JPS6237756B2 - - Google Patents

Info

Publication number
JPS6237756B2
JPS6237756B2 JP57098825A JP9882582A JPS6237756B2 JP S6237756 B2 JPS6237756 B2 JP S6237756B2 JP 57098825 A JP57098825 A JP 57098825A JP 9882582 A JP9882582 A JP 9882582A JP S6237756 B2 JPS6237756 B2 JP S6237756B2
Authority
JP
Japan
Prior art keywords
working fluid
heat
liquid
pipe
phase working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57098825A
Other languages
Japanese (ja)
Other versions
JPS58214788A (en
Inventor
Michio Takaoka
Seiichi Kagaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Cable Works Ltd
Original Assignee
Fujikura Cable Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Cable Works Ltd filed Critical Fujikura Cable Works Ltd
Priority to JP9882582A priority Critical patent/JPS58214788A/en
Publication of JPS58214788A publication Critical patent/JPS58214788A/en
Publication of JPS6237756B2 publication Critical patent/JPS6237756B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/025Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes having non-capillary condensate return means

Description

【発明の詳細な説明】 この発明はヒートパイプに関し、特に上下方向
に向けて配置しかつその上部を加熱部とした所謂
トツプヒートモードにおいて有効なヒートパイプ
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat pipe, and more particularly to a heat pipe that is arranged vertically and is effective in a so-called top heat mode with its upper portion serving as a heating section.

周知のように、従来一般のヒートパイプは密閉
コンテナの内部にウイツクを配置するとともに作
動流体を封入した構成であつて、加熱部において
熱せられて蒸発した作動流体が蒸気圧の低い冷却
部に流れて放熱・凝縮することにより、作動流体
の潜熱として熱を輸送し、かつウイツクによつて
生じる毛細管圧力によつて液相作動流体を還流さ
せるものであり、銅等の金属に比較して数十倍な
いし百数十倍の熱伝導率を有するものである。
As is well known, conventional heat pipes have a structure in which a heat pipe is placed inside an airtight container and a working fluid is sealed inside.The working fluid is heated and evaporated in the heating section, and then flows to the cooling section where the vapor pressure is low. By dissipating and condensing heat, the heat is transported as latent heat of the working fluid, and the liquid-phase working fluid is refluxed by the capillary pressure generated by the wick. It has a thermal conductivity that is between twice and hundreds of times higher.

しかるに、従来のヒートパイプは毛細管圧力に
よつて液相作動流体を還流させるものであるか
ら、ヒートパイプを鉛直方向に沿つて立て、かつ
その上端部を加熱部とするとともに下端部を冷却
部とした使用態様すなわちトツプヒートモードで
は、加熱部と冷却部との高低差が数十cmを越える
と、加熱部と冷却部との間における液相作動流体
の水頭差がウイツクによる毛細管圧力より大きく
なつてしまうので、液相作動流体が加熱部に還流
しなくなり、結局熱輸送を行なえなくなる欠点が
あつた。
However, since conventional heat pipes use capillary pressure to reflux liquid-phase working fluid, the heat pipe is vertically erected, and its upper end serves as a heating section, while its lower end serves as a cooling section. In the top heat mode, when the height difference between the heating section and the cooling section exceeds several tens of centimeters, the head difference of the liquid phase working fluid between the heating section and the cooling section becomes larger than the capillary pressure caused by the wick. As a result, the liquid-phase working fluid does not return to the heating section, resulting in a disadvantage that heat transport cannot be carried out.

このような不都合を解消するために、たとえば
第1図に示すように複数本のヒートパイプ1,2
を同一軸線上に配置して相互に連結し、その連結
部に凹凸部3を設けて伝熱面積を広くし、もつて
液相作動流体を還流させるべき長さを短くするこ
とが考えられるが、このような構成ではその凹凸
部3への液相作動流体の還流が必ずしもスムース
には生ぜず、しかも各ヒートパイプ1,2の実質
的な長さが第1図に示すLとなり、したがつてト
ツプヒートモードの場合には、液相作動流体の還
流が不十分となり、換言すれば熱輸送能力が劣
り、また両端部の間で大きな温度差が生じる欠点
があつた。
In order to eliminate this inconvenience, for example, as shown in FIG.
It is conceivable to arrange them on the same axis and connect them to each other, and to provide uneven parts 3 at the connecting parts to increase the heat transfer area and thereby shorten the length over which the liquid-phase working fluid must be refluxed. In such a configuration, the liquid-phase working fluid does not necessarily flow back smoothly to the uneven portion 3, and furthermore, the substantial length of each heat pipe 1, 2 is L as shown in FIG. In the case of the top heat mode, the reflux of the liquid phase working fluid is insufficient, in other words, the heat transport ability is poor, and there is a drawback that a large temperature difference occurs between both ends.

また従来、第1のヒートパイプ4を第2図に示
すように中空円柱状に形成し、その中空部内に第
2のヒートパイプ5,6を両側から差し込んでこ
れらのヒートパイプ4,5,6を連結一体化する
構成のものが提案されている(特開昭53−
113356)が、このような構成では中空円柱状のヒ
ートパイプ4と前記第2のヒートパイプ5,6と
の密着性が悪くなり、両者の間に空気層が生じる
ことがあり、これに加え第1のヒートパイプ4内
における作動流体と第2のヒートパイプ5,6内
における作動流体との間には、それぞれのウイツ
ク7,8,9およびコンテナ10,11,12の
周壁が存在することになり、したがつて第1のヒ
ートパイプ4と第2のヒートパイプ5,6との間
の熱伝達抵抗が大きく、その結果第1のヒートパ
イプ4を介した第2のヒートパイプ5,6相互の
間の熱伝達が劣り、トツプヒートモードの場合、
たとえ液相作動流体の還流が十分生じたとしても
熱輸送を十分に行ない得ないおそれがあるなどの
問題があつた。
Conventionally, the first heat pipe 4 is formed into a hollow cylinder shape as shown in FIG. 2, and the second heat pipes 5, 6 are inserted into the hollow part from both sides. A configuration has been proposed that connects and integrates the
113356) However, in such a configuration, the adhesion between the hollow cylindrical heat pipe 4 and the second heat pipes 5 and 6 may deteriorate, and an air layer may be formed between them. The peripheral walls of the respective heat pipes 7, 8, 9 and the containers 10, 11, 12 are present between the working fluid in the first heat pipe 4 and the working fluid in the second heat pipes 5, 6. Therefore, the heat transfer resistance between the first heat pipe 4 and the second heat pipes 5 and 6 is large, and as a result, the heat transfer resistance between the first heat pipe 4 and the second heat pipes 5 and 6 is large. In the case of top heat mode, the heat transfer between
Even if sufficient reflux of the liquid-phase working fluid occurs, there are problems such as insufficient heat transport.

これに対し従来から、液相作動流体を還流させ
る方法として、毛細管作用以外に、遠心力、静電
気力、電磁気力あるいは浸透圧などを利用する方
法が考えられており、このような方法によれば、
トツプヒートモードの場合にも液相作動流体を相
当高い位置に還流させることができるかも知れな
いが、遠心力や静電気力あるいは電磁気力を利用
する場合は、外部から機械エネルギや電気エネル
ギを与えなければならず、また静電気力や電磁気
力あるいは浸透圧を利用する場合には、使用し得
る作動流体が限定される問題があつた。
On the other hand, as a method for refluxing a liquid-phase working fluid, methods using centrifugal force, electrostatic force, electromagnetic force, or osmotic pressure in addition to capillary action have traditionally been considered. ,
In the case of top heat mode, it may be possible to circulate the liquid phase working fluid to a considerably high position, but when using centrifugal force, electrostatic force, or electromagnetic force, mechanical energy or electrical energy must be applied from the outside. Furthermore, when electrostatic force, electromagnetic force, or osmotic pressure is used, there is a problem in that the working fluid that can be used is limited.

この発明は上記の事情に鑑み、加熱部と冷却部
とに相当の高低差がある場合であつても十分熱輸
送を行なうことができ、かつ熱輸送能力の優れた
トツプヒート用ヒートパイプを提供することを目
的とするものである。すなわちこの発明は、気相
作動流体によつて回転されるタービンと、そのタ
ービンによつて駆動されるポンプとを、作動流体
を封入した管体内に配置し、そのポンプによつて
汲上げた液相の作動流体を、タービンとポンプと
を接続する中空の連結軸およびタービンの中空の
回転軸の両者を通して前記管体の冷却側端部内か
ら加熱側端部内に還流させるよう構成したことを
特徴とするものである。
In view of the above-mentioned circumstances, the present invention provides a heat pipe for top heat that can sufficiently transport heat even when there is a considerable height difference between the heating section and the cooling section, and has an excellent heat transport ability. The purpose is to That is, the present invention arranges a turbine rotated by a gas-phase working fluid and a pump driven by the turbine in a tube sealed with the working fluid, and the liquid pumped by the pump is The working fluid of the phase is configured to be circulated from the cooling side end to the heating side end of the pipe body through both the hollow connecting shaft connecting the turbine and the pump and the hollow rotating shaft of the turbine. It is something to do.

以下この発明の実施例を第3図および第4図を
参照して説明する。
Embodiments of the present invention will be described below with reference to FIGS. 3 and 4.

第3図において符号20は作動流体を封入した
密閉構造の管体すなわちパイプであつて、パイプ
20の加熱部とされる一端部(第3図では上端
部)の内周面に、液相作動流体21を溜めるため
の液溜め22が設けられ、その液溜め22から第
3図における上端側の内周面には、金属網等から
なるウイツク23が配置されている。このウイツ
ク23は液溜め22から液相作動流体21を吸い
上げて加熱部とされる端部側の内周面全体に到ら
しめるものであり、その軸線方向の長さは、ウイ
ツク23の上端と下端とにおける液相作動流体2
1の水頭差が、ウイツク23において生じる毛細
管圧力以下になる長さに設定され、したがつて液
溜め22内の液相作動流体21が重力に抗してパ
イプ20の上端部まで上昇するようになつてい
る。
In FIG. 3, reference numeral 20 denotes a pipe with a closed structure that encloses a working fluid. A liquid reservoir 22 for storing a fluid 21 is provided, and a wick 23 made of a metal net or the like is disposed on the inner circumferential surface of the liquid reservoir 22 on the upper end side in FIG. 3. This wick 23 sucks up the liquid phase working fluid 21 from the liquid reservoir 22 and makes it reach the entire inner circumferential surface of the end side which is used as a heating section, and its length in the axial direction is the same as the upper end of the wick 23. Liquid phase working fluid 2 at the lower end
The length is set such that the head difference of 1 is less than the capillary pressure generated in the pipe 23, so that the liquid phase working fluid 21 in the liquid reservoir 22 rises to the upper end of the pipe 20 against gravity. It's summery.

また前記パイプ20の内部に、気相作動流体2
4によつて回転される運動エネルギ変換装置とし
てのタービン25が配置されている。タービン2
5は、気相作動流体24の有する運動エネルギの
一部を機械的な回転力に変換するものであつて、
例えば軸流タイプのものであり、そのタービン2
5は回転軸26が前記パイプ20の中心軸線と一
致するようパイプ20内に固定されている。また
タービン25の回転軸26は、後述するように液
相作動流体21の還流路をなすものであつて、小
径管によつて形成され、かつその上端部にはロー
タリーカツプリング27を介して給液管28が接
続され、さらにその給液管28は前記液溜め22
に接続されている。なお、液相作動流体21が蒸
発することによつて生じた気相作動流体24の全
量がタービン25を通過することが好ましいの
で、前記パイプ20の中間部に熱の出入りのない
断熱部を特に設けていない場合には、加熱部と冷
却部との実質的な境界位置にタービン25を設置
し、また断熱部を設ける場合には、その断熱部に
対応する箇所にタービン25を設置することが好
ましい。
Furthermore, a gas phase working fluid 2 is provided inside the pipe 20.
A turbine 25 as a kinetic energy conversion device rotated by a turbine 4 is arranged. turbine 2
5 converts a part of the kinetic energy of the gas phase working fluid 24 into mechanical rotational force,
For example, it is an axial flow type, and its turbine 2
5 is fixed within the pipe 20 so that the rotating shaft 26 coincides with the central axis of the pipe 20. Further, the rotating shaft 26 of the turbine 25 forms a return path for the liquid-phase working fluid 21 as will be described later, and is formed of a small diameter pipe, and the upper end thereof is supplied with a rotary coupling 27. A liquid pipe 28 is connected, and the liquid supply pipe 28 is connected to the liquid reservoir 22.
It is connected to the. Note that since it is preferable that the entire amount of the gas-phase working fluid 24 generated by evaporation of the liquid-phase working fluid 21 passes through the turbine 25, a heat insulating section is especially provided in the middle part of the pipe 20 to prevent heat from entering or exiting. If not provided, the turbine 25 may be installed at a substantial boundary position between the heating section and the cooling section, and if a heat insulating section is provided, the turbine 25 may be installed at a location corresponding to the heat insulating section. preferable.

さらに、パイプ20の冷却部とされる端部(第
3図では下端部)の内部に、液相作動流体還流装
置としてのポンプ29が常時液相作動流体21中
に浸漬するよう配置され、そのポンプ29は前記
タービン25によつて動作させるべく小径管から
なる連結軸30によつてタービン25の回転軸2
6に連結されている。ポンプ29は液相作動流体
21をパイプ20の上端側に設けた液溜め22に
汲み上げるものであつて、ポンプ29はその中心
軸29aが中空管によつて形成されるとともに、
その中心軸29aが吐出管とされており、したが
つてポンプ29が動作することにより、液相作動
流体21がポンプ29の中心軸29a、連結軸3
0、タービン25の回転軸26および給液管28
を経て前記液溜め22に還流するようになつてい
る。なお、タービン25の回転軸26および給液
管28は加熱部に位置することになるので、ポン
プ29によつて汲み上げた液相作動流体21がタ
ービン25の回転軸26および給液管28の内部
で蒸発しないようにするために、少なくともこれ
ら回転軸26および給液管28は、外部からの熱
の流入を阻止するべく断熱構造とすることが好ま
しい。
Furthermore, a pump 29 as a liquid-phase working fluid recirculation device is disposed inside the end portion (lower end portion in FIG. 3) of the pipe 20 that is used as a cooling section, so as to be constantly immersed in the liquid-phase working fluid 21. The pump 29 is connected to the rotating shaft 2 of the turbine 25 by a connecting shaft 30 made of a small diameter pipe so as to be operated by the turbine 25.
6. The pump 29 pumps up the liquid-phase working fluid 21 to a liquid reservoir 22 provided at the upper end of the pipe 20. The pump 29 has a central axis 29a formed of a hollow tube, and
The central axis 29a of the pump 29 is a discharge pipe, and when the pump 29 operates, the liquid phase working fluid 21 is transferred to the central axis 29a of the pump 29 and the connecting shaft 3.
0, rotating shaft 26 of turbine 25 and liquid supply pipe 28
The liquid is refluxed to the liquid reservoir 22 through the process. Note that since the rotating shaft 26 and the liquid supply pipe 28 of the turbine 25 are located in the heating section, the liquid phase working fluid 21 pumped up by the pump 29 is inside the rotating shaft 26 and the liquid supply pipe 28 of the turbine 25. In order to prevent evaporation, it is preferable that at least the rotating shaft 26 and the liquid supply pipe 28 have a heat insulating structure to prevent heat from flowing in from the outside.

上記のように構成したヒートパイプを第3図に
示すように鉛直線に沿つて立て、その上端側に熱
Qを与えて加熱部とするとともに下端側から熱Q
を奪つて冷却部とすると、すなわちトツプヒート
モードとすると、加熱部において作動流体が蒸発
し、冷却部において作動流体が凝縮するから、加
熱部と冷却部との間で圧力差が生じ、その結果気
相作動流体24が加熱部から冷却部に向けて高速
(亜音速ないし超音速)で流れ、その気相作動流
体24がタービン25を通過することによりター
ビン25が回転し、それに伴つてポンプ29が駆
動される。したがつて冷却部において凝縮した液
相作動流体21はポンプ29により、その中心軸
29a、連結軸30、タービン25の回転軸26
および給液管28を介して加熱部の液溜め22に
圧送・還流させられ、ついでウイツク23によつ
て加熱部全体に更に吸い上げられる。以降、作動
流体が上述したように蒸発・凝縮を繰返しつつ循
環し、したがつて上方の加熱部から下方の冷却部
へ継続して熱の輸送を行なうことができる。
The heat pipe configured as described above is erected along a vertical line as shown in Figure 3, and heat Q is applied to its upper end to form a heating section, and heat Q is applied from the lower end.
When the cooling section is taken away, that is, when the top heat mode is used, the working fluid evaporates in the heating section and condenses in the cooling section, resulting in a pressure difference between the heating section and the cooling section. The gas-phase working fluid 24 flows from the heating section toward the cooling section at high speed (subsonic to supersonic speed), and the gas-phase working fluid 24 passes through the turbine 25, causing the turbine 25 to rotate, and the pump 29 to rotate. is driven. Therefore, the liquid phase working fluid 21 condensed in the cooling section is pumped by the pump 29 to its central shaft 29a, the connecting shaft 30, and the rotating shaft 26 of the turbine 25.
The liquid is then pumped and refluxed to the liquid reservoir 22 of the heating section via the liquid supply pipe 28, and then further sucked up into the entire heating section by the wick 23. Thereafter, the working fluid circulates while repeating evaporation and condensation as described above, so that heat can be continuously transported from the upper heating section to the lower cooling section.

しかして上記のヒートパイプでは、ポンプ29
によつて液相作動流体21を加熱部に還流させる
から、加熱部と冷却部との高低差が相当大きいト
ツプヒートモードであつても、液相作動流体21
を確実に加熱部に還流させ、十分熱輸送を行なう
ことができ、また気相作動流体24によつて回転
するタービン25によりポンプ29を駆動するか
ら、換言すれば輸送すべき熱の一部を利用してポ
ンプ29を駆動するから、外部から特にエネルギ
を供給することなく正常に動作させることができ
る。
However, in the above heat pipe, the pump 29
Since the liquid-phase working fluid 21 is returned to the heating section by
Since the pump 29 is driven by the turbine 25 rotated by the gas-phase working fluid 24, in other words, part of the heat to be transported is Since the energy is utilized to drive the pump 29, the pump 29 can be operated normally without any particular external supply of energy.

なお、この発明は上記の実施例に限られるもの
ではなく、ポンプ29の揚程が十分大きい場合に
は、第4図に示すように給液管28をパイプ20
の上端部にまで延ばすとともに、給液管28の上
端部をパイプ20の上端部内に設けた分散板31
の上面に開口させ、その分散板31により液相作
動流体21をパイプ20の内周面に分配して流下
させるように構成してもよく、このようにすれば
上記の実施例で示した液溜め22やウイツク23
を省略することができる。またポンプ29は必ず
しも冷却部とされる端部内に設置する必要はな
く、ポンプを加熱部に設置することにより、液相
作動流体21を冷却部から加熱部に吸い上げるよ
うにしてもよい。
Note that the present invention is not limited to the above-described embodiment, and if the lift of the pump 29 is sufficiently large, the liquid supply pipe 28 can be connected to the pipe 20 as shown in FIG.
A dispersion plate 31 that extends to the upper end and has the upper end of the liquid supply pipe 28 inside the upper end of the pipe 20.
It may be configured such that the dispersion plate 31 is opened at the top surface and the liquid-phase working fluid 21 is distributed to the inner circumferential surface of the pipe 20 and made to flow down. Dame 22 and Uitsuku 23
can be omitted. Further, the pump 29 does not necessarily need to be installed in the end portion which is the cooling portion, and the pump may be installed in the heating portion to suck up the liquid phase working fluid 21 from the cooling portion to the heating portion.

以上の説明から明らかなようにこの発明のヒー
トパイプによれば、気相作動流体によつて回転さ
れるタービンと、そのタービンによつて駆動され
るポンプとを、作動流体を封入した管体内に配置
し、そのポンプによつて汲上げた液相の作動流体
を、タービンとポンプとを接続する中空の連結軸
およびタービンの中空の回転軸の両者を通して前
記管体の冷却側端部内から加熱側端部内に還流さ
せるよう構成したから、加熱部と冷却部との高低
差の大きいトツプヒートモードであつても、液相
作動流体を加熱部に確実に還流させ、十分熱輸送
することができ、またポンプを、輸送すべき熱エ
ネルギの一部を利用して駆動する構成であるか
ら、外部から特にエネルギを供給しなければなら
ないなどの不都合をも解消することができる。
As is clear from the above description, according to the heat pipe of the present invention, a turbine rotated by a gas-phase working fluid and a pump driven by the turbine are housed in a tube containing the working fluid. The liquid-phase working fluid pumped by the pump is passed through both the hollow connecting shaft connecting the turbine and the pump and the hollow rotating shaft of the turbine from inside the cooling side end of the pipe body to the heating side. Since it is configured to flow back into the end, even in the top heat mode where there is a large height difference between the heating section and the cooling section, the liquid phase working fluid can be reliably refluxed to the heating section and sufficient heat can be transported. Furthermore, since the pump is driven using part of the thermal energy to be transported, it is possible to eliminate the inconvenience of having to supply energy from the outside.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のヒートパイプの一例を示す略解
断面図、第2図は従来のヒートパイプの他の例を
示す略解断面図、第3図はこの発明の一実施例を
示す略解断面図、第4図はこの発明の他の実施例
の一部を示す部分断面図である。 20…パイプ、21…液相作動流体、24…気
相作動流体、25…タービン、26…回転軸、2
9…ポンプ、30…連結軸。
FIG. 1 is a schematic sectional view showing an example of a conventional heat pipe, FIG. 2 is a schematic sectional view showing another example of a conventional heat pipe, and FIG. 3 is a schematic sectional view showing an embodiment of the present invention. FIG. 4 is a partial sectional view showing a part of another embodiment of the invention. 20... Pipe, 21... Liquid-phase working fluid, 24... Gas-phase working fluid, 25... Turbine, 26... Rotating shaft, 2
9...Pump, 30...Connection shaft.

Claims (1)

【特許請求の範囲】[Claims] 1 作動流体を封入した管体内に、気相作動流体
によつて回転される軸流タービンを管体の中心軸
線に沿つて配置するとともに、その軸流タービン
の回転軸に連結軸を介して接続されたポンプを前
記管体の冷却側端部内に配置し、さらに軸流ター
ビンの回転軸および前記連結軸を中空軸として両
者を連通させるとともに、ポンプによつて汲上げ
た液相作動流体をこれらの連結軸および回転軸を
通して前記管体の冷却側端部内から加熱側端部内
に還流させるよう構成したことを特徴とするトツ
プヒート用ヒートパイプ。
1 An axial flow turbine rotated by a gas-phase working fluid is arranged in a tube containing a working fluid along the center axis of the tube, and is connected to the rotating shaft of the axial turbine via a connecting shaft. A pump is disposed within the cooling side end of the tube body, and the rotary shaft of the axial turbine and the connecting shaft are made into hollow shafts to communicate with each other, and the liquid phase working fluid pumped by the pump is transferred to these. 1. A heat pipe for top heating, characterized in that the heat pipe is configured to flow back from the cooling side end to the heating side end of the pipe body through the connecting shaft and the rotating shaft.
JP9882582A 1982-06-09 1982-06-09 Top heating heat pipe Granted JPS58214788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9882582A JPS58214788A (en) 1982-06-09 1982-06-09 Top heating heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9882582A JPS58214788A (en) 1982-06-09 1982-06-09 Top heating heat pipe

Publications (2)

Publication Number Publication Date
JPS58214788A JPS58214788A (en) 1983-12-14
JPS6237756B2 true JPS6237756B2 (en) 1987-08-13

Family

ID=14230068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9882582A Granted JPS58214788A (en) 1982-06-09 1982-06-09 Top heating heat pipe

Country Status (1)

Country Link
JP (1) JPS58214788A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5911272A (en) * 1996-09-11 1999-06-15 Hughes Electronics Corporation Mechanically pumped heat pipe
JP2012078080A (en) * 2010-09-07 2012-04-19 Daikin Industries Ltd Underground heat exchanger and heat pump utilizing the same
JP2012057836A (en) * 2010-09-07 2012-03-22 Daikin Industries Ltd Underground heat exchanger and heat pump using the same
US10281218B2 (en) * 2013-06-26 2019-05-07 Tai-Her Yang Heat-dissipating structure having suspended external tube and internally recycling heat transfer fluid and application apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832277A (en) * 1981-08-17 1983-02-25 Nippon Telegr & Teleph Corp <Ntt> Magnetic disc device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832277A (en) * 1981-08-17 1983-02-25 Nippon Telegr & Teleph Corp <Ntt> Magnetic disc device

Also Published As

Publication number Publication date
JPS58214788A (en) 1983-12-14

Similar Documents

Publication Publication Date Title
JPH0275794A (en) Dipping type pump device
US4252185A (en) Down pumping heat transfer device
JPS58500537A (en) Two-phase thermosyphon heater
US3797270A (en) Heat pump with two fluid circuits
JPS6237756B2 (en)
JPS60174452A (en) Heating system of liquid
JP3303644B2 (en) Loop heat transport system
JPS602893A (en) Top heating type heat pipe
TWI317407B (en) Vaccum liquid filling device and vacuum liquid filling method
JP3332429B2 (en) Double tank type cryogenic fluid drainage tank
JP2751051B2 (en) Heat transfer device
US4547130A (en) Capillary input for pumps
JPH01306799A (en) Heat pipe with heating section built-in
JPS60290A (en) Heat transfer device
JP2572740B2 (en) Top heated thermosiphon
JPS5832277U (en) heat pipe
JPH08327259A (en) Continuous thermosiphon
JPS6266097A (en) Thermal syphon device
JP2622591B2 (en) Top heat type heat pipe
JPH08611Y2 (en) Heat driven pump
JPS58225619A (en) Transformer oil cooling apparatus
JP2546072Y2 (en) Submerged vertical steam condenser
JP2622592B2 (en) Top heat type heat pipe
JPS63123991A (en) Heat pipe
JPH0419339Y2 (en)