の歩留が向上し低コストの
赤外線レーデ素子が得られる利点を生じる。As described below, the structure of the infrared radar element of the present invention has the advantage that the yield of manufacturing chips for forming the element can be improved and a low-cost infrared radar element can be obtained.
第1図、第2図は従来の赤外線レーデ素子の構造を示す
図、第3図は本発明による赤外線レーザ素子のm造を示
す図、第4図は本発明の赤外線レーデ素子を形成するた
めの装置を示す図である。
図において1.11.21.33はPbT、の基板、2
゜12.22ti第1oy’pyド層、3,13.2.
”lH活性層4.14.24は第2のクラッド層、5.
6は結晶界面、31はスライド部材、32は支持台、あ
はダミー用薄板、35,36.37は液だめ、ムはスラ
イド方向を示す矢印でわ41 and 2 are diagrams showing the structure of a conventional infrared radar device, FIG. 3 is a diagram showing the structure of an infrared laser device according to the present invention, and FIG. 4 is a diagram showing the structure of an infrared laser device according to the present invention. FIG. In the figure, 1.11.21.33 is a PbT substrate, 2
゜12.22ti first oy'py layer, 3, 13.2.
"lH active layer 4.14.24 is the second cladding layer, 5.
6 is the crystal interface, 31 is the slide member, 32 is the support base, A is the dummy thin plate, 35, 36, 37 is the liquid reservoir, and M is the arrow indicating the sliding direction.
Claims (1)
し、レーザ発光の領域となる結晶層の上下を該結晶層の
組成と異なる結晶層で形成する赤外線レーザ索子におい
て、前記レーデ発光の領域となる結晶層の上部の結晶層
の格子定数のみを前記レーデ発光領域の結晶層の5字定
数と合致させ九ことを特徴とする赤外線レーデ素子。 (2) 前記レーデ発光領域となる結晶層をPb s
−x8nXT6で構成するとともに、該結晶層の基板
側に位置する結晶層を組成系数XO異なる同一導電型の
Pb1−x8nxTeで構成し、さらに前記レーデ発光
領域となる結晶層の上部に位置する結晶層を反対導電型
のPbTsx−y8・yで構成してp−n接合面側の結
晶層間でのみ格子定数を合致させるようにしたことを特
徴とする特許請求の範囲第(1)項に記載の赤外線レー
デ素子。[Claims] (υ Infrared rays produced by sequentially laminating crystal layers on a compound eyelid conductor base including a vessel, and forming upper and lower portions of the crystal layer, which becomes the laser emission region, with crystal layers having a composition different from that of the crystal layer. An infrared radar element characterized in that, in the laser probe, only the lattice constant of the crystal layer above the crystal layer serving as the radar emission region matches the 5-character constant of the crystal layer in the radar emission region. (2 ) The crystal layer that becomes the Rade emission region is made of Pb s
-x8nXT6, and the crystal layer located on the substrate side of the crystal layer is composed of Pb1-x8nxTe of the same conductivity type with a different composition number XO, and further the crystal layer located above the crystal layer that becomes the Rade emission region is composed of PbTsx-y8.y of opposite conductivity type, so that the lattice constants match only between the crystal layers on the p-n junction surface side. Infrared radar element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15249981A JPS5853878A (en) | 1981-09-25 | 1981-09-25 | Infrared laser element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15249981A JPS5853878A (en) | 1981-09-25 | 1981-09-25 | Infrared laser element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5853878A true JPS5853878A (en) | 1983-03-30 |
JPS6237910B2 JPS6237910B2 (en) | 1987-08-14 |
Family
ID=15541794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15249981A Granted JPS5853878A (en) | 1981-09-25 | 1981-09-25 | Infrared laser element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5853878A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5289079A (en) * | 1976-01-20 | 1977-07-26 | Matsushita Electric Ind Co Ltd | Semiconductor hetero junction laser |
-
1981
- 1981-09-25 JP JP15249981A patent/JPS5853878A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5289079A (en) * | 1976-01-20 | 1977-07-26 | Matsushita Electric Ind Co Ltd | Semiconductor hetero junction laser |
Also Published As
Publication number | Publication date |
---|---|
JPS6237910B2 (en) | 1987-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2708183B2 (en) | Compound semiconductor light emitting device | |
Gil | Low-dimensional nitride semiconductors | |
JPH0652807B2 (en) | Quaternary II-VI group materials for photon devices | |
EP0069453A1 (en) | A process for forming semiconductor alloys having a desired bandgap | |
US20050170537A1 (en) | Manufacture of a semiconductor device | |
JPH08264894A (en) | Semiconductor element and manufacture thereof | |
JPH0525839B2 (en) | ||
US4689650A (en) | Infrared epitaxial detector structure and method of making same | |
JPS5853878A (en) | Infrared laser element | |
JPS5787184A (en) | Gan blue light emitting element | |
JP2534945B2 (en) | Method for manufacturing semiconductor device | |
JPS5889859A (en) | Manufacture of micro-cantilever onto silicon wafer | |
JPH03268360A (en) | Semiconductor device | |
JPS62172715A (en) | Manufacture of semiconductor epitaxial thin film | |
JPS61144816A (en) | Semiconductor device | |
US3794533A (en) | Method for diffusing zn into a iii-v compound semiconductor crystal through alumina masking | |
JP3027642B2 (en) | Stress reduction method for compound semiconductor | |
Toporkov | Growth and Characterization of Wide Bandgap Quaternary BeMgZnO Thin Films and BeMgZnO/ZnO Heterostructures | |
JPH07161737A (en) | Growing method for hgcdte thin film | |
Macksey | PREPARATION AND PROPERTIES OF INDIUM-GALLIUM-PHOSPHIDE. | |
CN100429796C (en) | Semiconductor light-emitting device and method of manufacturing same | |
JPH08186286A (en) | Semiconductor light-emitting element | |
JPS5890740A (en) | Semiconductor device | |
JPS5856250B2 (en) | Method for manufacturing GaAlAs semiconductor device | |
JP3326032B2 (en) | Infrared light emitting diode and epitaxial wafer for infrared light emitting diode |