JPS6237710B2 - - Google Patents

Info

Publication number
JPS6237710B2
JPS6237710B2 JP57154504A JP15450482A JPS6237710B2 JP S6237710 B2 JPS6237710 B2 JP S6237710B2 JP 57154504 A JP57154504 A JP 57154504A JP 15450482 A JP15450482 A JP 15450482A JP S6237710 B2 JPS6237710 B2 JP S6237710B2
Authority
JP
Japan
Prior art keywords
powder
wear
sintered
resistance
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57154504A
Other languages
Japanese (ja)
Other versions
JPS5943841A (en
Inventor
Hiroki Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TPR Co Ltd
Original Assignee
Teikoku Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Piston Ring Co Ltd filed Critical Teikoku Piston Ring Co Ltd
Priority to JP57154504A priority Critical patent/JPS5943841A/en
Publication of JPS5943841A publication Critical patent/JPS5943841A/en
Publication of JPS6237710B2 publication Critical patent/JPS6237710B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐熱性および耐摩耗性に優れた焼結合
金製シール材の製造方法に関するものであり、さ
らに詳しく述べるならばターボチヤージヤー排気
マニホールド側用シールリング、内燃機関用ピス
トンリング等に用いられるシール材の製造方法に
関するものである。 一般に内燃機関のシール材としては、FC及び
FCD系の鋳鉄あるいは樹脂等が多用されている
が、耐摩耗性はかなりの程度であるとしても、耐
熱性は不足する場合がある。一方、焼結合金はピ
ストンリング等に使用される傾向にあるが、これ
は焼結合金には10〜20%の空孔が内在し、油だま
りとなつて潤滑油を保持し、耐摩耗性及び耐焼付
性を向上させる性質を利用することを意図したも
のである。しかし焼結合金に内在する空孔は焼結
シール材の有効断面積を減少させる結果、該シー
ル材の実作用応力が高くなり、耐熱性は劣化す
る。この欠点を補い焼結合金の耐熱性を向上させ
るには空孔体積率の減少が有効であるが、焼結鍛
造、ホツトプレス等の特殊な技術を用いなければ
ならず焼結品のコスト上昇を招き経済的に不利で
ある。焼結シール材の耐熱性を向上させる他の技
術には耐熱性向上元素として一般的なCr,Ni,
Co,Mo,W等の粉末を鉄粉末中に予め混合させ
ておく方法があるが、焼結は固相拡散反応を利用
するのが一般的であるから、Ni,Coを除いた
Cr,Mo,W等を焼結合金のFeマトリツクス中へ
均一に拡散固溶させるのは極めて困難である。し
たがつて、上述のような耐熱性向上元素の粉末と
鉄粉末を混合させる方法では顕著な耐熱性向上を
期し得ない。本発明は以上のような問題点を解決
しうる焼結合金製シールの製造を提供するもので
ある。 以下、ターボチヤージヤー排気マニホールド側
用シールリングに例をとつてシール材の要求性能
及び従来法の問題点を具体的に説明する。 近年自動車の低燃費化や高出力化の手段として
ターボチヤージヤーを装着する内燃機関が増加し
ている。ターボチヤージヤー排気マニホールド側
用シールリング(以下シールリングと称する)は
高温の排気ガスの影響により高温にさらされ且つ
高温下で潤滑油のシールをしなければならない。
よつて張力の保持がシールリングとしての重要な
特性の1つであるのでシール材の性能としては高
い耐熱性が要求される。さらにターボチヤージヤ
ーのタービンの回転数は最大十数万rpmの高速回
転となるのでシール材として耐摩耗性(相手材を
摩耗させない性質も含む)および耐焼付性につい
ても高い性能が併せて要求される。 一般にシール材として使用されているFC及び
FCDの鋳鉄や樹脂等はシールリングとしては耐
熱性が明らかに不足するので、現在シールリング
には高速度鋼、オーステナイト鋳鋼、高Cr鋳
鋼、ステンレス鋼等の溶製材料が一般に用いられ
ている。これらの溶製材料は耐熱性に優れている
がシールリングは小径であるため多大の加工工数
を必要としまた材料歩留が極めて悪いという欠点
を有する。更にこれらの溶製材料は耐焼付性及び
耐摩耗性には問題を有している。これに対して、
焼結合金は材料組成の自由度が高く、また空孔が
内圧するために、耐熱性、耐摩耗性等の改善は容
易に実施可能となる。しかも焼結合金は極めて高
い寸法精度で製造できるので加工工数の大巾な低
減が可能であり、材料歩留も極めて良好である。 しかしながら、焼結合金は上述のように材料組
成の調節によつて耐熱性を付与する場合、単純に
耐熱性元素の粉末を鉄粉末に混合し、その後焼結
する技術では、顕著な耐熱性向上を期しえない。 以上のような従来技術の問題点を解消し、焼結
合金のシール材として耐熱性及び耐摩耗性を飛躍
的に改善するためには本発明者は次の条件が満た
されていることが重要であるとの知見を得た。 予め合金化された鉄合金粉末を用いそして高
温下での焼結を行ない合金元素の拡散を十分に
行なうこと。このためには焼結合金のマトリツ
クスの耐熱性を向上させるためのオーステナイ
ト系ステンレス鋼粉末を主原料として用い、さ
らにコバルト粉末を添加し、コバルトをマトリ
ツクスに焼結中に拡散固溶させる。かくして単
独粉末によるよりも耐熱性が一層向上する。 焼結合金の耐摩耗性は前記内圧空孔の保油効
果により一般に良好であるが、硬質粒子の添加
により一層改善されること。即ち焼結合金のマ
トリツクスに比べ相対的に硬い硬質粒子が1次
しゆう動面を形成し、一方相対的に軟いマトリ
ツクスは初期摩耗によつて前記内圧空孔と同様
に潤滑油の油だまりとなり前記空孔の保油効果
のみによるよりも一層耐摩耗性の他に耐焼付性
も向上する。 適度な硬さを有した硬質粒子を添加すること
に加え、黒鉛粉末を添加すると、焼結中にオー
ステナイト系ステンレス鋼よりなるマトリツク
スのCrと黒鉛が反応し微細なCr炭化物が析出
して耐摩耗性及び耐焼付性は一層改善されるこ
と。 以上の条件,及びを満足する本発明はビ
ツカース硬さHv500〜1500を有する粒径150μm
以下の硬質粒子粉末を体積比で1〜20%と、黒鉛
粉末を0.5〜2重量%、コバルト粉末2〜10重量
%とを含有し、残部がオーステナイト系ステンレ
ス鋼粉末から成る混合粉末を圧粉成形しそして焼
結することにより、相対密度80〜95%を有する耐
熱耐摩耗性焼結合金製シール材を製造する方法を
提供するものである。 以下本発明の限定理由を述べさらに説明を行な
う。 硬質粒子の硬さがHv500未満であると耐摩耗性
および耐焼付性向上の効果がなく、一方Hv1500
を超える硬い粒子では相手材の摩耗が多くなるの
で、硬質粒子の硬さはHv500〜1500が適切であ
る。このような硬質粒子としては、Co,Cr等の
含有量が高い高合金、フエロアロイ及び金属間化
合物の少なくとも1種を用いることができる。 また硬質粒子の粒径が150μmを超える粗粉末
では、原料粉末混合時の不均一や成形時の成形性
の低下等の問題が生じるので、硬質粒子の粒径は
150μm以下が必要である。また硬質粒子の全混
合粉末に対する体積比が、1%未満では耐摩耗性
及び耐焼付性が不足し20%を超えると圧粉成形性
が低下するので硬質粒子の割合は体積比で1〜20
%が適切である。好ましくは3〜10%である。 上記硬質粒子のみをオーステナイト系ステンレ
ス鋼粉末に添加しただけではマトリツクスは単純
なオーステナイト組織であるため、マトリツクス
の耐摩耗性及び耐焼付性が不足するので0.5〜2
重量%の黒鉛粉末を添加する。黒鉛粉末は焼結時
オーステナイトステンレス鋼中のCrと反応し、
微細なクロム炭化物として主としてオーステナイ
トステンレス鋼の粒界に析出し、耐摩耗性及び耐
焼付性を一層向上させる。黒鉛粉末が0.5重量%
未満では耐摩耗性及び耐焼付性が不足し、一方黒
鉛粉末が2重量%を超えるとオーステナイト粒界
にクロム炭化物が過多に析出し材料が脆化するの
で黒鉛粉末の添加量は0.5〜2重量%、好ましく
は0.7〜1.5重量%が適切である。 またコバルト粉末を添加することによつて、焼
結時コバルトはオーステナイトマトリツクスに拡
散固溶し、耐熱性を一層向上させる。その量は2
重量%未満では耐熱性の向上に効果がなく、10重
量%を超えると、圧粉成形性が低下するので、コ
バルト粉末の添加量は2〜10重量%、好ましくは
3〜8重量%が適切である。 残部をオーステナイト系ステンレス鋼粉末とし
たのはオーステナイトが高温が安定な組織であ
り、上述のようにクロム炭化物の形成及びコバル
トの拡散固溶を実現するマトリツクスを提供して
優れた効果を奏するからである。 また焼結合金の耐熱性は内在する空孔の量によ
つても影響を受ける。即ち内在する空孔の割合が
多くなると、焼結材の有効断面積が減少して実作
用応力は増加し耐熱性が低下するので焼結材の相
対密度は高い程好ましい。しかしながら焼結合金
の製造に一般的に用いられる冷間成形、焼結とい
う方法では空孔を5%以下にすることは困難であ
る。以上のことから焼結材の相対密度は80〜95%
と限定する。 本発明における焼結条件としては、混合粉末を
5〜10トン/cm2で圧粉成形した後に、1150〜1250
℃に真空、水素、分解アンモニア雰囲気中で加熱
する条件を採用することが望ましい。 以下実施例を述べ更に詳細な説明を加える。 実施例 1 第1表に示した各種粉末を所定量秤量し、V型
ミキサーで30分間混合し、次に成形圧力7トン/
cm2で圧粉成形し、最後に分解アンモニアガス雰囲
気中において1200℃で1Hr焼結した。但し硬質粒
子粉末およびステンレス鋼粉末は−100メツシユ
(149μm)とした。また黒鉛粉末およびコバルト
粉末は−325メツシユ(44μm)とした。 焼結後、機械加工により呼び径20mm、幅1.6mm
厚さ1.1mmのシールリングを作製し、張力減退の
テストを行なつた。張力減退のテストはシールリ
ング呼び径と同一寸法の鋳鉄製シリンダーにシー
ルリングを装填し、350℃、400℃、450℃で各々
10Hr Arガス中で加熱することによつて実施し
た。テスト前後の自由合い口すき間の変化量を求
め張力減退率とした。 焼結後の各特性値および張力減退率も合わせて
第1表に示した。表中、硬質粒子粉末の添加量は
各粉末の密度を測定し体積比で算出した。また焼
結体の相対密度は顕微鏡で空孔率を求め(1−空
孔率)で算出した。
The present invention relates to a method for producing a sealing material made of sintered alloy that has excellent heat resistance and wear resistance, and more specifically, it is used for sealing rings for turbocharger exhaust manifolds, piston rings for internal combustion engines, etc. The present invention relates to a method for manufacturing a sealing material. Generally, FC and
FCD-based cast iron or resin are often used, but even if they have a fair degree of wear resistance, they may lack heat resistance. On the other hand, sintered alloys tend to be used for piston rings, etc., but this is because sintered alloys have 10 to 20% of pores, which act as oil pockets to retain lubricating oil and improve wear resistance. It is intended to take advantage of the property of improving seizing resistance. However, the pores inherent in the sintered alloy reduce the effective cross-sectional area of the sintered sealing material, resulting in an increase in the actual stress of the sealing material and a deterioration in heat resistance. Reducing the pore volume ratio is effective in compensating for this drawback and improving the heat resistance of sintered alloys, but this requires the use of special techniques such as sinter forging and hot pressing, which increases the cost of sintered products. It is economically disadvantageous. Other techniques for improving the heat resistance of sintered sealing materials include Cr, Ni, and
There is a method of pre-mixing powders such as Co, Mo, and W into iron powder, but since sintering generally uses a solid phase diffusion reaction, Ni and Co are excluded.
It is extremely difficult to uniformly diffuse and dissolve Cr, Mo, W, etc. into the Fe matrix of a sintered alloy. Therefore, the method of mixing the powder of the heat resistance improving element and the iron powder as described above cannot expect a significant improvement in heat resistance. The present invention provides the manufacture of a sintered metal seal that can solve the above-mentioned problems. Hereinafter, the required performance of the sealing material and the problems of the conventional method will be specifically explained using a turbocharger exhaust manifold side seal ring as an example. In recent years, an increasing number of internal combustion engines are equipped with turbochargers as a means of improving fuel efficiency and increasing output of automobiles. The turbocharger exhaust manifold side seal ring (hereinafter referred to as seal ring) is exposed to high temperatures due to the influence of high-temperature exhaust gas, and must seal lubricating oil at high temperatures.
Therefore, maintaining tension is one of the important characteristics of a seal ring, and therefore, high heat resistance is required as a performance of the sealing material. Furthermore, since the rotational speed of the turbocharger's turbine is at a high speed of up to several hundred thousand rpm, the sealing material must also have high performance in terms of wear resistance (including properties that do not abrade the mating material) and seizure resistance. be done. FC and
FCD cast iron, resin, etc. clearly lack heat resistance for seal rings, so currently ingot materials such as high-speed steel, austenitic cast steel, high Cr cast steel, and stainless steel are generally used for seal rings. Although these melt-produced materials have excellent heat resistance, the seal ring has a small diameter, requires a large number of processing steps, and has the disadvantage that the material yield is extremely low. Furthermore, these melt-produced materials have problems in seizure resistance and wear resistance. On the contrary,
Sintered alloys have a high degree of freedom in material composition, and since the pores have internal pressure, improvements in heat resistance, wear resistance, etc. can be easily implemented. Moreover, since sintered alloys can be manufactured with extremely high dimensional accuracy, it is possible to greatly reduce the number of processing steps, and the material yield is also extremely good. However, when heat resistance is imparted to sintered alloys by adjusting the material composition as described above, the technique of simply mixing powder of heat-resistant elements with iron powder and then sintering the material results in a remarkable improvement in heat resistance. I can't wait. In order to solve the above-mentioned problems of the conventional technology and dramatically improve the heat resistance and wear resistance as a sealing material for sintered alloys, the present inventor believes that it is important that the following conditions are met. We obtained the knowledge that Pre-alloyed iron alloy powder is used and sintered at high temperature to ensure sufficient diffusion of alloying elements. For this purpose, austenitic stainless steel powder is used as the main raw material to improve the heat resistance of the sintered alloy matrix, and cobalt powder is added to diffuse and form a solid solution in the matrix during sintering. In this way, heat resistance is further improved compared to using a single powder. The wear resistance of the sintered alloy is generally good due to the oil retaining effect of the internal pressure pores, but it can be further improved by adding hard particles. That is, the hard particles, which are relatively harder than the sintered alloy matrix, form the primary sliding surface, while the relatively soft matrix forms a lubricating oil pool due to initial wear, similar to the internal pressure pores. Therefore, not only the wear resistance but also the seizure resistance is further improved than if only due to the oil retaining effect of the pores. In addition to adding hard particles with appropriate hardness, when graphite powder is added, Cr in the austenitic stainless steel matrix reacts with graphite during sintering, precipitating fine Cr carbides, which improves wear resistance. The properties and seizure resistance should be further improved. The present invention, which satisfies the above conditions and conditions, has a particle size of 150 μm and a Bitkers hardness of Hv 500 to 1500.
A mixed powder containing 1 to 20% by volume of the following hard particle powder, 0.5 to 2% by weight of graphite powder, 2 to 10% by weight of cobalt powder, and the balance consisting of austenitic stainless steel powder is pressed into powder. The present invention provides a method for manufacturing a heat-resistant and wear-resistant sintered metal sealing material having a relative density of 80 to 95% by molding and sintering. The reasons for the limitations of the present invention will be described below and further explained. If the hardness of the hard particles is less than Hv 500, there is no effect of improving wear resistance and seizure resistance ;
If the hardness of the particles exceeds Hv, the wear of the mating material will increase, so it is appropriate that the hardness of the hard particles is between Hv 500 and 1500. As such hard particles, at least one of high alloys, ferroalloys, and intermetallic compounds with high contents of Co, Cr, etc. can be used. In addition, coarse powder with a hard particle size exceeding 150 μm will cause problems such as non-uniformity during mixing of the raw powder and reduced formability during molding.
150μm or less is required. In addition, if the volume ratio of hard particles to the total mixed powder is less than 1%, wear resistance and seizure resistance will be insufficient, and if it exceeds 20%, compactability will decrease, so the ratio of hard particles should be 1 to 20% by volume.
% is appropriate. Preferably it is 3 to 10%. If only the above-mentioned hard particles were added to the austenitic stainless steel powder, the matrix would have a simple austenitic structure, so the wear resistance and seizure resistance of the matrix would be insufficient.
% by weight of graphite powder is added. Graphite powder reacts with Cr in austenitic stainless steel during sintering,
It precipitates mainly in the grain boundaries of austenitic stainless steel as fine chromium carbides, further improving wear resistance and seizure resistance. 0.5% by weight of graphite powder
If the graphite powder content is less than 2% by weight, wear resistance and seizure resistance will be insufficient, while if the graphite powder content exceeds 2% by weight, excessive chromium carbide will precipitate at the austenite grain boundaries and the material will become brittle, so the amount of graphite powder added should be 0.5 to 2% by weight. %, preferably 0.7 to 1.5% by weight are suitable. Furthermore, by adding cobalt powder, cobalt diffuses into the austenite matrix during sintering to form a solid solution, further improving heat resistance. The amount is 2
If it is less than 10% by weight, it will not be effective in improving heat resistance, and if it exceeds 10% by weight, the compactability will decrease, so the appropriate amount of cobalt powder to be added is 2 to 10% by weight, preferably 3 to 8% by weight. It is. The remainder was made of austenitic stainless steel powder because austenite has a stable structure at high temperatures and, as mentioned above, provides an excellent effect by providing a matrix that realizes the formation of chromium carbides and the diffusion and solid solution of cobalt. be. The heat resistance of sintered alloys is also affected by the amount of pores present. That is, when the proportion of inherent pores increases, the effective cross-sectional area of the sintered material decreases, the actual stress increases, and the heat resistance decreases, so the higher the relative density of the sintered material, the better. However, it is difficult to reduce the porosity to 5% or less using the cold forming and sintering methods commonly used to produce sintered alloys. From the above, the relative density of the sintered material is 80 to 95%.
limited to. The sintering conditions in the present invention are that after compacting the mixed powder at 5 to 10 tons/ cm2 ,
It is desirable to adopt conditions of heating to ℃ in a vacuum, hydrogen, or decomposed ammonia atmosphere. Examples will be described below and a more detailed explanation will be added. Example 1 A predetermined amount of the various powders shown in Table 1 was weighed, mixed for 30 minutes with a V-type mixer, and then molded under a pressure of 7 tons/
cm2 , and finally sintered at 1200°C for 1 hour in a decomposed ammonia gas atmosphere. However, the hard particle powder and stainless steel powder were set to -100 mesh (149 μm). The graphite powder and cobalt powder were -325 mesh (44 μm). After sintering, the nominal diameter is 20mm and the width is 1.6mm by machining.
A seal ring with a thickness of 1.1 mm was made and a tension reduction test was conducted. Tension reduction tests were carried out by loading the seal ring into a cast iron cylinder with the same dimensions as the seal ring's nominal diameter, and testing it at 350℃, 400℃, and 450℃.
This was carried out by heating in Ar gas for 10 hours. The amount of change in the free gap between before and after the test was determined and taken as the tension reduction rate. Table 1 also shows each characteristic value and tension reduction rate after sintering. In the table, the amount of hard particle powder added was calculated by measuring the density of each powder and calculating the volume ratio. The relative density of the sintered body was calculated by determining the porosity using a microscope (1-porosity).

【表】【table】

【表】 第1表の結果から本発明材料は優れた耐熱性を
有することが明らかである。 第1図及び第2図に第1表の本発明材料Aの金
属組織(倍率はそれぞれ100倍及び500倍)を示
す。第2図のaは硬質粒子、bは微細炭化物、c
はオーステナイトステンレス鋼のマトリツクス及
びdは空孔を示し、本発明法によりこれらの構成
相a,b,c及びdを適宜微細分散させることに
より優れた諸性能が発揮していることが理解され
る。 実施例 2 第2表に示した各種粉末を所定量秤量し、V型
ミキサーで30分間混合し、そして実施例1と同一
の成形条件及び焼結条件でピン(摩耗試験片)を
作製した。 摩耗試験は第3図に示したローターピン式摩耗
試験機を用いて行なつた。相手材としてのロータ
ーBの材質はJIS SUM43を焼入焼もどしにより
HRC35とした。φ40mmのローターB、及びφ10
mm、長さ15mmのピンAは共に研摩加工により約1
〜2μm RZの仕上あらさとしたものであつ
た。 SAE#30のエンジンオイルを滴下し潤滑しな
がら矢印方向に荷重を加え、摩耗試験を行ない、
ピンの摩耗量は摩耗痕の長径で測定し、相手材と
してのローター摩耗量はあらさ計でその凹み量を
荷重2Kg、摩擦速度150m/min、摩擦距離5000
mの条件で測定した。 さらに摩擦速度を200m/minとし荷重を上
げ、焼付の発生した荷重を求め焼付限界荷重とし
た結果を合わせて第2表に示した。 本発明材料は比較例に比べ自身の耐摩耗性のみ
ならず相手材の摩耗が少なくまた耐焼付性が高い
ことが明らかである。
[Table] From the results in Table 1, it is clear that the material of the present invention has excellent heat resistance. FIGS. 1 and 2 show the metal structure of the material A of the present invention shown in Table 1 (magnifications are 100 times and 500 times, respectively). In Figure 2, a is a hard particle, b is a fine carbide, and c
indicates a matrix of austenitic stainless steel and d indicates pores, and it is understood that excellent performance is achieved by suitably finely dispersing these constituent phases a, b, c, and d according to the method of the present invention. . Example 2 A predetermined amount of the various powders shown in Table 2 was weighed and mixed in a V-type mixer for 30 minutes, and a pin (wear test piece) was produced under the same molding and sintering conditions as in Example 1. The wear test was conducted using a rotor pin type wear tester shown in FIG. The material of rotor B as a mating material is JIS SUM43 by quenching and tempering.
It was set as HRC35. Rotor B of φ40mm and φ10
mm, length 15mm pin A is polished to approximately 1.
It had a finish roughness of ~2 μm RZ. We performed a wear test by applying a load in the direction of the arrow while lubricating it by dropping SAE #30 engine oil.
The wear amount of the pin is measured by the long axis of the wear scar, and the wear amount of the rotor as a mating material is measured by measuring the amount of dent with a roughness meter at a load of 2 kg, a friction speed of 150 m/min, and a friction distance of 5000.
It was measured under the conditions of m. Furthermore, the friction speed was increased to 200 m/min, the load was increased, and the load at which seizure occurred was determined and the seizure limit load was determined. The results are also shown in Table 2. It is clear that the material of the present invention exhibits not only its own wear resistance, but also less wear of the mating material and higher seizure resistance than the comparative example.

【表】 実施例 3 実施例1の第1表に示した本発明材料A及び
(比較例E)について実機テストを行なつた。供
試したターボチヤージヤーはタービン翼径φ56
mm、コンプレツサー翼径φ54mmであり排気マニホ
ールド側用シールリングは呼び径φ17.5mm、幅
1.6mm、厚さ0.9mmに機械加工し実機テストに供し
た。なお比較例として現在使用されているオース
テナイト鋳鋼(20%Cr―20%Ni―10%Co―5%
W―2%Mo―1.4%Si―1.6%C、残部Fe)も実
機テストに供した。テスト条件はターボチヤージ
ヤーを4気筒2.3のデイーゼルエンジンに装置
し4200rpm全負荷で200Hrの耐久運転を行なつ
た。このテスト前後の自由合い口すき間の変化を
張力減退率とし、またシールリングの幅方向の摩
耗量は両面の各々の摩耗量の和として求めた。そ
の結果を第3表に示した。
[Table] Example 3 Inventive materials A and (Comparative Example E) shown in Table 1 of Example 1 were tested on an actual machine. The turbocharger tested had a turbine blade diameter of φ56.
mm, the compressor blade diameter is φ54mm, and the seal ring for the exhaust manifold side has a nominal diameter of φ17.5mm, and the width
It was machined to 1.6mm and 0.9mm thick and tested on an actual machine. As a comparative example, the currently used austenitic cast steel (20%Cr-20%Ni-10%Co-5%
W-2%Mo-1.4%Si-1.6%C, balance Fe) was also subjected to actual machine testing. The test conditions were a turbocharger installed on a 4-cylinder 2.3 diesel engine, and a 200Hr endurance run at 4200rpm and full load. The change in the free joint gap before and after this test was taken as the tension reduction rate, and the amount of wear in the width direction of the seal ring was determined as the sum of the amount of wear on both sides. The results are shown in Table 3.

【表】 以上の結果から本発明は優れた耐熱性および耐
摩耗性を有する焼結合金製シールとしてターボチ
ヤージヤー用シールリングのみに限らず、ピスト
ンリング、バルブシート等として内燃機関のシー
ル部材として使用できる材料の製法を提供するこ
とが明らかである。
[Table] From the above results, the present invention has been developed as a sintered alloy seal having excellent heat resistance and wear resistance, not only for use in turbocharger seal rings, but also as piston rings, valve seats, etc. for internal combustion engine seals. It is clear that it provides a method for producing a material that can be used as a material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は実施例1の第1表に示した
本発明材料Aの金属顕微鏡写真であり、第3図は
ローターピン式摩耗試験器の概略を示す図面であ
る。 A……ピン、B……ローター、a……硬質粒
子、b……微細クロム炭化物、c……オーステナ
イトマトリツクス、d……空孔。
1 and 2 are metallurgical micrographs of the material A of the present invention shown in Table 1 of Example 1, and FIG. 3 is a drawing schematically showing a rotor pin type abrasion tester. A... Pin, B... Rotor, a... Hard particles, b... Fine chromium carbide, c... Austenite matrix, d... Holes.

Claims (1)

【特許請求の範囲】[Claims] 1 ビツカース硬さHv500〜1500を有する粒径
150μm以下の硬質粒子粉末を体積比で1〜20%
と、黒鉛粉末0.5〜2重量%と、コバルト粉末2
〜10重量%とを含有し、残部がオーステナイト系
ステンレス鋼粉末から成る混合粉末を圧粉成形
し、そして焼結することにより、相対密度80〜95
%を有する耐熱、耐摩耗性焼結合金製シール材を
製造する方法。
1 Particle size with Vickers hardness Hv 500 to 1500
Hard particle powder of 150μm or less 1-20% by volume
, graphite powder 0.5 to 2% by weight, and cobalt powder 2
By compacting and sintering a mixed powder containing ~10% by weight and the balance consisting of austenitic stainless steel powder, the relative density is 80~95.
A method for producing a heat-resistant, wear-resistant sintered metal sealing material having a
JP57154504A 1982-09-07 1982-09-07 Manufacture of sealing material made of heat-and wear-resistant sintered alloy Granted JPS5943841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57154504A JPS5943841A (en) 1982-09-07 1982-09-07 Manufacture of sealing material made of heat-and wear-resistant sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57154504A JPS5943841A (en) 1982-09-07 1982-09-07 Manufacture of sealing material made of heat-and wear-resistant sintered alloy

Publications (2)

Publication Number Publication Date
JPS5943841A JPS5943841A (en) 1984-03-12
JPS6237710B2 true JPS6237710B2 (en) 1987-08-13

Family

ID=15585683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57154504A Granted JPS5943841A (en) 1982-09-07 1982-09-07 Manufacture of sealing material made of heat-and wear-resistant sintered alloy

Country Status (1)

Country Link
JP (1) JPS5943841A (en)

Also Published As

Publication number Publication date
JPS5943841A (en) 1984-03-12

Similar Documents

Publication Publication Date Title
US4424953A (en) Dual-layer sintered valve seat ring
EP1405929B1 (en) Production process for Fe-based sintered alloy valve seat
US20130251585A1 (en) Sintered alloy and production method therefor
JPH0798985B2 (en) High temperature wear resistant sintered alloy
US4080205A (en) Sintered alloy having wear-resistance at high temperature
US20050006006A1 (en) High temperature alloy particularly suitable for a long-life turbocharger nozzle ring
JP2706561B2 (en) Valve seat material for internal combustion engine and method of manufacturing the same
JPS643934B2 (en)
JPS6237710B2 (en)
JPS6210244A (en) Sintered alloy excellent in wear resistance at high temperature
JPS6237711B2 (en)
JP3226618B2 (en) Iron-based sintered alloy for valve seat
JP3942136B2 (en) Iron-based sintered alloy
US3758281A (en) Msintered alloy and wear resisting sliding parts manufactured therefro
JPH0555592B2 (en)
JPH0541693B2 (en)
JPS61291954A (en) Sintering material having wear resistance and corrosion resistance at high temperature and its manufacture
JPH0772331B2 (en) Sintered alloy with excellent high temperature wear resistance
JPS625985B2 (en)
JP2677813B2 (en) High temperature wear resistant iron-based sintered alloy
JPH10310851A (en) Sintered alloy with high temperature wear resistance
JPS62164858A (en) Ferrous sintered alloy for valve seat
JPH0116293B2 (en)
Kawata et al. Development of High Performance Valve Seat Insert Materials for Heavy-duty Engines
JPS62207847A (en) Ferrous sintered alloy for valve seat