JPS6237829B2 - - Google Patents

Info

Publication number
JPS6237829B2
JPS6237829B2 JP54057443A JP5744379A JPS6237829B2 JP S6237829 B2 JPS6237829 B2 JP S6237829B2 JP 54057443 A JP54057443 A JP 54057443A JP 5744379 A JP5744379 A JP 5744379A JP S6237829 B2 JPS6237829 B2 JP S6237829B2
Authority
JP
Japan
Prior art keywords
layer
groove
active layer
confinement
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54057443A
Other languages
Japanese (ja)
Other versions
JPS55150288A (en
Inventor
Masashi Dosen
Masaaki Ayabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP5744379A priority Critical patent/JPS55150288A/en
Publication of JPS55150288A publication Critical patent/JPS55150288A/en
Publication of JPS6237829B2 publication Critical patent/JPS6237829B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • H01S5/1064Comprising an active region having a varying composition or cross-section in a specific direction varying width along the optical axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2237Buried stripe structure with a non-planar active layer

Description

【発明の詳細な説明】 本発明は半導体レーザーに関するものである。[Detailed description of the invention] The present invention relates to semiconductor lasers.

光情報処理用の光源としての半導体レーザーは
第1図に示すダブルヘテロ構造からなつている。
即ち、N型GaAs半導体基板1上に、第1の閉込
め層としてのN型Ga1xAlxAs層2、活性層とし
てのP型GaAs層3、第2の閉込め層としてのP
型Ga1xAlxAs層4、電極のオーミツクコンタク
ト用のP型GaAs層5が順次積層されており、電
圧の印加によつて活性層3のPN接合からこのレ
ーザーの長さ方向にレーザー光6が放出される。
この場合、端面7、即ちへき開面の状態がレーザ
ー特性に大きな影響を与えるが、第1図の従来例
では活性層3全体が平担であつて端面7にそのま
ま露出している。従つてレーザー光が活性層3の
端面7のGaAsに吸収され易くなり、この結果と
して発熱が生じて端面破線を招き、高出力動作が
できないことになる。
A semiconductor laser used as a light source for optical information processing has a double heterostructure shown in FIG.
That is, on an N-type GaAs semiconductor substrate 1, an N-type Ga 1 - x Al x As layer 2 as a first confinement layer, a P-type GaAs layer 3 as an active layer, and a P-type GaAs layer 3 as a second confinement layer are formed on an N-type GaAs semiconductor substrate 1.
A layer 4 of Ga 1 - x Al Laser light 6 is emitted.
In this case, the state of the end face 7, that is, the cleavage plane, has a great influence on the laser characteristics, but in the conventional example shown in FIG. 1, the entire active layer 3 is flat and exposed as it is at the end face 7. Therefore, the laser beam is easily absorbed by the GaAs on the end face 7 of the active layer 3, and as a result, heat is generated, resulting in a broken line on the end face, and high output operation is not possible.

こうした欠点をなくすために、例えば第2図の
ように、両側の端面部分をエツチングで除去し、
この欠除部分に活性層3よりもバンドギヤツプの
大きい物質、例えばGaAlAs層8を改めて成長さ
せる方法が提案されている。しかしこの構造では
GaAlAu層8の形成のために液相のエピタキシヤ
ル成長をわざわざ行う必要があつて、作業性の点
で不利である。また第3図のように、活性層3を
予め高濃度(>1018cm-3)のN型にしておき、端
面部以外の領域にZnを高濃度拡散してP+型の領
域9を形成したものもある。この場合のバンドギ
ヤツプは、活性層3が最も大きく、P+型領域9
が最も小さくなるので、端面7のレーザー光の吸
収は一応減少させることができる。しかしなが
ら、精密にコントロールされたZn拡散が必要と
なる上に、活性層3へのドーピングが制限され、
しかも活性層3の端部とそれ以外の部分とのバン
ドギヤツプの差はあまり大きくはない。
In order to eliminate these defects, for example, as shown in Figure 2, the end faces on both sides are removed by etching.
A method has been proposed in which a material having a larger bandgap than the active layer 3, for example, a GaAlAs layer 8, is newly grown in this missing portion. But with this structure
In order to form the GaAlAu layer 8, it is necessary to carry out liquid phase epitaxial growth, which is disadvantageous in terms of workability. Further, as shown in FIG. 3, the active layer 3 is made N-type with a high concentration (>10 18 cm -3 ) in advance, and Zn is diffused at a high concentration in regions other than the end face portions to form a P + type region 9. Some have formed. In this case, the band gap is largest in the active layer 3 and in the P + type region 9.
is the smallest, so the absorption of laser light at the end face 7 can be reduced to some extent. However, in addition to requiring precisely controlled Zn diffusion, doping into the active layer 3 is limited.
Furthermore, the difference in band gap between the end portion of the active layer 3 and the other portions is not very large.

本発明は、以上のような諸欠点を解消すべくな
されたものであつて、一主面にストライプ状であ
つてその中央部と両端部とで幅の異なる溝が設け
られた半導体基体と、前記半導体基体上に順次形
成された第1の閉じ込め層、活性層及び第2の閉
じ込め層とをそれぞれ有し、前記活性層下部の位
置が前記中央部と両端部とで異なつていることを
特徴とする半導体レーザーに係るものである。こ
のように構成することによつて、高出力動作が可
能となるだけでなく、簡単かつ作業性良くレーザ
ーを作成することができる。
The present invention has been made in order to eliminate the above-mentioned drawbacks, and includes a semiconductor substrate having a stripe-shaped groove on one main surface and having different widths at the center and both ends; A first confinement layer, an active layer, and a second confinement layer are formed sequentially on the semiconductor substrate, and the position of the lower part of the active layer is different between the center and both ends. This relates to a semiconductor laser. With this configuration, not only high output operation is possible, but also a laser can be created easily and with good workability.

以下本発明の実施例を第4図〜第16図に付き
述べる。
Examples of the present invention will be described below with reference to FIGS. 4 to 16.

第4図〜第8図は第1の実施例を示すものであ
る。
4 to 8 show the first embodiment.

本施例による半導体レーザーは、第4図のよう
に、N型GaAs半導体基板11上に、第1の閉じ
込め層としてのN型Ga1xAlxAs層12、活性層
としてのP型GaAs層13、第2の閉込め層とし
てのP型Ga1xAlxAs層14、P型GaAs層15
が順次積層されたものであり、この積層構造自体
は従来のものと同様である。18はオーミツク電
極である。ここで重要なことは、端面17又はへ
き開面部分における活性層13の端部13aがそ
の発光部13bよりも低位置に存在していること
である。つまり活性層13の端部13aは発光部
13bの両端から下方へ傾斜しており、この傾斜
領域の真上に第2の閉込め層14が直接存在して
いる。端部13aは可能な限り急激に傾斜してい
る方がよく、また端面17への終端位置は発光部
13bの位置よりΔh低く、例えば0.2μ程度
(=Δh)低ければ十分である。
As shown in FIG. 4, the semiconductor laser according to this embodiment has an N-type GaAs semiconductor substrate 11, an N-type Ga 1 - x Al x As layer 12 as a first confinement layer, and a P-type GaAs layer as an active layer. layer 13, P-type Ga 1 - x Al x As layer 14 as a second confinement layer, P-type GaAs layer 15
are sequentially laminated, and this laminated structure itself is the same as the conventional one. 18 is an ohmic electrode. What is important here is that the end portion 13a of the active layer 13 at the end face 17 or cleavage plane portion is located at a lower position than the light emitting portion 13b. That is, the end portions 13a of the active layer 13 are inclined downward from both ends of the light emitting portion 13b, and the second confinement layer 14 is directly above this inclined region. It is better for the end portion 13a to be as steeply sloped as possible, and it is sufficient that the end position to the end face 17 is Δh lower than the position of the light emitting portion 13b, for example, about 0.2 μ (=Δh) lower.

こうした端部13aの傾斜は次のようにして形
成する。まず第5図及第6図のように、1枚のN
型GaAs基板11の一主面に深さ1μの溝19を
ストライプ状に形成する。この溝は、幅w1(例
えば4μ)の狭い直線状溝19aと、幅w2(例
えば20μの広い矩形状溝19bとからなつてい
る。溝19aは従つて溝19b間に直線的に延び
ていて、例えば200μの長さw3に設けられてお
り、またこの長さ方向における溝19bの長さ
w4は例えば50μになつている。そして第6図の
仮想線で示す位置にて基板11を複数個に切断
し、第5図のような個々の基板11とする。従つ
て第5図の基板11の一主面には、両端面17側
に第6図のものの1/2サイズの溝19bが存在
し、これら双方の溝19b間に長さ200μの溝1
9aが存在している。
The slope of the end portion 13a is formed as follows. First, as shown in Figures 5 and 6, one N
Grooves 19 having a depth of 1 μm are formed in stripes on one main surface of the GaAs substrate 11 . This groove consists of a narrow linear groove 19a with a width w 1 (eg 4μ) and a wide rectangular groove 19b with a width w 2 (eg 20μ).The groove 19a therefore extends linearly between the grooves 19b. For example, the groove 19b is provided with a length w3 of 200μ, and the length of the groove 19b in this length direction is
For example, w 4 is 50μ. Then, the substrate 11 is cut into a plurality of pieces at the positions shown by the imaginary lines in FIG. 6 to obtain individual substrates 11 as shown in FIG. Therefore, on one principal surface of the substrate 11 in FIG. 5, there are grooves 19b half the size of those in FIG.
9a is present.

なお第6図の仮想線の位置で切断(へき開)す
る以前に、第4図及び第5図のように基板11上
に各層12,13,14,15を夫々液相成長さ
せて、例えば後述するように選択的なプロトン注
入によつて溝部分にのみ電流が流れるようにして
電極18を全面に被着しておき、これら各層と共
に基板11を切断すればよい。
Before cutting (cleaving) at the position of the imaginary line in FIG. 6, each layer 12, 13, 14, 15 is grown in a liquid phase on the substrate 11 as shown in FIGS. 4 and 5, for example, as described below. The electrode 18 may be deposited on the entire surface by selective proton injection so that a current flows only in the groove portion, and the substrate 11 may be cut together with each of these layers.

本実施例によれば、各層12,13,14,1
5、特に12,13,14を成長させたときに、
溝19の存在によつて活性層15が第4図のよう
に端部で下方へ傾斜する如くに成長するのであ
る。即ち、第7図及び第8図に明示するように、
幅の狭い溝19a上においては第1の閉込め層1
2は溝19a内にh1と比較的厚く成長し、活性層
13はその上にほぼ平担な状態で成長するのに対
し、幅の広い溝19bにおいては図示のように活
性層13が溝19b内に入り込むようにして成長
する。これは液相成長の原理に基くものであつ
て、幅広の溝19bの中央部付近では第1の閉込
め層12が厚さh2と比較的薄く成長するのに伴な
つて、その領域上の活性層13が第8図のように
溝19b内にあたかもたれ下つたように成長する
ものである。例えば、溝19a上では第1の閉込
め層12は約1.4μに、活性層13は約0.15μに
成長するが、溝19b上では第1の閉込め層12
は約0.4μに活性層13は約0.25μに成長する。
従つて溝19a,19bの幅がw1<w2であるこ
とから、溝19a,19b上の第1の閉込め層1
2の厚さがh1>h2となることが理解されよう。
According to this embodiment, each layer 12, 13, 14, 1
5, especially when growing 12, 13, and 14,
Due to the presence of the grooves 19, the active layer 15 grows so as to be inclined downward at the end portions as shown in FIG. That is, as clearly shown in FIGS. 7 and 8,
On the narrow groove 19a, the first confinement layer 1
2 grows relatively thick to h 1 in the groove 19a, and the active layer 13 grows thereon in an almost flat state, whereas in the wide groove 19b, the active layer 13 grows in the groove as shown in the figure. It grows by entering into 19b. This is based on the principle of liquid phase growth, and as the first confinement layer 12 grows to a relatively thin thickness of h 2 near the center of the wide groove 19b, it grows over that area. The active layer 13 grows in the groove 19b as if hanging down, as shown in FIG. For example, on the groove 19a, the first confinement layer 12 grows to a thickness of about 1.4μ, and the active layer 13 grows to a thickness of about 0.15μ, but on the groove 19b, the first confinement layer 12 grows to a thickness of about 0.15μ.
The active layer 13 grows to a thickness of about 0.4μ, and the active layer 13 grows to a thickness of about 0.25μ.
Therefore, since the widths of the grooves 19a and 19b are w 1 <w 2 , the first confinement layer 1 on the grooves 19a and 19b
It will be understood that the thickness of 2 is h 1 > h 2 .

こうして活性層13が幅広の溝19bにおいて
溝19a上からより低位置へと傾斜する如くに成
長し、第4図のように端面17側で下方へ傾斜し
た状態となる。このとき活性層13を液相成長で
形成する場合には、溝部あるいは段差部が緩和さ
れる様に成長するため、活性層13の端部13a
は発光部13bよりも厚くなる傾向にあるが、こ
の場合であつても活性層13の厚み方向の中心部
で考えれば端面17側で下方へ傾斜し状態とみな
すことができる。このために、電圧を印加して動
作させた際に、活性層13の発光部13bからの
レーザー光は矢印20で示すように端部13a上
の第2の閉込め層14を通じて導びかれることに
なる。既述したように、第2の閉込め層14の
Ga1xAlxAsのバンドギヤツプ(〜1.7eV)は活
性層13のGaAsのバンドギヤツプ(〜
1.425eV)よりも大であるから、閉込め層14を
通過する光20の吸収はGaAsの場合より著しく
減少し、従つて発熱の減少により端面破壊が防止
され、高出力動作を行うことができるのである。
端面17でのバンドギヤツプは第2の閉込め層1
4によつて決まり、広くとることができる。
In this way, the active layer 13 grows in the wide groove 19b so as to be inclined from above the groove 19a to a lower position, and as shown in FIG. 4, the active layer 13 is inclined downward on the end surface 17 side. At this time, when the active layer 13 is formed by liquid phase growth, it grows so that the groove or step part is relaxed, so the end 13a of the active layer 13 is
tends to be thicker than the light-emitting portion 13b, but even in this case, considering the central portion of the active layer 13 in the thickness direction, it can be considered that the active layer 13 is inclined downward on the end surface 17 side. For this reason, when operated by applying a voltage, the laser light from the light emitting part 13b of the active layer 13 is guided through the second confinement layer 14 on the end part 13a as shown by the arrow 20. become. As mentioned above, the second confinement layer 14
The band gap of Ga 1 - x Al x As (~1.7 eV) is the same as the band gap of GaAs in the active layer 13 (~
1.425eV), the absorption of light 20 passing through the confinement layer 14 is significantly reduced compared to the case of GaAs, and therefore, the reduction in heat generation prevents edge destruction and enables high-power operation. It is.
The band gap at the end face 17 is the second confinement layer 1
4, and can vary widely.

また以上のように、溝19を形成した後は通常
の液相成長を行うのみでよいから、高出力のレー
ザーを得るために従来のようにP型不純物を精密
に拡散したり、或いは別のエピタキシヤル成長を
行う必要は全くない。
Furthermore, as described above, after forming the groove 19, it is only necessary to perform normal liquid phase growth, so in order to obtain a high-power laser, it is necessary to precisely diffuse the P-type impurity as in the conventional method, or to perform another process. There is no need to perform epitaxial growth.

なお第7図及び第8図中、21は絶縁物層であ
るが、これは、例えば約200KeV、ドーズ量5×
1015cm-2でH+を選択的にイオン注入することによ
り形成することができる。絶縁物層21は溝19
aの幅w1上には存在しないように設けているか
ら、電極18からの電流は絶縁物層21間を通つ
て溝19の基板11へと流れ、いわば電流通路を
限定する働きを有している。
Note that in FIGS. 7 and 8, 21 is an insulating layer, which is, for example, about 200 KeV and a dose of 5×
It can be formed by selective ion implantation of H + at 10 15 cm -2 . The insulator layer 21 has a groove 19
Since it is provided so that it does not exist on the width w 1 of a, the current from the electrode 18 flows between the insulator layers 21 to the substrate 11 in the groove 19, and has the function of limiting the current path, so to speak. ing.

第9図及び第10図は別の実施例を示すもので
ある。
9 and 10 show another embodiment.

この例では、上述の第1の実施例とは違つて、
溝19の深さを4μとし、端面17側では幅の狭
い例えば1μの溝19bとし(第10図)、端面
間には幅の広い例えば4μの溝19aを200μの
長さに設けている。従つて、この場合は、活性層
13は溝19a内へは傾斜して入り込むが溝19
b上では平担となるから、第4図に仮想線で示す
ように、端面17側で活性層13が上方へ持上げ
られるように形成されることになる。従つて、レ
ーザー光20は活性層13下の第1の閉込め層1
2のGa1xAlxAsを通じて外部へ導びかれるか
ら、既述と同様に端面17でのバンドキヤツプが
大きくなり、光吸収を減少させることができる。
In this example, unlike the first embodiment described above,
The depth of the groove 19 is 4μ, the width of the groove 19b is narrow, for example, 1μ, on the end face 17 side (FIG. 10), and the wide groove 19a, for example, 4μ, is provided between the end faces with a length of 200μ. Therefore, in this case, the active layer 13 enters the groove 19a at an angle, but the active layer 13 enters the groove 19a at an angle.
Since it is flat on the surface b, the active layer 13 is formed so as to be lifted upward on the end surface 17 side, as shown by the imaginary line in FIG. Therefore, the laser beam 20 is transmitted to the first confinement layer 1 below the active layer 13.
Since the light is guided to the outside through Ga 1 - x Al x As of No. 2, the band cap at the end face 17 becomes large, as described above, and light absorption can be reduced.

第11図〜第16図は上記各実施例に応用可能
な方法を示すものである。
11 to 16 show methods applicable to each of the above embodiments.

まず第11図のように、各エピタキシヤル層1
2,13,14,15を成長させてから、更に第
5のP型Ga1xAlxAs層30を成長させる。次に
このP型層30を第12図のように選択的にエツ
チングし、残つたP型層30をマスクとして第1
3図のようにH+ビーム31を照射し、エピタキ
シヤル層内にイオン注入による絶縁物層21を形
成する。次に第14図のように、P型層30を除
去してオーミツク電極18を被着してレーザーを
完成する。
First, as shown in FIG.
After growing layers 2, 13, 14, and 15, a fifth P-type Ga 1 - x Al x As layer 30 is further grown. Next, this P-type layer 30 is selectively etched as shown in FIG. 12, and the remaining P-type layer 30 is used as a mask to remove the first
As shown in FIG. 3, an H + beam 31 is irradiated to form an insulating layer 21 in the epitaxial layer by ion implantation. Next, as shown in FIG. 14, the P-type layer 30 is removed and an ohmic electrode 18 is deposited to complete the laser.

この例では、イオン注入のマスクとして
Ga1xAlxAs30を使用しているが、このマスク
は第5層目のエピタキシヤル層として連続液相成
長で簡単に形成できる上に、種々のパターン形状
に加工でき、下層(Ga1xAlxAs)に対して密着
性がよく、ウエハに歪みを与えない(GaAsと
Ga1xAlxAsとは格子定数がほぼ同じ)非常に優
れたものである。得られた半導体レーザーは実際
には、しきい値電流は40〜80mAであり、出力は
10〜15mWまで単一の横モードで発振した。
In this example, as a mask for ion implantation.
Ga 1x Al - x Al x As) and does not cause distortion to the wafer (GaAs
The lattice constant is almost the same as that of Ga 1 - x Al x As). The obtained semiconductor laser actually has a threshold current of 40-80mA and an output of
It oscillated in a single transverse mode up to 10-15 mW.

このイオン注入は第15図及び第16図のよう
に行うことが有利である。即ちまず第15図のよ
うに、イオンビーム31を左下りの斜め方向に打
込むと、マスク30の左上端及び右下端によりビ
ームが規制され、図示のような左下りの斜めに延
びる対向辺22a,22bを有する絶縁物層21
が形成される。次に第16図のようにビーム打込
み方向を右下りの斜め方向に変えると、上記とは
逆パターンでビームが打込まれ、絶縁物層21の
左側の辺22aが辺22bと同様にマスク30の
下側に入り込よつうにイオン注入される。従つて
最終的に得られた絶縁物層21の対向辺22a,
22bの間の間隔は、基板11方向又は深さ方向
において次第に狭くなり、間隔lで最小となる。
この結果、第14図のように電極を形成して動作
させた場合、狭い幅lの間隔によつて電流の通路
が狭められ、電流を効果的に活性層13のPN接
合に集中させることができる。こうして電流密度
が既述の場合よりも大きくなり、レーザー動作時
の立上り特性を向上させることができる。なおビ
ーム31としてはH+以外にも、液相成長層の特
性に応じて、O+,Ar+,Zn+,S+,Se+等も使用
可能である。
Advantageously, this ion implantation is performed as shown in FIGS. 15 and 16. That is, first, as shown in FIG. 15, when the ion beam 31 is implanted diagonally downward to the left, the beam is regulated by the upper left end and lower right end of the mask 30, and the opposing side 22a extends diagonally downward to the left as shown in the figure. , 22b.
is formed. Next, as shown in FIG. 16, when the beam implantation direction is changed to the diagonal direction downward to the right, the beam is implanted in a pattern opposite to that described above, and the left side 22a of the insulating layer 21 is aligned with the mask 30 in the same way as the side 22b. The ions are implanted so that they penetrate into the underside of the surface. Therefore, the opposing sides 22a of the finally obtained insulating layer 21,
The spacing between 22b becomes gradually narrower in the direction of the substrate 11 or in the depth direction, and becomes the minimum at the spacing l.
As a result, when the electrodes are formed and operated as shown in FIG. 14, the current path is narrowed by the narrow interval l, and the current cannot be effectively concentrated in the PN junction of the active layer 13. can. In this way, the current density becomes larger than in the case described above, and the rise characteristics during laser operation can be improved. Note that as the beam 31, in addition to H + , it is also possible to use O + , Ar + , Zn + , S + , Se + , etc., depending on the characteristics of the liquid phase growth layer.

以上、本発明を実施例に付き述べたが、この実
施例は本発明の技術的思想に基いて更に変形可能
である。例えば溝19の形状や位置を変更してよ
い。上記実施例では溝19a又は19bを他の溝
よりも幅広に形成しているが、この幅広の溝の幅
は更に大きくしてもよく、例えば第6図において
溝19bを基板11の左端から右端にまで貫通し
て設けてもよい。また各エピタキシヤル層及び基
板の導電型の変換が可能であり、各層の構成材料
も変更できる。
Although the present invention has been described above with reference to embodiments, this embodiment can be further modified based on the technical idea of the present invention. For example, the shape and position of the groove 19 may be changed. In the above embodiment, the groove 19a or 19b is formed wider than the other grooves, but the width of this wide groove may be made even larger.For example, in FIG. It may be provided so as to penetrate up to the point. Furthermore, the conductivity types of each epitaxial layer and the substrate can be changed, and the constituent materials of each layer can also be changed.

本発明は上述の如く、基体の一主面に設けた溝
により、活性層の発光部と端部との深さ位置を互
いに異らせるようにしているので、発光部からの
レーザー光は端面又はへき開面側において活性層
の上又は下層のバンドキヤツプの大きい層を通じ
て放出され、従つて光吸収を減少させて端面破壊
をなくし、高出力動作を行わせることができる。
しかもこうした効果は、基板の凹凸部上に通常の
方法で各半導体層を成長させるのみで達成できる
から、従来のような精密にコントロールされた拡
散や、各層成長後の別個の液相成長工程が全く不
要となり、簡単にかつ作業性良く特性の優れたレ
ーザーを作成できる。
As described above, in the present invention, the depth positions of the light emitting part and the end part of the active layer are made to be different from each other by the groove provided on one main surface of the base, so that the laser light from the light emitting part is transmitted to the end face. Alternatively, it is emitted through a layer with a large bandcap above or below the active layer on the cleavage plane side, thus reducing optical absorption, eliminating edge destruction, and enabling high-output operation.
Moreover, these effects can be achieved simply by growing each semiconductor layer on the uneven surface of the substrate using the usual method, so there is no need for the conventional precisely controlled diffusion or a separate liquid phase growth process after each layer is grown. It is completely unnecessary, and a laser with excellent characteristics can be easily created with good workability.

また本発明の半導体レーザーでは、基板に形成
する溝の幅を変化させることにより、第1の閉込
め層の厚さを発光部である活性層の中央部で実質
的に変化させているので、利得ガイド型のレーザ
ーのみならず、屈折率ガイド型のレーザーをも容
易に作成することができる。さらに、利得ガイド
型レーザーの場合においても、基板に電流制限層
を形成することにより、例えば溝幅を変化させる
ことによつて電流狭窄を行なうことができる。
Furthermore, in the semiconductor laser of the present invention, by changing the width of the groove formed in the substrate, the thickness of the first confinement layer is substantially changed at the center of the active layer, which is the light emitting part. Not only gain-guided lasers but also refractive index-guided lasers can be easily created. Furthermore, even in the case of a gain-guided laser, by forming a current limiting layer on the substrate, current confinement can be achieved by, for example, changing the groove width.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は従来例を示すものであつて、
第1図は通常の半導体レーザーの断面図、第2図
は別の半導体レーザーの断面図、第3図は更に別
の半導体レーザーの断面図である。第4図〜第1
6図は本発明の実施例を示すものであつて、第4
図は第1の実施例による半導体レーザーの断面
図、第5図はこのレーザーをへき開面側から見た
斜視図、第6図は個々の半導体レーザーに分割す
る前の半導体基板の平面図、第7図は第5図の
―線断面図、第8図は第5図の―線断面
図、第9図は第2の実施例による半導体レーザー
の第7図と同様の断面図、第10図は同レーザー
の第8図と同様の断面図、第11図〜第14図は
イオン注入により半導体レーザーに絶縁物層を形
成する方法を工程順に示す断面図、第15図及び
第16図はイオン注入方法を工程順に示す断面図
である。 なお図面に用いられている符号において、11
…半導体基板、12…第1の閉込め層、13…活
性層、14…第2の閉込め層、17…端面又はへ
き開面、19…溝、21…絶縁物層、13a…端
部、13b…発光部、19a…直線状溝、19b
…矩形状溝である。
Figures 1 to 3 show conventional examples, and
FIG. 1 is a sectional view of a conventional semiconductor laser, FIG. 2 is a sectional view of another semiconductor laser, and FIG. 3 is a sectional view of yet another semiconductor laser. Figure 4 ~ 1st
FIG. 6 shows an embodiment of the present invention.
The figure shows a cross-sectional view of the semiconductor laser according to the first embodiment, FIG. 5 is a perspective view of this laser seen from the cleavage plane side, FIG. 6 is a plan view of the semiconductor substrate before it is divided into individual semiconductor lasers, and FIG. 7 is a cross-sectional view taken along the line -- in FIG. 5, FIG. 8 is a cross-sectional view taken along the line -- in FIG. 5, FIG. 9 is a cross-sectional view similar to FIG. 7 of the semiconductor laser according to the second embodiment, and FIG. is a cross-sectional view similar to that shown in FIG. 8 of the same laser, FIGS. 11 to 14 are cross-sectional views showing the method of forming an insulator layer on a semiconductor laser in the order of steps by ion implantation, and FIGS. FIG. 3 is a cross-sectional view showing the injection method in the order of steps. In addition, in the symbols used in the drawings, 11
... Semiconductor substrate, 12... First confinement layer, 13... Active layer, 14... Second confinement layer, 17... End face or cleavage plane, 19... Groove, 21... Insulator layer, 13a... End part, 13b ...Light emitting part, 19a...Straight groove, 19b
...It is a rectangular groove.

Claims (1)

【特許請求の範囲】[Claims] 1 一主面上にストライプ状であつてその中央部
と両端部とで幅の異なる溝が設けられた半導体基
体と、前記半導体基体上に順次形成された第1の
閉じ込め層、活性層及び第2の閉じ込め層とをそ
れぞれ有し、前記活性層下部の位置が前記中央部
と両端部とで異なつていることを特徴とする半導
体レーザー。
1. A semiconductor substrate having a stripe-shaped groove on one main surface and having different widths at the center and both ends thereof, and a first confinement layer, an active layer, and a first confinement layer, which are sequentially formed on the semiconductor substrate. 2. A semiconductor laser comprising two confinement layers, wherein the position of the lower part of the active layer is different between the central part and both ends.
JP5744379A 1979-05-10 1979-05-10 Semiconductor laser Granted JPS55150288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5744379A JPS55150288A (en) 1979-05-10 1979-05-10 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5744379A JPS55150288A (en) 1979-05-10 1979-05-10 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPS55150288A JPS55150288A (en) 1980-11-22
JPS6237829B2 true JPS6237829B2 (en) 1987-08-14

Family

ID=13055793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5744379A Granted JPS55150288A (en) 1979-05-10 1979-05-10 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS55150288A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57153488A (en) * 1981-03-17 1982-09-22 Matsushita Electric Ind Co Ltd Semiconductor device
JPS58225681A (en) * 1982-06-23 1983-12-27 Sharp Corp Semiconductor laser element
JPS5963788A (en) * 1982-10-04 1984-04-11 Agency Of Ind Science & Technol Semiconductor laser
JPS635587A (en) * 1986-06-25 1988-01-11 Mitsubishi Electric Corp Semiconductor laser device
EP0302732B1 (en) * 1987-08-04 1993-10-13 Sharp Kabushiki Kaisha A semiconductor laser device
KR100499128B1 (en) * 2002-07-19 2005-07-04 삼성전기주식회사 Semiconductor laser diode with current restricting layer and Fabricating method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425686A (en) * 1977-07-29 1979-02-26 Nec Corp Semiconductor junction laser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425686A (en) * 1977-07-29 1979-02-26 Nec Corp Semiconductor junction laser

Also Published As

Publication number Publication date
JPS55150288A (en) 1980-11-22

Similar Documents

Publication Publication Date Title
US4839307A (en) Method of manufacturing a stripe-shaped heterojunction laser with unique current confinement
JP3710329B2 (en) Semiconductor laser device and manufacturing method thereof
JPS6237829B2 (en)
US4333061A (en) Terraced substrate semiconductor laser
JPH10229246A (en) Ridge semiconductor laser diode and its manufacturing method
US4514896A (en) Method of forming current confinement channels in semiconductor devices
US4447905A (en) Current confinement in semiconductor light emitting devices
GB2095474A (en) Semiconductor light emitting devices
JPS589592B2 (en) Method for manufacturing semiconductor light emitting device
JP2940158B2 (en) Semiconductor laser device
KR19990009567A (en) Laser diode and manufacturing method thereof
JP3229085B2 (en) Semiconductor laser device and method of manufacturing the same
JP3213428B2 (en) Semiconductor laser device and method of manufacturing the same
KR100261243B1 (en) Laser diode and its manufacturing method
JP3722532B2 (en) Semiconductor laser device and manufacturing method thereof
JP2000040857A (en) Semiconductor laser element
KR100255694B1 (en) Semiconductor laser diode
KR970009672B1 (en) Method of manufacture for semiconductor laserdiode
JP2547459B2 (en) Semiconductor laser device and manufacturing method thereof
JP3217461B2 (en) Method for manufacturing semiconductor laser device
KR100287206B1 (en) Semiconductor laser device and manufacturing method thereof
JP2538613B2 (en) Semiconductor laser and manufacturing method thereof
GB2080015A (en) Semiconductor lasers
JPH1174616A (en) Semiconductor light emitting device and fabrication thereof
JPH02194688A (en) Semiconductor laser