JPS623787A - Immobilization of microorganism - Google Patents

Immobilization of microorganism

Info

Publication number
JPS623787A
JPS623787A JP60141901A JP14190185A JPS623787A JP S623787 A JPS623787 A JP S623787A JP 60141901 A JP60141901 A JP 60141901A JP 14190185 A JP14190185 A JP 14190185A JP S623787 A JPS623787 A JP S623787A
Authority
JP
Japan
Prior art keywords
microorganisms
polyurethane prepolymer
alginic acid
salt
polyurethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60141901A
Other languages
Japanese (ja)
Inventor
Tatsuo Sumino
立夫 角野
Yasutomo Otake
康友 大竹
Hironori Nakamura
裕紀 中村
Masahiro Kon
昆 正浩
Naomichi Mori
直道 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP60141901A priority Critical patent/JPS623787A/en
Priority to DE19863617875 priority patent/DE3617875C2/en
Priority to KR1019860004279A priority patent/KR930012103B1/en
Priority to US06/868,454 priority patent/US4791061A/en
Publication of JPS623787A publication Critical patent/JPS623787A/en
Pending legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To suppress the lowering of the microbial activity, by forming particles of an insoluble salt of alginic acid from a liquid mixture of a microbial suspension, a polyurethane prepolymer and a water-soluble salt of alginic acid, and polymerizing the polyurethane prepolymer. CONSTITUTION:A liquid mixture containing a polyurethane prepolymer, a water- soluble salt (e.g. sodium salt) of alginic acid and microorganisms is added dropwise to an aqueous solution of a compound (e.g. calcium chloride) which forms an insoluble salt with alginic acid. Particles of insoluble salt of alginic acid including the microorganisms are produced. The polyurethane prepolymer held in the particle is polymerized to obtain the objective immobilized microorganism. The toxic effect of the chemicals such as monomer, modifying agent, plasticizer, etc., to the microorganism is suppressed and the lowering of the microbial activity is prevented.

Description

【発明の詳細な説明】 産業上皇■里分豆 本発明は、微生物を活性状態でポリウレタンに包括固定
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for entrapping and immobilizing microorganisms in an active state on polyurethane.

従来■致酉 微生物を包括固定する場合、担体としては、従来、カラ
ギーナン、アルギン酸等の天然に存在する物質及びポリ
アクリルアミド、ポリウレタン等の合成高分子物質が提
案されている。天然物質を担体として使用した場合には
、天然物質は微生物に対する毒性が低いので、固定化し
た微生物の活性低下は少ないが、物理的強度が小さく、
耐久性に問題がある。ポリアクリルアミドの内部に微生
物を固定すると、得られる固定化微生物の物理的強度は
大きく、耐久性が良いが、固定化する際に使用するアク
リルアミドモノマー、架橋剤、重合開始剤等が微生物に
毒性作用を及ぼすので、活性低下を招きやすい。
Conventionally (2) In the case of entrapping and immobilizing microorganisms, naturally occurring substances such as carrageenan and alginic acid, and synthetic polymeric substances such as polyacrylamide and polyurethane have been proposed as carriers. When natural substances are used as carriers, since natural substances have low toxicity to microorganisms, the activity of immobilized microorganisms does not decrease much, but their physical strength is small,
There is a problem with durability. When microorganisms are immobilized inside polyacrylamide, the resulting immobilized microorganisms have high physical strength and good durability, but the acrylamide monomer, crosslinking agent, polymerization initiator, etc. used for immobilization may have a toxic effect on the microorganisms. , which tends to lead to a decrease in activity.

末端にイソシアネート基を有するポリウレタンプレポリ
マーを酵素と接触させて重合を行い、ポリウレタンに酵
素を固定することは、特開昭52−38084号公報に
開示されている。この方法を微生物に通用し、微生物懸
濁液にポリウレタンプレポリマー溶液を添加し、攪拌し
、ブロック状又はフィルム状の成形型に流し込み、重合
を行うことにより微生物をポリウレタンに固定する方法
も知られている。
JP-A-52-38084 discloses that a polyurethane prepolymer having isocyanate groups at the terminals is brought into contact with an enzyme to polymerize and immobilize the enzyme on the polyurethane. It is also known that this method can be applied to microorganisms by adding a polyurethane prepolymer solution to a microorganism suspension, stirring it, pouring it into a block-shaped or film-shaped mold, and polymerizing it to immobilize the microorganisms on polyurethane. ing.

Δ■<n・′シよ゛と るユ 占 ポリウレタンの内部に微生物を固定する場合、得られる
固定化微生物の物理的強度は非常に大きく、耐久性も良
いが、固定化する際に使用するポリウレタンプレポリマ
ー溶液が毒性作用を及ぼすので、活性低下を招きやすい
When microorganisms are immobilized inside polyurethane, the resulting immobilized microorganisms have very high physical strength and good durability, but the The polyurethane prepolymer solution has a toxic effect and is likely to lead to a decrease in activity.

従って、本発明は、前記の従来技術の問題点を解消し、
ポリウレタンプレポリマーを用いて、微生物の活性低下
が少ない固定化微生物の製造方法を提供することを目的
とする。
Therefore, the present invention solves the problems of the prior art, and
The object of the present invention is to provide a method for producing immobilized microorganisms using a polyurethane prepolymer, which causes less reduction in microorganism activity.

。 占を1ンするための 本発明は、微生物懸濁液とポリウレタンプレポリマーと
アルギン酸の水溶性塩との混合液を、アルギン酸と不溶
性塩を形成しうる化合物の水溶液に添加し、微生物を包
括したアルギン酸の不溶性塩の粒子を形成させ、この粒
子内部に保持されたポリウレタンプレポリマーを重合さ
せることによって前記の問題点を解決したものであ−る
. In the present invention, a mixture of a microorganism suspension, a polyurethane prepolymer, and a water-soluble salt of alginic acid is added to an aqueous solution of a compound capable of forming an insoluble salt with alginic acid, and the microorganisms are encapsulated. The above problems are solved by forming particles of an insoluble salt of alginic acid and polymerizing the polyurethane prepolymer held inside the particles.

即ち、本発明は、末端にイソシアネート基を有するポリ
ウレタンプレポリマーとアルギン酸の水溶性塩と微生物
とを含む混合液を、アルギン酸と不溶性塩を形成しうる
化合物を含む水溶液中に滴下し、重合を行い、微生物を
包括固定したポリウレタンを形成させることを特徴とす
る。
That is, in the present invention, a mixed solution containing a polyurethane prepolymer having an isocyanate group at the terminal, a water-soluble salt of alginic acid, and a microorganism is dropped into an aqueous solution containing a compound capable of forming an insoluble salt with alginic acid, and polymerization is carried out. , is characterized by forming polyurethane in which microorganisms are entrappingly immobilized.

本発明に用いるポリウレタンプレポリマー・は、ジイソ
シアネート、トリイソシアネート又は他のポリイソシア
ネートを活性な水素を含有する化合物、特にグリコール
、ポリグリコール、ポリエステルポリオール又はポリエ
ーテルポリオールと反応させることにより公知の方法で
製造することができる。本発明に用いるポリウレタンプ
レポリマーは、平均分子量が3000〜4000.NG
O含有量が2.5〜4%であるのが好ましい。ポリウレ
タンプレポリマーの、微生物・アルギン酸水溶性塩混合
液への添加量を5〜16%とするのが好ましい。
The polyurethane prepolymers used in the invention are prepared in a known manner by reacting diisocyanates, triisocyanates or other polyisocyanates with active hydrogen-containing compounds, in particular glycols, polyglycols, polyester polyols or polyether polyols. can do. The polyurethane prepolymer used in the present invention has an average molecular weight of 3,000 to 4,000. NG
Preferably, the O content is between 2.5 and 4%. It is preferable that the amount of polyurethane prepolymer added to the microorganism/alginic acid water-soluble salt mixture is 5 to 16%.

本発明において、アルギン酸の水溶性塩としては、例え
ばナトリウム塩、カリウム塩又はアンモニウム塩を使用
することができる。
In the present invention, as the water-soluble salt of alginic acid, for example, a sodium salt, a potassium salt or an ammonium salt can be used.

アルギン酸と不溶性塩を形成する化合物としては、例え
ば水溶性のカルシウム塩、バリウム塩若しくはアルミニ
ウム塩、メチレンブルー又は第二鉄塩等が挙げられる。
Examples of compounds that form insoluble salts with alginic acid include water-soluble calcium salts, barium salts, or aluminum salts, methylene blue, or ferric salts.

本発明方法を実施する場合、ポリウレタンプレポリマー
溶液は、高い粘性を有するので、可塑剤として、例えば
メチルエチルケトン、ジオクチルフタレート、ジブチル
フタレート等を添加するのが好ましい。また、種々の変
性剤を添加することができ、例えば強度を増加するため
トルエンジイソシアネートを添加することができる。
When carrying out the method of the invention, since the polyurethane prepolymer solution has a high viscosity, it is preferable to add, for example, methyl ethyl ketone, dioctyl phthalate, dibutyl phthalate, etc. as a plasticizer. Also, various modifiers can be added, for example toluene diisocyanate to increase strength.

翁U1 ポリウレタンプレポリマーを用いて微生物を固定する場
合に起こる微生物の活性低下は、ポリウレタンプレポリ
マー溶液中の低分子ポリウレタンプレポリマー、残留モ
ノマー、変性剤及び可塑剤等の化学薬品による毒性作用
によるものと考えられる。
Okina U1 The decrease in microbial activity that occurs when microorganisms are immobilized using polyurethane prepolymer is due to the toxic effects of chemicals such as low-molecular-weight polyurethane prepolymer, residual monomers, modifiers, and plasticizers in the polyurethane prepolymer solution. it is conceivable that.

本発明方法によれば、ポリウレタンプレポリマーと′、
アルギン酸の水溶性塩(以下、ナトリウム塩を例として
説明する)と、微生物とを含む混合液をアルギン酸と不
溶性塩を形成する化合物(塩化カルシウムを例として説
明する)水溶液中に滴下して、微生物を包括したアルギ
ン酸カルシウムの粒子を形成させると同時に、粒子内部
に保持されたポリウレタンプレポリマーを重合させる。
According to the method of the present invention, a polyurethane prepolymer and ′,
A mixed solution containing a water-soluble salt of alginic acid (explained below using sodium salt as an example) and microorganisms is dropped into an aqueous solution of a compound that forms an insoluble salt with alginic acid (explained using calcium chloride as an example). At the same time, the polyurethane prepolymer held within the particles is polymerized.

この方法では、塩化カルシウム水溶液中に前記混合液を
滴下すると、低分子の物質はアルギン酸カルシウムの細
孔から漏れ、塩化カルシウム水溶液中に分散する。特に
低分子である残留モノマー、変性剤及び可塑剤等は瞬時
に分散し、また、低分子のポリウレタンプレポリマーも
塩化カルシウム水溶液中に分散しやすい。高分子のポリ
ウレタンプレポリマーは漏れにりく、アルギン酸カルシ
ウム粒子内部で重合する。従って、微生物が、七ツマー
1変性剤、可塑剤等の化学薬品と接触する時間が短、<
、毒性作用をあまり受けないので、微生物の活性を高く
保持することができる。トルエンジイソシアネート等の
変性剤を、滴下する直前の混合液に混合すると、微生物
と薬品との接触時間が一層短くなり、活性が高くなる。
In this method, when the liquid mixture is dropped into an aqueous calcium chloride solution, low-molecular substances leak from the pores of calcium alginate and are dispersed in the aqueous calcium chloride solution. In particular, low-molecular residual monomers, modifiers, plasticizers, etc. are instantly dispersed, and low-molecular polyurethane prepolymers are also easily dispersed in the calcium chloride aqueous solution. The high molecular weight polyurethane prepolymer polymerizes inside the calcium alginate particles without leakage. Therefore, the time that microorganisms come into contact with chemicals such as 7-mer 1 modifiers and plasticizers is shortened.
, it is less susceptible to toxic effects, so microbial activity can be maintained at a high level. If a modifier such as toluene diisocyanate is mixed into the liquid mixture immediately before dropping, the contact time between the microorganism and the chemical will be further shortened, and the activity will be increased.

アルギン酸ナトリウムの濃度を変えて、硝化菌4を本発
明方法により固定し、硝化菌の酸素吸収量からその活性
量を測定し、結果を第1図に示す。
Nitrifying bacteria 4 was immobilized by the method of the present invention while changing the concentration of sodium alginate, and the activity amount was measured from the amount of oxygen absorbed by the nitrifying bacteria. The results are shown in FIG.

第1図から明らかなとおり、アルギン酸ナトリウムを0
.3〜1.2%、好ましくは0.3〜0.6%添加する
のが好ましい。これは、アルギン酸ナトリウムの濃度が
高いと、前記の毒性物質が塩化カルシウム溶液中に漏れ
難いための考えられる。
As is clear from Figure 1, sodium alginate was
.. It is preferable to add 3 to 1.2%, preferably 0.3 to 0.6%. This is thought to be because when the concentration of sodium alginate is high, it is difficult for the above-mentioned toxic substances to leak into the calcium chloride solution.

可塑剤としてメチルエチルケトンを使用し、ポリウレタ
ンプレポリマー溶液中のメチルエチルケトン濃度を変え
て、硝化菌を本発明方法により固定し、硝化菌の酸素吸
収量から活性残存率を測定し、結果を第2図に示す。こ
の場合、ポリウレタンプレポリマー溶液を12%、アル
ギン酸ナトリウムを0.5%使用した。第2図から明ら
かなとおり、メチルエチルケトンの添加量は30%以下
であるのが好ましい。ポリウレタンプレポリマー溶液は
粘性が高いので、メチルエチルケトンを添加したほうが
よく、5〜30%の添加が好ましい。
Using methyl ethyl ketone as a plasticizer and varying the methyl ethyl ketone concentration in the polyurethane prepolymer solution, nitrifying bacteria were immobilized by the method of the present invention, and the residual activity rate was measured from the amount of oxygen absorbed by the nitrifying bacteria. The results are shown in Figure 2. show. In this case, 12% polyurethane prepolymer solution and 0.5% sodium alginate were used. As is clear from FIG. 2, the amount of methyl ethyl ketone added is preferably 30% or less. Since the polyurethane prepolymer solution has a high viscosity, it is better to add methyl ethyl ketone, preferably in an amount of 5 to 30%.

更に、本発明方法において、変性剤としてトルエンジイ
ソシアネートを使用し、ポリウレタンプレポリマー溶液
中のトルエンジイソシアネートの濃度を変えて、硝化菌
を固一定し、硝化菌の酸素吸収量から活性残存率を測定
し、結果を第3図に示す。この場合にも、ポリウレタン
プレポリマー溶液を12%、アルギン酸ナトリウムを0
.5%使用した。第3図から明らかなとおり、トルエン
ジイソシアネートは1.5%以下、好ましくは0.8%
以下がよい。
Furthermore, in the method of the present invention, toluene diisocyanate is used as a modifier, the concentration of toluene diisocyanate in the polyurethane prepolymer solution is varied, the nitrifying bacteria are kept constant, and the residual activity rate is measured from the amount of oxygen absorbed by the nitrifying bacteria. , the results are shown in Figure 3. In this case as well, the polyurethane prepolymer solution was 12% and the sodium alginate was 0%.
.. 5% was used. As is clear from Figure 3, toluene diisocyanate is 1.5% or less, preferably 0.8%.
The following is good.

なお、ポリウレタンプレポリマー溶液にトルエンジイソ
シアネートを少量含有しないと、溶液そのものが空気中
の水分と反応し、重合するので、トルエンジイソシアネ
ートを0.2〜0.8%含むのが好ましい。また、メチ
ルエチルケトンは、ポリウレタンプレポリマー溶液の製
造ライン中での配管、反応槽での洗浄等に用いるもので
、工業生産上不可欠なもので、ポリウレタンプレポリマ
ー溶液中には少量台まれるものである。
Note that if the polyurethane prepolymer solution does not contain a small amount of toluene diisocyanate, the solution itself will react with moisture in the air and polymerize, so it is preferable to contain 0.2 to 0.8% toluene diisocyanate. In addition, methyl ethyl ketone is used for cleaning piping and reaction tanks in the polyurethane prepolymer solution production line, and is essential for industrial production, and is contained in small amounts in polyurethane prepolymer solutions. .

大見皿 次に、実施例に基づいて本発明を詳述するが、本発明は
これに限定されるものではない。
Large Plate Next, the present invention will be described in detail based on Examples, but the present invention is not limited thereto.

実施例1 種菌として、松戸市に下水処理場の活性汚泥を用い、こ
の活性汚泥をアンモニア含有合成廃水で馴養した硝化菌
、グルコースを含む廃水で嫌気性で馴養したメタン菌、
活性汚泥から分離したシュードモナス(Pseudom
onas sp、 )及びフラボバクテリウム(Fla
vobacterium sp、)を供試した。これら
の菌をそれぞれ下記の表に示す組成で固定化した。
Example 1 Activated sludge from a sewage treatment plant in Matsudo City was used as seed bacteria, and the activated sludge was incubated with nitrifying bacteria in ammonia-containing synthetic wastewater, methane bacteria anaerobically acclimatized with glucose-containing wastewater,
Pseudomonas isolated from activated sludge
onas sp, ) and Flavobacterium (Fla
vobacterium sp.) was used. These bacteria were each immobilized with the composition shown in the table below.

し による  ヒ′  の1゛ 活性汚泥を40000■/1に濃縮し、この濃縮液10
m1に2%アルギン酸ナトリウム5mlを加え・メチル
エチルケトン(以下、MEKと略記する)0.24m1
及びトルエンジイソシアネート(以下、TDIと略記す
る)15μ!を含むポリウレタンプレポリマー2.4g
を添加し、よく攪拌し、注射器で2.5%塩化カルシウ
ム溶液中に滴下し、直径2〜3龍の球状の固定化微生物
を得た。
The activated sludge was concentrated to 40,000μ/1, and this concentrated liquid 10
Add 5 ml of 2% sodium alginate to m1 and 0.24 ml of methyl ethyl ketone (hereinafter abbreviated as MEK).
and toluene diisocyanate (hereinafter abbreviated as TDI) 15μ! 2.4g of polyurethane prepolymer containing
was added, stirred thoroughly, and dropped into a 2.5% calcium chloride solution using a syringe to obtain spherical immobilized microorganisms with a diameter of 2 to 3.

′ ゛による  ヒ′  の ゛ 前記の濃縮液10m1に水5mlを加え、MEKo、2
4m1及びTD115μlを含むポリウレタンプレポリ
マー2.4gを添加し、よく攪拌し、ポリエチレンフィ
ルムの上に流し、厚さ2鶴のフィルム状に固定化し、2
ml角に成形した。
Add 5 ml of water to 10 ml of the above concentrate, MEKo, 2
2.4 g of polyurethane prepolymer containing 4 ml and 115 μl of TD was added, stirred well, poured onto a polyethylene film, fixed in the form of a film with a thickness of 2
It was molded into a ml square.

同様にして、硝化菌、メタン菌、シュードモナス菌及び
フラボバクテリウム菌を本発明方法及び従来法で固定化
した。
Similarly, nitrifying bacteria, methane bacteria, pseudomonas bacteria, and Flavobacterium bacteria were immobilized using the method of the present invention and the conventional method.

11α瀝定 それぞれの固定化微生物について活性を測定した。活性
は、活性汚泥及び硝化菌については呼吸速度(単位:■
02/h)を測定し、メタン菌、シュードモナス菌及び
フラボバクテリウム菌については生菌数を測定した。結
果を下記の表に示す。
The activity of each immobilized microorganism was measured. For activated sludge and nitrifying bacteria, activity is determined by the respiration rate (unit: ■
02/h), and the number of viable bacteria for methane bacteria, Pseudomonas bacteria, and Flavobacterium bacteria. The results are shown in the table below.

呼吸速度は、110m1のふ即題に製造した固定化微生
物全量を入れ、溶存酸素の減少から測定した。
The respiration rate was measured from the decrease in dissolved oxygen by placing the entire amount of the immobilized microorganisms prepared in a 110 ml sample.

表から明らかなとおり、本発明方法によれば、従来法に
比べて、呼吸速度、生菌数ともに高い値が得られ、優れ
ている。
As is clear from the table, the method of the present invention is superior to the conventional method in that both the respiration rate and the number of viable bacteria are higher.

従来法で硝化菌を同じ菌体濃度でフィルム状に固定化し
、MEK及びTDIの影響も測定し、第2図及び第3図
に示す。この結果からも、本発明方法が従来法に比べて
優れていることが判る。
Nitrifying bacteria were immobilized in a film at the same bacterial cell concentration using a conventional method, and the effects of MEK and TDI were also measured, as shown in FIGS. 2 and 3. This result also shows that the method of the present invention is superior to the conventional method.

(以下余白) 光1坏B丸果 本発明によれば、活性が高い状態で微生物をポリウレタ
ンに包括固定することができる。
(Hereinafter, blank space) Hikari 1 Kyo B whole fruit According to the present invention, microorganisms can be comprehensively immobilized in polyurethane in a highly active state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、アルギン酸ナトリウムの量と固定化硝化菌の
呼吸速度との関係を示すグラフ、第2図は、ポリウレタ
ンプレポリマー中のメチルエチルケトンの量と固定化硝
化菌の呼吸速度との関係を示すグラフ、第3図は、ポリ
ウレタンプレポリマー中のトルエンジイソシアネートの
量と固定化硝化菌の呼吸速度との関係を示すグラフであ
る。
Figure 1 is a graph showing the relationship between the amount of sodium alginate and the respiration rate of immobilized nitrifying bacteria, and Figure 2 is a graph showing the relationship between the amount of methyl ethyl ketone in the polyurethane prepolymer and the respiration rate of immobilized nitrifying bacteria. The graph, FIG. 3, is a graph showing the relationship between the amount of toluene diisocyanate in a polyurethane prepolymer and the respiration rate of immobilized nitrifying bacteria.

Claims (4)

【特許請求の範囲】[Claims] (1)末端にイソシアネート基を有するポリウレタンプ
レポリマーとアルギン酸の水溶性塩と微生物とを含む混
合液を、アルギン酸と不溶性塩を形成しうる化合物を含
む水溶液中に滴下し、重合を行い、微生物を包括固定し
たポリウレタンを形成させることを特徴とする微生物の
固定化方法。
(1) A mixed solution containing a polyurethane prepolymer having an isocyanate group at the end, a water-soluble salt of alginic acid, and microorganisms is dropped into an aqueous solution containing a compound that can form an insoluble salt with alginic acid, polymerization is performed, and microorganisms are removed. A method for immobilizing microorganisms, characterized by forming polyurethane that is comprehensively immobilized.
(2)滴下する直前の混合液に変性剤、例えばトルエン
ジイソシアネートを混合する特許請求の範囲第1項記載
の微生物の固定化方法。
(2) The method for immobilizing microorganisms according to claim 1, wherein a modifier, such as toluene diisocyanate, is mixed into the mixed liquid immediately before dropping.
(3)可塑剤として、例えばメチルエチルケトン、ジオ
クチルフタレート、ジブチルフタレート等を用いる特許
請求の範囲第1項記載の微生物の固定化方法。
(3) The method for immobilizing microorganisms according to claim 1, which uses, for example, methyl ethyl ketone, dioctyl phthalate, dibutyl phthalate, etc. as the plasticizer.
(4)メチルエチルケトンを5〜30%、トルエンジイ
ソシアネートを0.2〜0.8%添加したポリウレタン
プレポリマーを用いて微生物を包括固定したポリウレタ
ンを形成させる特許請求の範囲第1項記載の微生物の固
定化方法。
(4) Immobilization of microorganisms according to claim 1, in which a polyurethane prepolymer containing 5 to 30% of methyl ethyl ketone and 0.2 to 0.8% of toluene diisocyanate is used to form a polyurethane in which microorganisms are comprehensively immobilized. method.
JP60141901A 1985-06-28 1985-06-28 Immobilization of microorganism Pending JPS623787A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60141901A JPS623787A (en) 1985-06-28 1985-06-28 Immobilization of microorganism
DE19863617875 DE3617875C2 (en) 1985-06-28 1986-05-28 Process for immobilizing microorganisms
KR1019860004279A KR930012103B1 (en) 1985-06-28 1986-05-30 Method of immobilizing microorganism
US06/868,454 US4791061A (en) 1985-06-28 1986-05-30 Immobilization of microorganisms by entrapment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60141901A JPS623787A (en) 1985-06-28 1985-06-28 Immobilization of microorganism

Publications (1)

Publication Number Publication Date
JPS623787A true JPS623787A (en) 1987-01-09

Family

ID=15302792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60141901A Pending JPS623787A (en) 1985-06-28 1985-06-28 Immobilization of microorganism

Country Status (1)

Country Link
JP (1) JPS623787A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248391A (en) * 1987-04-01 1988-10-14 Toyo Tire & Rubber Co Ltd Immobilization of cell and production of antibody

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248391A (en) * 1987-04-01 1988-10-14 Toyo Tire & Rubber Co Ltd Immobilization of cell and production of antibody
JPH0455673B2 (en) * 1987-04-01 1992-09-04 Toyo Tire & Rubber Co

Similar Documents

Publication Publication Date Title
KR930012103B1 (en) Method of immobilizing microorganism
Sumino et al. Immobilization of nitrifying bacteria by polyethylene glycol prepolymer
Bae et al. Core-shell structured poly (vinyl alcohol)/sodium alginate bead for single-stage autotrophic nitrogen removal
CN1896233B (en) Wrapped immobilization carrier and process for producing the same
Hsieh et al. Study of sodium tripolyphosphate-crosslinked chitosan beads entrapped with Pseudomonas putida for phenol degradation
Kowalska et al. Biodegradation of phenols and cyanides using membranes with immobilized microorganisms
US20070119776A1 (en) Entrapping immobilization pellets and process for producing the same
US20190039926A1 (en) Aerobic nitritation of ammonia and integrated anammox processes
Chang et al. Immobilization of Alcaligenes eutrophus using PVA crosslinked with sodium nitrate
Van Pham et al. Immobilized bacteria by using PVA (polyvinyl alcohol) crosslinked with sodium sulfate
Moutaouakkil et al. Decolorization of azo dyes with Enterobacter agglomerans immobilized in different supports by using fluidized bed bioreactor
EP1837310A2 (en) Entrapping immobilization pellets and process for producing the same, and wastewater treatment process and equipment using the same
Kokufuta et al. Coimmobilization of Nitrosomonas europaea and Paracoccus denitrificans cells using polyelectrolyte complex-stabilized calcium alginate gel
WO2001070637A1 (en) Method for direct clarification of ground water polluted with nitrate
Kokufuta et al. Immobilization of Paracoccus denitrificans cells with polyelectrolyte complex and denitrifying activity of the immobilized cells
JPS623787A (en) Immobilization of microorganism
JPH0137987B2 (en)
JPS6336898A (en) Immobilized bacteria capable of oxidizing nh4+ contained in sewage to nitrous acid and treatment using same
CN108410755A (en) A kind of flora and its cultural method for decomposing dimethylformamide
JP2003235554A (en) Microorganism-immobilized carrier and method for producing the same
Leenen et al. Characteristics and selection criteria of support materials for immobilization of nitrifying bacteria
JP2001346575A (en) Oligomer for bacterium immobilization carrier, hydrous gel of the oligomer polymerization and hydrous gel of the oligomer polymerization with immobilized bacterium
Liu et al. Nitrate removal from drinking water through the use of encapsulated microorganisms in alginate beads
Dong et al. Synthesis and application of polyurethane Hydrogel carrier on nitrobacteria immobilization
Iwahori et al. Substrate permeability in pellets formed by Aspergillus niger