JPS6237522B2 - - Google Patents

Info

Publication number
JPS6237522B2
JPS6237522B2 JP2665178A JP2665178A JPS6237522B2 JP S6237522 B2 JPS6237522 B2 JP S6237522B2 JP 2665178 A JP2665178 A JP 2665178A JP 2665178 A JP2665178 A JP 2665178A JP S6237522 B2 JPS6237522 B2 JP S6237522B2
Authority
JP
Japan
Prior art keywords
shield electrode
electrode
lead
core wire
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2665178A
Other languages
Japanese (ja)
Other versions
JPS54120827A (en
Inventor
Toshuki Yanari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP2665178A priority Critical patent/JPS54120827A/en
Publication of JPS54120827A publication Critical patent/JPS54120827A/en
Publication of JPS6237522B2 publication Critical patent/JPS6237522B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は変圧器等の誘導電器における高電圧油
中リード接続装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high voltage submerged lead connection device for an induction electric appliance such as a transformer.

従来、分割された変圧器を現地において据付け
これらのリードを油ダクト中において接続する接
続リードは、高電圧、特に超々高電圧になつた場
合、中心導体表面に絶縁紙等による絶縁被覆を行
うと同時にその外側に何本かの絶縁筒を同軸状に
配置し、リード絶縁表面における過度の電界集中
に対し、隣接した油道を細分することにより、油
道細分化による油耐圧の向上と安定の特性を利用
して対処していた。このように高電圧側である中
心導体はバーリヤ絶縁構造をとることにより、十
分に電回を制御することが可能であるが、この中
心導体に対し対向電極であるタンク面あるいは中
身構造体(例えば鉄心、鉄心締付板等)の表面は
高電圧側にくらべ、必ずしも高電界ではないが、
その構造上十分に絶縁をほどこすことが出来な
い。従つて対向電極が裸電極の場合あるいは絶縁
バーリヤをほどこした場合でも電極に密着して取
付けることが困難であるため、対向電極表面の欠
陥例えば凹凸や塗装による気泡のとじ込め等ある
いはごみ、異物の存在により異常に低い電界でも
絶縁破壊を起すことがしばしばあり、平均破壊電
界に対してのバラツキが大きい。特に据付作業時
現地で取付作業を行なう油ダクトによるリード接
続構造においては防じん管理を十分に行つても工
場における程の完全さを期待しだたく、また組立
後の検証も行なえないなどから、500KVあるいは
1000KVといつた超々高圧ではできるだけ、この
ような現地でのリード接続作業を行う構造をさけ
るのが一般的である。しかし輸送条件等の制約か
ら必らずしも常にこの条件を満足することはでき
ず、2台以上に分割された変圧器等を油ダクトに
より接続することの必要性は高い。
Conventionally, a divided transformer is installed on-site and these leads are connected in an oil duct.When the voltage reaches high voltage, especially ultra-high voltage, it is necessary to insulate the center conductor surface with insulating paper or the like. At the same time, several insulating cylinders are placed coaxially on the outside, and adjacent oil pipes are subdivided to prevent excessive electric field concentration on the lead insulating surface.By dividing the oil pipe into smaller parts, oil pressure resistance is improved and stability is improved. He used his characteristics to deal with it. By adopting a barrier insulation structure for the center conductor on the high voltage side as described above, it is possible to sufficiently control the electric circuit, but the tank surface or inner structure (e.g. The surface of the iron core, iron core clamping plate, etc.) does not necessarily have a high electric field compared to the high voltage side, but
Due to its structure, sufficient insulation cannot be applied. Therefore, even if the counter electrode is a bare electrode or an insulating barrier is applied, it is difficult to attach it closely to the electrode, so defects on the counter electrode surface such as unevenness, air bubbles trapped by paint, dirt, foreign matter, etc. Due to their presence, dielectric breakdown often occurs even at abnormally low electric fields, and there is a large variation in the average breakdown electric field. Particularly in the case of lead connection structures using oil ducts that are installed on-site during installation work, even if sufficient dust control is performed, it is difficult to expect the same level of perfection as in the factory, and post-assembly verification is not possible. or
At extremely high voltages such as 1000KV, it is common to avoid structures that require on-site lead connection work as much as possible. However, it is not always possible to satisfy this condition due to restrictions such as transportation conditions, and it is highly necessary to connect two or more divided transformers and the like through oil ducts.

本発明はこのような問題を解決するためになさ
れたものであり、工場において検証された特性を
そのまま現地で再現できると同時に、超々高圧に
対してコンパクトな絶縁構造を有するし組立の容
易な誘導電器の油中リード接続装置を提供するこ
とを目的としている。
The present invention was made to solve these problems, and it is possible to reproduce the characteristics verified in the factory as is on site, and at the same time, it has a compact insulation structure against ultra-high voltage and is easy to assemble. The purpose is to provide an oil submerged lead connection device for electrical appliances.

第1図に本発明の一実施例を示す。第1図にお
いて、1はリード芯線、2はその外周に設けられ
た絶縁被覆、31〜33はリード芯線1の外周に
同心状に適当な油道間片変5を介して配置せられ
た円筒状の絶縁バーリヤ、4は絶縁バーリヤ33
の外周に配置されたシールド電極、41,42は
シールド電極4の内外周はこれと一体成形された
絶縁物、6はリード固定用の支え、10はリード
接続用油ダクトである。シールド電極4は適当な
個所で接地リード11によりダクト10に接続し
接地をとるものとする。
FIG. 1 shows an embodiment of the present invention. In FIG. 1, 1 is a lead core wire, 2 is an insulating coating provided on its outer periphery, and 31 to 33 are cylinders disposed concentrically on the outer periphery of the lead core wire 1 via a suitable oil pipe spacing 5. 4 is an insulation barrier 33
, 41 and 42 are insulators formed integrally with the inner and outer peripheries of the shield electrode 4, 6 is a support for fixing the leads, and 10 is an oil duct for connecting the leads. The shield electrode 4 is connected to the duct 10 through a ground lead 11 at an appropriate location for grounding.

この構造によれば、リード芯線1に対向する電
極はシールド電極4となり、更にシールド電極4
の高圧電極すなわちリード芯線1と対向する内周
がシールド電極4と密着した絶縁物41で覆われ
ていることにより、裸電極の場合に見られた対向
電極自身のわずかな欠陥例えば表面の凹凸等によ
る思わぬ低い電界での破壊が減り、いわゆる油自
身の耐電圧のバラツキによる破壊特性が向上され
ることになる。またシールド電極4とリード芯線
1との間の絶縁バーリヤ31〜33は各部の電界
が同芯円筒であるため容易に計算によつて求めら
れ、各部の電界と、バーリヤ絶縁における油道の
許容電界実験式のE=Kd-〓(KV/mm)(ここで
dは油道の大きさ(mm)K、αは定数)とから油
道寸法を適宜決定する。すなわち高圧電極である
リード芯線1に近い電界の集中している部分程油
道寸法を小さく、シールド電極4に近づくにつれ
て油道寸法を大きく選び、各油道の破壊に対する
余裕をほぼ同一にすることによつて絶縁特性の高
い絶縁構成が得られる。
According to this structure, the electrode facing the lead core wire 1 becomes the shield electrode 4, and the shield electrode 4
Since the inner periphery of the high-voltage electrode, that is, facing the lead core wire 1, is covered with an insulator 41 that is in close contact with the shield electrode 4, slight defects of the counter electrode itself, such as irregularities on the surface, which are observed in the case of a bare electrode, can be avoided. This reduces the damage caused by unexpectedly low electric fields, and improves the damage characteristics caused by variations in the withstand voltage of the oil itself. In addition, the electric field of each part of the insulation barriers 31 to 33 between the shield electrode 4 and the lead core wire 1 is a concentric cylinder, so it can be easily calculated. The oil pipe dimensions are determined appropriately from the empirical formula E = Kd - 〓 (KV/mm) (where d is the oil pipe size (mm) K, and α is a constant). In other words, the dimensions of the oil pipes are chosen to be smaller in the area where the electric field is concentrated near the lead core wire 1, which is the high-voltage electrode, and to be made larger as the area approaches the shield electrode 4, so that the allowance for destruction of each oil pipe is approximately the same. An insulating structure with high insulation properties can be obtained.

また従来のようにたとえ接地電極であるダクト
10壁面に絶縁物を密着して張り、欠陥をおさえ
得たとしても、電界計算に基づいた適切なバーリ
ヤ構成とすることは高圧側電極の支持構造の点か
らもむずかしく、いつぱんに接地電極に近い方で
比較的大きな油道寸法となり、絶縁系としての最
弱点ポイントとして支持構造を含めて、この大油
道部で決定されるケースが一般である。
Furthermore, even if it is possible to suppress defects by tightly pasting an insulating material on the wall surface of the duct 10, which is the ground electrode, as in the past, it is necessary to have an appropriate barrier configuration based on electric field calculations, which is difficult to maintain in the support structure of the high-voltage side electrode. This is difficult from a point of view, and the dimensions of the oil pipe tend to be relatively large near the ground electrode, and the weakest point of the insulation system, including the support structure, is generally determined based on this large oil pipe section. .

それに対し本発明では支持構造は絶縁構造系と
しての高圧電極すなわちリード芯線1からシール
ド電極4にいたる迄のすべてを一括して支持材6
により支持することにより、支持構想と絶縁構造
を分離し、支持構造が絶縁強度に及ぼす影響を取
り除くことができるメリツトがあり、信頼性の高
いリード接続装置を提供することが可能である。
On the other hand, in the present invention, the support structure includes the high voltage electrode as an insulating structure system, that is, everything from the lead core wire 1 to the shield electrode 4, as a support member 6.
This has the advantage of separating the support concept from the insulation structure and eliminating the influence of the support structure on the insulation strength, making it possible to provide a highly reliable lead connection device.

さらに本発明では現地でダクトの接続作業を行
う際にも、リード芯線1からシールド電極4迄の
絶縁構造を一括してリード線として扱うことによ
つて、工場で組立試験した構造がそのまま現地で
組立再現され、絶縁構造系の中に異物等の混入す
る余地はなく、仮にダクト接続作業中、ダクト中
に異物の混入があつても接地電極とダクト間には
全く電圧がかからず、絶縁上の心配は生じないと
いつたメリツトもある。また全体をバーリヤ絶縁
とするためコイル内主ギヤツプにおけると同様に
油道における破壊のバラツキが小さく、従来と同
じ破壊確率で設計しても油道細分化による耐圧の
向上と合わせて、はるかにコンパクトにダクトを
構成することが出来る。例えば500KVリードの場
合従来ダクトの大きさとしては約φ1000mm程度必
要であつたものが、本発明によれば、φ500mm程
度にまで縮小が可能となり、信頼性の工場と同時
にダクトの小形軽量化にも効果がある。
Furthermore, in the present invention, when performing duct connection work on-site, the insulation structure from lead core wire 1 to shield electrode 4 is treated as a lead wire, so that the structure assembled and tested at the factory can be used as is on-site. The assembly is reproduced, and there is no room for foreign matter to get into the insulation structure. Even if foreign matter gets into the duct during duct connection work, no voltage will be applied between the ground electrode and the duct, and the insulation will be maintained. There is also the advantage that the above concerns do not arise. In addition, because the entire structure is barrier insulated, the variation in failure in the oil passage is small, just like in the main gear in the coil, and even if the design has the same failure probability as before, it is much more compact due to the improved pressure resistance due to segmentation of the oil passage. The duct can be configured as follows. For example, in the case of a 500KV lead, the conventional duct size required approximately φ1000mm, but according to the present invention, it is possible to reduce the size to approximately φ500mm, which not only improves reliability but also reduces the size and weight of the duct. effective.

なお第1図でダクト10の終端部ではシールド
電極4の端部に電界が集中することのないように
第2図に示すようにシールド電極4をラツパ状に
適切な曲率により広げ、シールド電極4の先端は
ダクト10壁に十分に近ずける構造として対処す
る。
At the end of the duct 10 in FIG. 1, the shield electrode 4 is widened with an appropriate curvature as shown in FIG. The tip of the duct 10 is designed to be sufficiently close to the wall of the duct 10.

またシールド電極4の構造は第1では説明の都
合上円筒状で説明したが、実際の組立てを考えた
とき円筒状ではシールド電極4の内側へ絶縁物を
密着させることが困難であること、リード芯線1
が曲つている場合は組立が出来ない等の不便があ
る。このため本発明では第3図に示すようにリー
ド芯線1の字方向に沿つて分割した半円筒状シー
ルド電極4a,4bを突き合せにする構造、ある
いは第4図のように、はめ合いとする構造によ
り、上記の問題を解決するようにしている。また
何本かのシールド電極を長手方向に同様の方法で
継ぎ足して一体構造にまとめることにより、非常
に長いシールド電極とすることも可能である。ま
た第5図及び第6図に示すようにシールド電極1
4a,14bをT形とすることにより分岐構造と
することも可能である。
In addition, although the structure of the shield electrode 4 was described as being cylindrical in the first part for convenience of explanation, when considering actual assembly, it is difficult to make the insulator adhere to the inside of the shield electrode 4 with a cylindrical shape. Core wire 1
If it is bent, there are inconveniences such as not being able to assemble it. Therefore, in the present invention, the semi-cylindrical shield electrodes 4a and 4b divided along the direction of the lead core wire 1 are butted together as shown in FIG. 3, or they are fitted together as shown in FIG. The structure is designed to solve the above problems. It is also possible to make a very long shield electrode by adding several shield electrodes in the same manner in the longitudinal direction and combining them into an integral structure. In addition, as shown in FIGS. 5 and 6, the shield electrode 1
It is also possible to form a branched structure by making 4a and 14b T-shaped.

これらシールド電極4a,4b,14a,14
bの材料としては金属板、細い金属条、あるいは
これを糸で布状に編んだもの、金属箔、金属テー
プ、絶縁紙に金属を蒸着した材料あるいは半導体
等が使用できることは一般のシールドと同様であ
る。
These shield electrodes 4a, 4b, 14a, 14
As for the material b, metal plates, thin metal strips, threads woven into cloth, metal foils, metal tapes, insulating paper with metal vapor deposited, semiconductors, etc. can be used, as with general shields. It is.

以上主としてダクト内における実施例について
説明したが、全く同様に本体タンク内に適用して
も、リード芯線と接地電極間距離をを短縮でき、
接地電極側の電極表面状態、形状に左右されない
安定した絶縁特性が得られるといつた効果が得ら
れることはいうまでもない。
The above description has mainly been about the embodiment inside the duct, but the distance between the lead core wire and the ground electrode can be shortened even if it is applied inside the main body tank in exactly the same way.
Needless to say, it is possible to obtain stable insulation properties that are not affected by the surface condition or shape of the electrode on the ground electrode side.

さらに上記実施例ではシールド電極を接地面と
して来たが、シールドに周囲の電極例えばコイル
等の電位をあたえて対象とする電極との間の絶縁
をコンパクト化することも可能である。
Further, in the above embodiment, the shield electrode is used as a ground plane, but it is also possible to apply the potential of a surrounding electrode, such as a coil, to the shield to make the insulation between the shield and the target electrode more compact.

また、上記実施例では単芯のリードの周囲を同
軸状にバーリヤを配置し、その外側にシールド電
極を配置する構造とたが、第7図に示すように多
芯のリード1の場合に適用することも可能であ
り、第8図のように平面的に並べたリード1の周
囲を絶縁バーリヤ31,32で囲いその外周にシ
ールド電極4を配置することによつて例えばタツ
プリードをコンパクトにダクト内に配置すること
が可能となる。
In addition, in the above embodiment, a barrier is arranged coaxially around a single-core lead, and a shield electrode is arranged outside of the barrier, but this can be applied to a multi-core lead 1 as shown in Fig. 7. For example, by surrounding the leads 1 arranged in a plane with insulating barriers 31 and 32 and arranging the shield electrode 4 around the outer periphery of the leads 1, as shown in FIG. It becomes possible to place it in

以上説明したように本発明では、絶縁リードの
信頼性を高め、しかもコンパクトな油中リード接
続装置を提供できる。
As explained above, according to the present invention, it is possible to improve the reliability of the insulated lead and provide a compact submerged lead connection device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による油中リード接続装置の1
例を示す正面断面図、第2図は第1図の側面断面
図、第3図及び第4図は本発明に使用されるシー
ルド電極の分割、組合せ状態を示す概略図、第5
図及び第6図はT形接合部におけるシールド電極
の形状を示す正面図及び側面図、第7図及び第8
図はそれぞれ本発明の他の実施例を示す正面断面
図である。 1……リード芯線、2……絶縁被覆、31,3
2,33……絶縁バーリヤ、4,4a,4b,1
4a,14b……シールド電極、11……電位固
定用リード線。
Figure 1 shows one of the submerged lead connection devices according to the present invention.
2 is a side sectional view of FIG. 1, FIGS. 3 and 4 are schematic diagrams showing the state of division and combination of shield electrodes used in the present invention, and FIG. 5 is a front sectional view showing an example.
Figures 6 and 6 are front and side views showing the shape of the shield electrode in the T-shaped joint, Figures 7 and 8.
The figures are front sectional views showing other embodiments of the present invention. 1...Lead core wire, 2...Insulation coating, 31, 3
2, 33...Insulation barrier, 4, 4a, 4b, 1
4a, 14b... Shield electrode, 11... Lead wire for potential fixing.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも1本の絶縁されたリード芯線の外
周に所定の間隔を介して筒状の絶縁バーリヤを配
設し、この絶縁バーリヤの外周に所定の間隔を介
して少くとも内面に成型によつて絶縁物が施され
た筒状のシールド電極を配設し、このシールド電
極をその外側にある対向電極の1つと電気的に接
続するとともに筒状のシールド電極の端部を外側
に湾曲させ、かつシールド電極をリード芯線の軸
方向に沿つて分割して半円筒状のシールド電極と
し、これを組合せて構成し前記リード芯線、絶縁
バーリヤ、シールド電極を一括して支持材により
支持することを特徴とする誘導電器の油中リード
接続装置。
1. A cylindrical insulating barrier is arranged around the outer periphery of at least one insulated lead core wire at a predetermined interval, and at least the inner surface is insulated by molding at a predetermined interval around the outer periphery of the insulating barrier. A cylindrical shield electrode provided with a material is provided, and this shield electrode is electrically connected to one of the counter electrodes on the outside thereof, and the end of the cylindrical shield electrode is curved outward, and the shield electrode is The electrode is divided along the axial direction of the lead core wire to form a semi-cylindrical shield electrode, which is combined to form a semi-cylindrical shield electrode, and the lead core wire, insulating barrier, and shield electrode are collectively supported by a support material. Submerged lead connection device for induction electric equipment.
JP2665178A 1978-03-10 1978-03-10 Lead pulling-out device into oil for induction equipment Granted JPS54120827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2665178A JPS54120827A (en) 1978-03-10 1978-03-10 Lead pulling-out device into oil for induction equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2665178A JPS54120827A (en) 1978-03-10 1978-03-10 Lead pulling-out device into oil for induction equipment

Publications (2)

Publication Number Publication Date
JPS54120827A JPS54120827A (en) 1979-09-19
JPS6237522B2 true JPS6237522B2 (en) 1987-08-13

Family

ID=12199333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2665178A Granted JPS54120827A (en) 1978-03-10 1978-03-10 Lead pulling-out device into oil for induction equipment

Country Status (1)

Country Link
JP (1) JPS54120827A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5453675B2 (en) * 2010-05-11 2014-03-26 三菱電機株式会社 Insulation barrier and method for manufacturing oil-in-sea shield device having the same

Also Published As

Publication number Publication date
JPS54120827A (en) 1979-09-19

Similar Documents

Publication Publication Date Title
US4584429A (en) Electrical assembly including a metal enclosure and a high voltage bushing
BRPI1105755A2 (en) plug-in bushing and high-voltage installation with a bushing such as this one.
BR112018071935B1 (en) HIGH VOLTAGE APPLIANCE AND MANUFACTURING METHOD OF SUCH APPLIANCE
US3328515A (en) Polymeric insulator with means for preventing burning due to leakage current and arcs
BRPI0715850A2 (en) high voltage bushing
JPS6237522B2 (en)
US20100065304A1 (en) Apparatus for Electrical Screening of a High-Voltage Bushing
EP0798950B1 (en) High voltage noise filter and magnetron device using it
KR101547419B1 (en) High voltage arrangement comprising an insulating structure
JPS609332B2 (en) Submerged oil lead extraction device for induction electric equipment
US1811887A (en) Insulator
US2135338A (en) Capacitance coupler
JP3121515B2 (en) Air terminal connection box for power cable
US3845235A (en) Prefabricated capacitive graded splice device
US3086073A (en) High voltage liquid-free insulating bushing with improved voltage distribution
RU2770460C1 (en) End coupling
JPH0130831Y2 (en)
JPS6023569B2 (en) gas insulated electrical equipment
JPS6036981Y2 (en) Particle trap for gas insulated equipment
US11626244B2 (en) Assembly for connecting to a high-voltage grid
US1829032A (en) Outlet for high potential cables
US1786731A (en) Terminal housing for cables
WO2017029627A1 (en) A transition joint
JPS6341695Y2 (en)
US1857867A (en) Electrical condenser