JPS6237647B2 - - Google Patents

Info

Publication number
JPS6237647B2
JPS6237647B2 JP53130032A JP13003278A JPS6237647B2 JP S6237647 B2 JPS6237647 B2 JP S6237647B2 JP 53130032 A JP53130032 A JP 53130032A JP 13003278 A JP13003278 A JP 13003278A JP S6237647 B2 JPS6237647 B2 JP S6237647B2
Authority
JP
Japan
Prior art keywords
water
active hydrogen
component
blowing agent
hydrogen compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53130032A
Other languages
Japanese (ja)
Other versions
JPS5558215A (en
Inventor
Hiroaki Kojima
Masaji Atsuta
Masahiko Funaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP13003278A priority Critical patent/JPS5558215A/en
Publication of JPS5558215A publication Critical patent/JPS5558215A/en
Publication of JPS6237647B2 publication Critical patent/JPS6237647B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、反応射出成形方法によるポリウレタ
ンエラストマー製造用の原料組成物に関するもの
であり、成形外観に優れ脱型性の良いポリウレタ
ンエラストマーを得ることを特徴とする上記組成
物に関するものである。 反応射出成形(Reaction Injection MoIding)
はRIMと略称され、多成分の液状成分を圧力下に
混合し、密閉型中に同時射出する成形方法であ
り、混合された成分は直ちに反応を始め、型中で
硬化し成形されて取り出される。この成形は主と
してポリウレタンの成形に用いられているが、他
の合成樹脂の成形にも使用しうるものである。ポ
リウレタンのRIM方法では、ポリオールなどの活
性水素化合物成分とジイソシアネートプレポリマ
ー、MDI、その他のイソシアネート化合物成分と
を原料とし、両者を混合して直ちに型に射出し、
型内で硬化させた後成形物を取り出す。この成形
方法では、ポリウレタンエラストマーやポリウレ
タンフオームなどの各種のポリウレタン製品を得
ることができるが、現在のところ、ポリウレタン
エラストマーの成形に主として使用されている。 本発明者はRIM方法により比較的高密度(0.8
〜1.2g/cm3)のポリウレタンエラストマーの成
形について検討した。活性水素化合物としてポリ
エーテルポリオールやポリエステルポリオールを
用い、さらに少量のエチレングリコールや1,4
―ブタンジオールと触媒を添加した活性水素化合
物成分と末端にイソシアネート基を有するMDI系
プレポリマーとをRIM装置により成形を行つたと
ころ、特に型温が低いとき(<50℃)に満足すべ
き外観を有する成形物が得られなかつた。即ち、
平滑となるべき成形品の表面に多数のボイドの発
生が認められ、しかも脱型性が不良で成形品の取
り出しが困難であつたり、成形品に裂け目を生じ
たりする傾向があつた。そこで、原料に少量のト
リクロロフルオロメタンを加えて成形性の改良を
行つたところ、ボイドの発生は少くなつたものの
完全にボイドのないものとすることはできなかつ
た。しかも、脱型性は充分でなく、さらに改良の
余地があつた。 従来、ポリウレタンエラストマーの製造におい
て、原料、特にポリオールの含水量は常に問題と
され、極力水分の混入を少くすることが必要とさ
れていた。ポリウレタンフオームの製造の際、水
が発泡剤として使用されるが、この場合も水分量
の正確な調節のため、ポリウレタンフオーム用の
ポリオールの含水量を極力下げる努力が行なわれ
ていた。密度の低いポリウレタンエラストマーの
製造の場合、トリクロロフルオロメタンなどの発
泡剤が使用されていたが、比較的高い密度(0.8
〜1.2g/cm3)のポリウレタンエラストマーの製
造の場合は、水分の混入は出来るだけ避けられ、
発泡剤もあまり使用されていなかつた。 ところが、本発明者は、正確にその量が調節さ
れた、ポリオールなどの活性水素化合物に対して
2〜5重量%のトリクロロフルオロメタンなどの
ハロゲン化炭化水素発泡剤と同じく正確にその量
が調節された活性水素化合物に対して0.1〜0.4重
量%の水との存在下にRIM方法によりポリウレタ
ンエラストマーを成形すると成形品表面のボイド
が全く消失しツヤのある表面平滑性の優れた成形
品が得れるとともに脱型性が向上することを見い
出した。しかも、得られるエラストマーの表面硬
度が向上し、曲げ弾性率が増大し、熱変形が小さ
くなるなどの種々の物性も向上することがわかつ
た。 本発明はこれを要旨とするものであり、即ち、
少くとも2個の活性水素を有する活性水素化合物
を主成分とする成分と少くとも2個のイソシアネ
ート基を有するイソシアネート化合物を主成分と
する成分との少くとも2成分を混合し型に射出し
て反応させポリウレタンエラストマー成形品を得
るウレタンエラストマーの反応射出成形用組成物
において、全活性水素化合物を基準として2〜5
重量%のハロゲン化炭化水素発泡剤と0.1〜0.4重
量%の水とを混合される少くとも1つの成分中に
予め含ませておくことを特徴とする反応射出成形
用ウレタンエラストマー組成物である。 ポリウレタンエラストマー原料の活性水素化合
物としては、ポリエーテルポリオールやポリエス
テルポリオールなどの高分子量ポリオールとエチ
レングリコールや1,4―ブタンジオールなどの
低分子量ジオールが併用されることが多い。これ
らの活性水素化合物には通常多くとも0.02〜0.05
重量%の水が含まれている。これに少量の着色
剤、触媒、充填剤、離型剤等の添加剤を混合した
RIM方法用の原料では、たとえ空気中の水分を吸
収することがあつても高高0.05〜0.08重量%の水
を含むにすぎない。従つて、本発明ではこの活性
水素化合物成分にさらに水を加えることが必要と
なる。この添加する水の量は成分中の水分によつ
て変るが、最終的に活性水素化合物に対して0.1
〜0.4重量%の水を含むように調節される。この
水の含有量はカールフイツシヤー測定器によつて
測定される値であり、使用時に活性水素化合物成
分の含水量がこの値になるように必要量の水を添
加する。イソシアネート化合物を含む成分には、
イソシアネート基と水とが反応するので水を加え
ることができない。従つて、水は活性水素化合物
成分に主に添加されるが、この2成分以外に他の
成分が混合される場合には、その成分が水と反応
しない限りこの第3の成分に水を添加してもよ
い。即ち、全成分が混合された状態において(水
は直ちにイソシアネート基と反応するが、その反
応前を仮定して)水が上記の量存在するように調
節する。 ハロゲン化炭化水素発泡剤としてはトリクロロ
フルオロメタンが最も好ましいが、ジクロロジフ
ルオロメタン、塩化メチレン、その他のハロゲン
化炭化水素も使用しうる。このハロゲン化炭化水
素発泡剤はイソシアネート化合物を含む成分にも
添加しうるが、通常の方法では活性水素化合物を
含む成分に添加される。その量は活性水素化合物
成分に対して2〜5重量%である。 水の含有量が0.1重量%以下になると前記欠点
が顕著となり、0.4重量%以上になると成形品表
面に再びボイドが発生し易くなるとともに、脆化
温度の上昇、密度の低下に伴う引張強度の減少等
の物性が低下してくる。ハロゲン化炭化水素の添
加量についても同様に少なけれボイドの発生が顕
著となり極端に多くなれば密度が低下する。水や
ハロゲン化炭化水素は発泡剤であり、これを添加
すると当然成形品内部に気泡が生じ、密度が低下
する。事実その添加量により密度が左右されるが
こともあるが、本発明の限定された量を使用する
限り、エラストマーの密度は0.8g/cm3以上であ
り、かつ気泡は成形品内部に細く分散されて生成
するものの成形品表面にはボイドとして発生しな
い。この両発泡剤の添加量が増大するとボイドが
表面にも発生してくることは理解できるが、ハロ
ゲン化炭化水素を使用せずしかも水分が多い場合
に成形品表面全体に著るしくボイドが発生する理
由はあまり明らかではない。しかし、ある程度の
発泡剤があると、成形品内部の発泡圧で成形品表
面が型表面に押圧されてエアートラツプなどによ
る表面のボイドの発生が防止されるのではないか
と考えられる。また水はイソシアネートと反応し
てビスウレア結合を生成し、表面の硬度を向上さ
せるので脱型性を向上させると思われる。 前記のように、活性水素化合物は好ましくはポ
リエーテルポリオールであり、2〜4価のアルコ
ールを開始剤とし、これにアルキレンオキシド、
特にプロピレンオキシドとエチレンオキシドの両
者を付加した、分子量約3000〜8000のものが好ま
しい。さらに、ポリオキシテトラメチレン鎖やポ
リオキシブチレン鎖を有すポリエーテルポリオー
ルが用いられる。このポリエーテルポリオールに
対し、通常少量のエチレングリコール、1,4―
ブタンジオール、2,3―ブタンンジオール等の
低分子量2価アルコールが併用される。またさら
に少量の他の高分子量ポリオールや低分子量ポリ
オールが架橋等のために添加される場合もある。
イソシアネート化合物は、TDI,MDI,NDI(ナ
フタレンジイソシアネート)その他の2あるいは
それ以上のイソシアネート基を有する化合物やそ
れらと活性水素化合物と反応させて末端をイソシ
アネート基としたプレポリマーが主に使用され
る。 活性水素化合物やイソシアネート化合物を含む
成分には、さらに、充填剤、着色剤、離型剤、安
定剤、その他の添加剤を添加することができる。
たとえば着色された成形品を得るためには顔料や
染料などの着色剤が用いられ、またガラス繊維、
炭素繊維、合成繊維その他の繊維状充填剤やマイ
カ、ガラスフレークなどの平板状充填剤を用いて
強化された成形品を製造することもできる。これ
ら添加剤を用いる場合には通常活性水素化合物を
含む成分の方に添加されるが、イソシアネート基
と反応する恐れがない場合にはイソシアネート化
合物を含む成分にも添加することができる。 RIM方法では、エラストマーが型内で生成する
ため直接成形品が得られる。RIM方法ではポリウ
レタンフオームやポリウレタンセルラーエラスト
マーなどの発泡体を製造することができるが、本
発明は密度0.8〜1.2g/cm3のポリウレタンエラス
トマーに関するものであり、上記発泡体は除かれ
る。ただし、多量の充填剤を含む本発明エラスト
マーは密度が1.2g/cm3以上となる場合があるの
で、その場合は充填剤を除いた場合の値を示すも
のとする。従来、RIM方法で発泡体を製造する場
合は、発泡剤や水を添加する場合があつてもその
量は本発明における量よりもさらに多く、逆に気
泡をあまり含まない本発明の如きエラストマーを
製造する場合はできるだけ水の含有を少くする努
力を行つていた。しかし、本発明はある限定され
た量の水をハロゲン化炭化水素発泡剤と併用した
ことにより、従来よりもより優れた成形品を得る
ことができるものである。 本発明による成形品の種類は特に限定されない
が、自動車用バンパーを始めとしてフエンダー、
ドアなどの自動車部品や事務機器、電機部品、建
材などに適している。 以下に本発明を実施例により具体的に説明する
が、本発明はこれら実施例にのみ限定されるもの
ではない。 実施例 1 下記組成のA液(活性水素化合物含有成分)と
B液(イソシアネート化合物成分)とを用い、A
液中のトリクロロフルオロメタンと水の量を変え
て、長さ約140cm、巾13cmの自動車用バンパー外
殻を成形した。 反応射出成形機は西独エラストグランマシーネ
ンバウ社製であり、成形型温度50℃、A液および
B液の温度40℃、射出量50Kg/分、射出圧力A液
B液共160Kg/cm2である。
The present invention relates to a raw material composition for producing a polyurethane elastomer by a reaction injection molding method, and relates to the above-mentioned composition, which is characterized in that it yields a polyurethane elastomer with excellent molded appearance and good demoldability. Reaction Injection Molding
is abbreviated as RIM, and is a molding method in which multiple liquid components are mixed under pressure and simultaneously injected into a closed mold.The mixed components immediately begin to react, harden in the mold, and are molded and removed. . Although this molding method is mainly used for molding polyurethane, it can also be used for molding other synthetic resins. In the RIM method for polyurethane, active hydrogen compound components such as polyols and diisocyanate prepolymers, MDI, and other isocyanate compound components are used as raw materials, and the two are mixed and immediately injected into a mold.
After curing in the mold, the molded product is taken out. This molding method can produce various polyurethane products such as polyurethane elastomers and polyurethane foams, but at present it is mainly used for molding polyurethane elastomers. The inventor used the RIM method to obtain a relatively high density (0.8
~1.2 g/cm 3 ) of polyurethane elastomer was investigated. Polyether polyol or polyester polyol is used as the active hydrogen compound, and a small amount of ethylene glycol or 1,4
- When molding an active hydrogen compound component containing butanediol and a catalyst and an MDI prepolymer having an isocyanate group at the end using a RIM machine, the appearance was satisfactory, especially when the mold temperature was low (<50℃) No molded product could be obtained. That is,
A large number of voids were observed on the surface of the molded product, which should be smooth, and demoldability was poor, making it difficult to take out the molded product and tending to cause cracks in the molded product. Therefore, when we added a small amount of trichlorofluoromethane to the raw material to improve the moldability, the occurrence of voids decreased, but it was not possible to completely eliminate voids. Moreover, the demoldability was not sufficient and there was room for further improvement. Conventionally, in the production of polyurethane elastomers, the water content of raw materials, especially polyols, has always been a problem, and it has been necessary to reduce the amount of water mixed in as much as possible. In the production of polyurethane foams, water is used as a blowing agent, and in this case too, efforts have been made to reduce the water content of polyols for polyurethane foams as much as possible in order to precisely control the water content. For the production of polyurethane elastomers with low densities, blowing agents such as trichlorofluoromethane have been used, but with relatively high densities (0.8
~1.2 g/cm 3 ) in the production of polyurethane elastomers, moisture contamination should be avoided as much as possible.
Foaming agents were also not used much. However, the present inventor has discovered that the amount of a halogenated hydrocarbon blowing agent such as trichlorofluoromethane is precisely controlled, and the amount of the blowing agent is 2 to 5% by weight based on an active hydrogen compound such as a polyol. When a polyurethane elastomer is molded by the RIM method in the presence of 0.1 to 0.4% by weight of water based on the active hydrogen compound, the voids on the surface of the molded product completely disappear and a molded product with a glossy surface and excellent smoothness is obtained. It was found that demoldability improves as the temperature increases. Furthermore, it was found that various physical properties of the resulting elastomer were improved, such as improved surface hardness, increased flexural modulus, and reduced thermal deformation. This is the gist of the present invention, namely:
At least two components, a component whose main component is an active hydrogen compound having at least two active hydrogens and a component whose main component is an isocyanate compound having at least two isocyanate groups, are mixed and injected into a mold. In a composition for reaction injection molding of a urethane elastomer to obtain a polyurethane elastomer molded article, 2 to 5
A urethane elastomer composition for reaction injection molding, characterized in that at least one component to be mixed contains in advance a halogenated hydrocarbon blowing agent of % by weight and 0.1 to 0.4% by weight of water. As active hydrogen compounds for polyurethane elastomer raw materials, high molecular weight polyols such as polyether polyols and polyester polyols and low molecular weight diols such as ethylene glycol and 1,4-butanediol are often used in combination. These active hydrogen compounds usually contain at most 0.02 to 0.05
Contains % water by weight. This is mixed with a small amount of additives such as colorants, catalysts, fillers, mold release agents, etc.
Raw materials for the RIM process contain only 0.05-0.08% by weight of water, even if they absorb moisture from the air. Therefore, in the present invention, it is necessary to further add water to this active hydrogen compound component. The amount of water to be added varies depending on the moisture in the ingredients, but the final amount is 0.1 to the active hydrogen compound.
Adjusted to contain ~0.4% water by weight. This water content is a value measured by a Karl Fischer meter, and the required amount of water is added so that the water content of the active hydrogen compound component reaches this value at the time of use. Ingredients containing isocyanate compounds include
Water cannot be added because the isocyanate groups and water will react. Therefore, water is mainly added to the active hydrogen compound component, but if other components are mixed in addition to these two components, water should be added to this third component unless that component reacts with water. You may. That is, water is adjusted so that the above amount is present in a state where all the components are mixed (assuming that the water immediately reacts with the isocyanate group, but before that reaction occurs). The most preferred halogenated hydrocarbon blowing agent is trichlorofluoromethane, although dichlorodifluoromethane, methylene chloride, and other halogenated hydrocarbons may also be used. Although the halogenated hydrocarbon blowing agent can also be added to the component containing the isocyanate compound, it is conventionally added to the component containing the active hydrogen compound. The amount thereof is 2 to 5% by weight based on the active hydrogen compound component. When the water content is less than 0.1% by weight, the above-mentioned drawbacks become noticeable, and when it is more than 0.4% by weight, voids are likely to occur again on the surface of the molded product, and the tensile strength decreases due to an increase in the embrittlement temperature and a decrease in density. physical properties such as decrease. Similarly, if the amount of halogenated hydrocarbon added is small, the generation of voids will be noticeable, and if it is extremely large, the density will decrease. Water and halogenated hydrocarbons are blowing agents, and when they are added, bubbles are naturally generated inside the molded product, reducing the density. In fact, the density may be influenced by the amount added, but as long as the limited amount of the elastomer is used, the density of the elastomer is 0.8 g/cm 3 or more, and the air bubbles are finely dispersed inside the molded product. However, no voids are generated on the surface of the molded product. It is understandable that voids will appear on the surface as the amount of both blowing agents increases, but when halogenated hydrocarbons are not used and there is a lot of moisture, significant voids occur on the entire surface of the molded product. The reason for this is not very clear. However, it is thought that when a certain amount of foaming agent is present, the foaming pressure inside the molded product presses the surface of the molded product against the mold surface, thereby preventing the generation of voids on the surface due to air traps and the like. In addition, water reacts with isocyanate to form bisurea bonds, which improves surface hardness and is thought to improve demoldability. As mentioned above, the active hydrogen compound is preferably a polyether polyol, in which a di- to tetrahydric alcohol is used as an initiator, and an alkylene oxide,
Particularly preferred are those containing both propylene oxide and ethylene oxide and having a molecular weight of about 3,000 to 8,000. Furthermore, polyether polyols having polyoxytetramethylene chains or polyoxybutylene chains are used. For this polyether polyol, usually a small amount of ethylene glycol, 1,4-
Low molecular weight dihydric alcohols such as butanediol and 2,3-butanediol are used in combination. Further, a small amount of other high molecular weight polyol or low molecular weight polyol may be added for crosslinking or the like.
As the isocyanate compound, compounds having two or more isocyanate groups such as TDI, MDI, NDI (naphthalene diisocyanate), etc., and prepolymers having terminal isocyanate groups by reacting these with an active hydrogen compound are mainly used. Fillers, colorants, mold release agents, stabilizers, and other additives can be further added to the components containing active hydrogen compounds and isocyanate compounds.
For example, to obtain colored molded products, coloring agents such as pigments and dyes are used, and glass fibers,
It is also possible to manufacture reinforced molded products using carbon fibers, synthetic fibers, other fibrous fillers, mica, glass flakes, and other flat fillers. When these additives are used, they are usually added to the component containing the active hydrogen compound, but they can also be added to the component containing the isocyanate compound if there is no risk of them reacting with the isocyanate group. In the RIM method, the elastomer is produced in a mold, resulting in a directly molded product. Although the RIM method can produce foams such as polyurethane foams and polyurethane cellular elastomers, the present invention relates to polyurethane elastomers with a density of 0.8 to 1.2 g/cm 3 and excludes the above foams. However, since the elastomer of the present invention containing a large amount of filler may have a density of 1.2 g/cm 3 or more, in that case, the value is shown without the filler. Conventionally, when producing a foam by the RIM method, even if a blowing agent or water is added, the amount thereof is much larger than the amount used in the present invention. When manufacturing, efforts were made to reduce the water content as much as possible. However, in the present invention, by using a certain limited amount of water in combination with a halogenated hydrocarbon blowing agent, it is possible to obtain a molded article that is better than the conventional one. The types of molded products according to the present invention are not particularly limited, but include automobile bumpers, fenders,
Suitable for automotive parts such as doors, office equipment, electrical parts, building materials, etc. EXAMPLES The present invention will be specifically explained below using Examples, but the present invention is not limited only to these Examples. Example 1 Using liquid A (active hydrogen compound-containing component) and liquid B (isocyanate compound component) having the following composition,
By varying the amounts of trichlorofluoromethane and water in the liquid, an automobile bumper shell approximately 140 cm long and 13 cm wide was molded. The reaction injection molding machine was manufactured by Elasto Gran Machinenbau in West Germany, and the mold temperature was 50°C, the temperature of liquids A and B was 40°C, the injection rate was 50kg/min, and the injection pressure was 160kg/cm 2 for both liquids A and B. .

【表】 水 〓
[Table] Water 〓

【表】 ある。
結果を下記第1表に示す。全含水率はA液に水
を添加した後、使用時にカールフイツシヤー測定
器を用いて実測した値より全ポリオールに対する
含水率を計算したものであり、B液には水は含ま
れていない。
[Table] Yes.
The results are shown in Table 1 below. The total water content is calculated from the value actually measured using a Karl Fischer meter during use after adding water to Part A, and the water content relative to the total polyol is calculated, and Part B does not contain water.

【表】 成形物外観・表面の平滑性、脱型性の4段階評
価は次の通りである。
[Table] The four-level evaluation of molded product appearance, surface smoothness, and demoldability is as follows.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 少くとも2個の活性水素を有する活性水素化
合物を主成分とする成分と少くとも2個のイソシ
アネート基を有するイソシアネート化合物を主成
分とする成分との少くとも2成分を混合し型に射
出して反応させポリウレタンエラストマー成形品
を得るウレタンエラストマーの反応射出成形用組
成物において、全活性水素化合物を基準として2
〜5重量%のハロゲン化炭化水素発泡剤と0.1〜
0.4重量%の水とを混合される少くとも1つの成
分中に予め含ませておくことを特徴とする反応射
出成形用ウレタンエラストマー組成物。 2 ハロゲン化炭化水素発泡剤と水を予め活性水
素化合物を主成分とする成分中に含ませておくこ
とを特徴とする特許請求の範囲1の組成物。 3 ハロゲン化炭化水素発泡剤がトリクロロフル
オロメタンであることを特徴とする特許請求の範
囲1または2の組成物。 4 活性水素化合物がポリエーテルポリオールと
低分子量2価のアルコールとの組み合せであるこ
とを特徴とする特許請求の範囲1の組成物。 5 ポリウレタンエラストマー成形品の密度が
0.8〜1.2g/cm3であることを特徴とする特許請求
の範囲1の組成物。
[Claims] 1. At least two components: a component whose main component is an active hydrogen compound having at least two active hydrogens, and a component whose main component is an isocyanate compound having at least two isocyanate groups. In a composition for reaction injection molding of urethane elastomer to obtain a polyurethane elastomer molded article by mixing and injecting into a mold, 2
~5% by weight of halogenated hydrocarbon blowing agent and ~0.1% by weight of halogenated hydrocarbon blowing agent
A urethane elastomer composition for reaction injection molding, characterized in that 0.4% by weight of water is previously included in at least one component to be mixed. 2. The composition according to claim 1, characterized in that a halogenated hydrocarbon blowing agent and water are previously included in a component whose main component is an active hydrogen compound. 3. The composition according to claim 1 or 2, wherein the halogenated hydrocarbon blowing agent is trichlorofluoromethane. 4. The composition according to claim 1, wherein the active hydrogen compound is a combination of a polyether polyol and a low molecular weight dihydric alcohol. 5 The density of the polyurethane elastomer molded product is
The composition according to claim 1, characterized in that the amount is 0.8 to 1.2 g/cm 3 .
JP13003278A 1978-10-24 1978-10-24 Urethane elastomer composition for reaction injection molding Granted JPS5558215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13003278A JPS5558215A (en) 1978-10-24 1978-10-24 Urethane elastomer composition for reaction injection molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13003278A JPS5558215A (en) 1978-10-24 1978-10-24 Urethane elastomer composition for reaction injection molding

Publications (2)

Publication Number Publication Date
JPS5558215A JPS5558215A (en) 1980-04-30
JPS6237647B2 true JPS6237647B2 (en) 1987-08-13

Family

ID=15024453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13003278A Granted JPS5558215A (en) 1978-10-24 1978-10-24 Urethane elastomer composition for reaction injection molding

Country Status (1)

Country Link
JP (1) JPS5558215A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218371Y2 (en) * 1985-08-23 1990-05-23

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508896A (en) * 1973-03-20 1975-01-29
JPS519196A (en) * 1974-07-10 1976-01-24 Goodyear Tire & Rubber
JPS51119796A (en) * 1975-03-27 1976-10-20 Bayer Ag Method of making moldings
JPS5234679A (en) * 1975-09-11 1977-03-16 Meidensha Electric Mfg Co Ltd Overvoltage protective device
JPS5277200A (en) * 1975-12-19 1977-06-29 Mccord Corp Reactive high density polyurethane for injection molding
JPS52142797A (en) * 1976-05-21 1977-11-28 Bayer Ag Process for manufacturing elastic object

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508896A (en) * 1973-03-20 1975-01-29
JPS519196A (en) * 1974-07-10 1976-01-24 Goodyear Tire & Rubber
JPS51119796A (en) * 1975-03-27 1976-10-20 Bayer Ag Method of making moldings
JPS5234679A (en) * 1975-09-11 1977-03-16 Meidensha Electric Mfg Co Ltd Overvoltage protective device
JPS5277200A (en) * 1975-12-19 1977-06-29 Mccord Corp Reactive high density polyurethane for injection molding
JPS52142797A (en) * 1976-05-21 1977-11-28 Bayer Ag Process for manufacturing elastic object

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218371Y2 (en) * 1985-08-23 1990-05-23

Also Published As

Publication number Publication date
JPS5558215A (en) 1980-04-30

Similar Documents

Publication Publication Date Title
US4005035A (en) Composition for reinforced and filled high density rigid polyurethane foam products and method of making same
KR20060009381A (en) Method for the production of expanding thermoplastic elastomers
US3004934A (en) Flexible shock-absorbing polyurethane foam containing starch and method of preparingsame
GB2138012A (en) Flexible polyurethane foam for sound insulation purposes, process for the production and use thereof
JP5129430B2 (en) Method for producing polyurethane foam molded article
CA1245416A (en) Process for the production of molded articles
US4517150A (en) Method for manufacturing reactive injection-molded products
CA1188048A (en) Process for the manufacture of foamed structures
JPS6084319A (en) Resin composition
JPS6334809B2 (en)
KR20100054284A (en) Preparation method of polyurethane foam for sound absorbing material of automobile floor mat
JPS6237647B2 (en)
JPS6015418A (en) Improvement of property of polyurethane molding
JP3831149B2 (en) Process for producing polyurethane reaction injection molded foam
JPS5829816A (en) Production of polyurethane
JPS61190518A (en) Production of polyurethane urea elastomer
JPS6322967B2 (en)
JPH0224289B2 (en)
JPH0912667A (en) Molded flexible polyurethane foam
KR100929196B1 (en) Polyether-based polyurethane foam with improved strength and its use
JPS59187019A (en) Manufacture of polyurethane elastomer
JPS58179220A (en) Preparation of highly elastic polyurethane foam
JPS6131421A (en) Production of polyurethane resin
JPS62135511A (en) Production of semi-rigid urethane foam integrated with skinning material
JPS6055035A (en) Production of rigid foam