JPS6237397Y2 - - Google Patents

Info

Publication number
JPS6237397Y2
JPS6237397Y2 JP15738382U JP15738382U JPS6237397Y2 JP S6237397 Y2 JPS6237397 Y2 JP S6237397Y2 JP 15738382 U JP15738382 U JP 15738382U JP 15738382 U JP15738382 U JP 15738382U JP S6237397 Y2 JPS6237397 Y2 JP S6237397Y2
Authority
JP
Japan
Prior art keywords
gas
liquid
flow
phase
phase flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15738382U
Other languages
Japanese (ja)
Other versions
JPS5963624U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15738382U priority Critical patent/JPS5963624U/en
Publication of JPS5963624U publication Critical patent/JPS5963624U/en
Application granted granted Critical
Publication of JPS6237397Y2 publication Critical patent/JPS6237397Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【考案の詳細な説明】 〔考案の技術分野〕 本考案は電気絶縁性の液化ガス冷媒を用いた蒸
発冷却式電力ケーブル線路の冷媒流量測定装置に
関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a refrigerant flow rate measuring device for an evaporative cooling power cable line using an electrically insulating liquefied gas refrigerant.

〔考案の技術的背景〕[Technical background of the invention]

一般にフロンガスのような電気絶縁性の液化ガ
ス冷媒を用いた蒸発冷却式電力ケーブル線路は、
例えば第1図にその断面図で示すように、内部に
密閉金属パイプ1aにより液化ガス冷媒の往路を
形成した導体1bの外周に内部半導電層1c、絶
縁層1d、外部シールド1eを順に設けたケーブ
ル1と、一部気化された冷媒の帰路を形成する外
管2とから構成されており、液化ガス冷媒は密閉
金属パイプ1aを通り、ケーブル端部において一
部気化された状態で外管2へ入り還流する過程
で、ケーブル1を冷却する。
Generally, evaporative cooling power cable lines using electrically insulating liquefied gas refrigerants such as chlorofluorocarbons are
For example, as shown in the cross-sectional view of FIG. 1, an internal semiconductive layer 1c, an insulating layer 1d, and an external shield 1e are sequentially provided on the outer periphery of a conductor 1b, which has an outgoing path for liquefied gas refrigerant formed inside by a sealed metal pipe 1a. It is composed of a cable 1 and an outer tube 2 that forms a return path for a partially vaporized refrigerant, and the liquefied gas refrigerant passes through a sealed metal pipe 1a and returns to the outer tube 2 in a partially vaporized state at the end of the cable. The cable 1 is cooled in the process of entering the water and refluxing.

上記したように外管2内には気化した液化ガス
冷媒の気相流と未気化状態の液相流が混流し、気
液二相流となつて冷却液化装置に送られ、再び液
化ガス冷媒となつて密閉金属パイプ1aに供給さ
れるようになつている。
As described above, the vaporized liquefied gas refrigerant gas phase flow and the unvaporized liquid phase flow mix in the outer tube 2, become a gas-liquid two-phase flow, and are sent to the cooling liquefaction device, where the liquefied gas refrigerant flows again. The water is then supplied to a sealed metal pipe 1a.

外管2から冷却液化装置に至る経路には、液化
ガス冷媒の電力ケーブル冷却に伴う気化率を知る
ため流量測定装置が配置され、この過程で上述の
気液二相流中の液相流の流量が測定される。
A flow rate measuring device is installed on the path from the outer tube 2 to the cooling liquefaction device in order to determine the vaporization rate of the liquefied gas refrigerant as it cools the power cable. The flow rate is measured.

すなわち液単相流の冷媒は電力ケーブルの冷却
により気液二相流となり、その乾き度を測定する
ことにより吸熱量を求めることができるが、この
乾き度は、気液二相流を気相流と液相流に分離
し、気相が分離された液相流のみの流量を測定す
る流量計により求めた液相流のみの流量と、
気化前の液相流の流量とから X=2p21p1 の式により求めらるのである。
In other words, a liquid single-phase refrigerant becomes a gas-liquid two-phase flow by cooling the power cable, and the amount of heat absorbed can be determined by measuring its dryness. Flow rate 2 of only the liquid phase flow determined by a flowmeter that measures the flow rate of only the liquid phase flow from which the gas phase has been separated and the gas phase has been separated;
It is determined from the flow rate 1 of the liquid phase flow before vaporization using the formula: X = 2 p 2 / 1 p 1 .

ここではそれぞれの測定点の温度で
の液化ガス冷媒の密度を表わす。
Here, 1 and 2 represent the density of the liquefied gas refrigerant at the temperature of each measurement point.

〔背景技術の問題点〕[Problems with background technology]

従来このような液相流の流量測定装置として
は、第2図に示すように、気液二相流を導入する
気液導入口3a、気相流を導出する気相導出口3
bおよび液相流を導出する液相導出口3cを備え
た気液分離槽3と、一端がそれぞれ気液分離槽3
の気相導出口3bおよび液相導出口3cに接続さ
れた気相流配管4aおよび液相流配管4bとさ
れ、他端がこれらの各配管を合流させた気液二相
流配管4cとされた流量測定配管4と、液相流配
管4b中に配設された流量計5とを備えた装置が
知られている。
Conventionally, as shown in FIG. 2, such a liquid-phase flow rate measuring device includes a gas-liquid inlet 3a for introducing a gas-liquid two-phase flow, and a gas-phase outlet 3 for leading out the gas-phase flow.
b and a gas-liquid separation tank 3 equipped with a liquid phase outlet 3c for deriving a liquid phase flow;
A gas phase flow piping 4a and a liquid phase flow piping 4b are connected to the gas phase outlet 3b and liquid phase outlet 3c, and the other end is a gas-liquid two-phase flow piping 4c that joins these respective piping. A device is known that includes a flow rate measuring pipe 4 and a flow meter 5 disposed in the liquid phase flow pipe 4b.

しかるに、このような従来の流量測定装置にお
いては、気液分離槽3で分離された液相流の一部
が流量計5に至る過程で気化されてしまい、液相
流の正確な流量が測定できないという難点があつ
た。
However, in such conventional flow rate measurement devices, a part of the liquid phase flow separated in the gas-liquid separation tank 3 is vaporized in the process of reaching the flow meter 5, making it difficult to accurately measure the flow rate of the liquid phase flow. The problem was that I couldn't do it.

〔考案の目的〕[Purpose of invention]

本考案はこのような従来の欠点を解消すべくな
されたもので、蒸発冷却式電力ケーブル線路に用
いる液化ガス冷媒の気液二相流中の、液相流のみ
の流量を正確に測定し得る流量測定装置を提供し
ようとするものである。
The present invention was developed to overcome these conventional drawbacks, and is capable of accurately measuring the flow rate of only the liquid phase flow in the gas-liquid two-phase flow of liquefied gas refrigerant used in evaporative cooling power cable lines. The present invention aims to provide a flow rate measuring device.

〔考案の概要〕[Summary of the idea]

すなわち本考案の蒸発冷却式電力ケーブル線路
の冷媒流量測定装置は、前述した流量測定装置に
おいて、気液分離槽と流量計間の液相流配管に、
該配管を使用する冷媒の気化温度より低い温度に
冷却する冷却装置を設けたことを特徴としてい
る。
In other words, the refrigerant flow rate measuring device for an evaporative cooling type power cable line of the present invention includes, in the above-described flow rate measuring device, a liquid-phase flow pipe between the gas-liquid separation tank and the flowmeter;
The pipe is characterized by being equipped with a cooling device that cools the pipe to a temperature lower than the vaporization temperature of the refrigerant used.

〔考案の実施例〕[Example of idea]

以下本考案の一実施例を図示した実施例につい
て詳細に説明する。
An embodiment of the present invention will be described in detail below.

第3図は、本考案装置の一実施例を概略的に示
した構成図である。同図において第2図と共通す
る部分は同一符号で示す。
FIG. 3 is a block diagram schematically showing an embodiment of the device of the present invention. In this figure, parts common to those in FIG. 2 are designated by the same reference numerals.

第3図に示すように本考案の装置において、気
液二相流を導入する気液導入口3a、気相流を導
出する気相導出口3bおよび液相流を導出する液
相導出口3cを備えた気液分離槽3と、一端がそ
れぞれ気液分離槽3の気相導出口3bおよび液相
導出口3cに接続された気相流配管4aおよび液
相流配管4bとされ、他端がこれらの各配管を合
流させた気液二相流配管4cとされた流量測定配
管4と、液相流配管4b中に配設された流量計5
とを備えている点は従来の測定装置と同一構成で
ある。
As shown in FIG. 3, in the apparatus of the present invention, a gas-liquid inlet 3a for introducing a gas-liquid two-phase flow, a gas-phase outlet 3b for leading out the gas-phase flow, and a liquid-phase outlet 3c for leading out the liquid-phase flow. A gas-liquid separation tank 3 equipped with The flow measurement pipe 4 is a gas-liquid two-phase flow pipe 4c in which these pipes are joined together, and the flow meter 5 is disposed in the liquid-phase flow pipe 4b.
It has the same configuration as the conventional measuring device.

しかして本考案の装置においては、気液分離槽
3と流量計5の間の液相流配管3cの外周に液相
流配管3cを液化ガス冷媒の気化温度より低い温
度に冷却可能な冷却水を用いた冷却装置6が設置
されている。
Therefore, in the device of the present invention, cooling water capable of cooling the liquid phase flow piping 3c to a temperature lower than the vaporization temperature of the liquefied gas refrigerant is provided around the outer periphery of the liquid phase flow piping 3c between the gas-liquid separation tank 3 and the flow meter 5. A cooling device 6 using a cooling device is installed.

なお、この実施例の冷却装置6は、冷却手段と
して冷却水を用いたものについて説明したが、本
考案はかかる実施例に限定されるものではなく、
使用する冷媒に応じてその冷媒の気化温度以下に
冷却可能な他の公知の冷却装置を用いることがで
きる。
Although the cooling device 6 of this embodiment uses cooling water as a cooling means, the present invention is not limited to this embodiment.
Depending on the refrigerant used, other known cooling devices capable of cooling to a temperature below the vaporization temperature of the refrigerant may be used.

次に本考案装置の作用について説明する。 Next, the operation of the device of the present invention will be explained.

第1図に示した蒸発冷却式電力ケーブル線路の
外管2から送られてきた液化ガス冷媒(例えばア
ンモニア、CO2、SF2、フロンR−12(商品
名)、フロンR−11(商品名))は気液導入口3a
から気液分離槽3中に送られ、ここで液相が気液
分離槽3の下部に溜つて気液分離される。次いで
気液分離された気相流は気相導出口3bから気相
流配管4aに導出され、液相流は液相導出口3c
から液相流配管4b中に導出されるが、液相流配
管4bが冷却装置6により冷却されているので、
液相流配管4b中での液化冷媒の気化が制御さ
れ、液相のまま流量計5へ送られる。その結果液
相流の流量は流量計5において正確に測定するこ
とができ、この流量から正確な乾き度を求めるこ
とができる。
The liquefied gas refrigerant (e.g. ammonia, CO 2 , SF 2 , Freon R-12 (trade name), Freon R-11 (trade name) sent from the outer pipe 2 of the evaporative cooling power cable line shown in FIG. )) is the gas/liquid inlet 3a
The liquid phase is then sent to the gas-liquid separation tank 3, where the liquid phase accumulates in the lower part of the gas-liquid separation tank 3 and is separated into gas and liquid. Next, the gas-liquid separated gas phase flow is led out from the gas phase outlet 3b to the gas phase flow piping 4a, and the liquid phase flow is led out to the liquid phase outlet 3c.
However, since the liquid phase flow pipe 4b is cooled by the cooling device 6,
The vaporization of the liquefied refrigerant in the liquid-phase flow pipe 4b is controlled, and the liquefied refrigerant is sent to the flowmeter 5 in its liquid phase. As a result, the flow rate of the liquid phase flow can be accurately measured by the flowmeter 5, and the degree of dryness can be determined accurately from this flow rate.

〔考案の効果〕[Effect of idea]

以上説明したように本考案の装置によれば、従
来の流量測定装置の液相配管中で生じる液相流の
気化を防止することができるので、冷媒の乾き度
をより正確に求めることができる。
As explained above, according to the device of the present invention, it is possible to prevent the vaporization of the liquid phase flow that occurs in the liquid phase piping of the conventional flow rate measuring device, so the dryness of the refrigerant can be determined more accurately. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は蒸発冷却式電力ケーブル線路の横断面
図、第2図は従来の冷媒流量測定装置の構成を示
す図、第3図は本考案の冷媒流量測定装置の構成
を概略的に示した図である。 1……ケーブル、1a……液化冷媒通路、1b
……導体、1c……絶縁層、1d……外部シール
ド、2……外管、3……気液分離槽、3a……気
液導入口、3b……気相導出口、3c……液相導
出口、4……流量測定配管、4a……気相流配
管、4b……液相流配管、5……流量計、6……
冷却装置、R……冷媒回収路。
Fig. 1 is a cross-sectional view of an evaporative cooling power cable line, Fig. 2 is a diagram showing the configuration of a conventional refrigerant flow rate measuring device, and Fig. 3 is a schematic diagram showing the configuration of the refrigerant flow rate measuring device of the present invention. It is a diagram. 1... Cable, 1a... Liquefied refrigerant passage, 1b
... Conductor, 1c ... Insulating layer, 1d ... External shield, 2 ... Outer tube, 3 ... Gas-liquid separation tank, 3a ... Gas-liquid inlet, 3b ... Gas phase outlet, 3c ... Liquid Phase outlet, 4...Flow rate measurement piping, 4a...Gas phase flow piping, 4b...Liquid phase flow piping, 5...Flowmeter, 6...
Cooling device, R... Refrigerant recovery path.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] (イ)気液二相流を導入する気液導入口、気相流を
導出する気相導出口および液相流を導出する液相
導出口を備えた気液分離槽と、(ロ)一端がそれぞれ
前記気液分離槽の気相導出口および液相導出口に
接続された気相流配管および液相流配管とされ、
他端がこれらの各配管を合流させた気液二相流配
管とされた流量測定配管と、(ハ)前記液相流配管中
に配設された流量計とを備えた流量測定装置にお
いて、(ニ)前記気液分離槽と流量計間の液相流配管
に、該配管を使用する冷媒の気化温度より低い温
度に冷却する冷却装置を設けたことを特徴とする
蒸発冷却式電力ケーブル線路の冷媒流量測定装
置。
(a) a gas-liquid separation tank equipped with a gas-liquid inlet for introducing a gas-liquid two-phase flow, a gas-phase outlet for leading out the gas-phase flow, and a liquid-phase outlet for leading out the liquid-phase flow, and (b) one end. are gas phase flow piping and liquid phase flow piping connected to the gas phase outlet and the liquid phase outlet of the gas-liquid separation tank, respectively,
A flow rate measuring device comprising: a flow rate measuring pipe whose other end is a gas-liquid two-phase flow pipe where these pipes join; and (c) a flow meter disposed in the liquid-phase flow pipe, (d) An evaporative cooling type power cable line characterized in that the liquid-phase flow piping between the gas-liquid separation tank and the flow meter is provided with a cooling device that cools the piping to a temperature lower than the vaporization temperature of the refrigerant using the piping. refrigerant flow measuring device.
JP15738382U 1982-10-18 1982-10-18 Evaporative cooling type power cable line refrigerant flow measurement device Granted JPS5963624U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15738382U JPS5963624U (en) 1982-10-18 1982-10-18 Evaporative cooling type power cable line refrigerant flow measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15738382U JPS5963624U (en) 1982-10-18 1982-10-18 Evaporative cooling type power cable line refrigerant flow measurement device

Publications (2)

Publication Number Publication Date
JPS5963624U JPS5963624U (en) 1984-04-26
JPS6237397Y2 true JPS6237397Y2 (en) 1987-09-24

Family

ID=30346998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15738382U Granted JPS5963624U (en) 1982-10-18 1982-10-18 Evaporative cooling type power cable line refrigerant flow measurement device

Country Status (1)

Country Link
JP (1) JPS5963624U (en)

Also Published As

Publication number Publication date
JPS5963624U (en) 1984-04-26

Similar Documents

Publication Publication Date Title
Vliet et al. Forced convection heat transfer from an isothermal sphere to water
CN100573129C (en) A kind of coagulating type steam quality measurement device and measuring method
Zheng et al. Experimental study on two-phase separation performance of impacting T-junction
CN103424423B (en) Vapor condensation heat-exchange test device
Iqbal et al. In-tube condensation heat transfer of CO2 at low temperatures in a horizontal smooth tube
Yuan et al. Experimental study on the performance of a novel structure for two-phase flow distribution in parallel vertical channels
JPS6237397Y2 (en)
US4426880A (en) Method and apparatus for fluid sampling and testing
Cheng et al. Flow boiling heat transfer in a vertical spirally internally ribbed tube
Chen et al. Underpressure of vaporization of refrigerant R-134a through a diabatic capillary tube
CN105865661B (en) Volumetric enthalpy-increasing compressor refrigerating capacity testing device and testing method
JPH07229887A (en) Method and device for measuring para content in flow of hydrogen gas
Bukasa et al. Heat transfer performance during condensation inside spiralled micro-fin tubes
Kim et al. R-22 condensation in flat aluminum multi-channel tubes
JPH0321173Y2 (en)
Zhu et al. Vertical U-pipe flow characteristics in absorption heat pump: Experimental study under vacuum conditions
US3220254A (en) Two-phase fluid flowmeter
Collins et al. Effects of temperature-dependence of viscosity and viscous dissipation on laminar flow heat transfer in circular tubes
CN106501308B (en) A kind of box type heat transfer device
SU828048A1 (en) High temperature gas flow enthalpy-meter
JPS6016872Y2 (en) refrigerant gas cooler
JPS5910577Y2 (en) Throttle flow meter for low temperature fluid
Schweppe The Effect of Forced Circulation Rate on Boiling Heat Transfer and Pressure Drop in a Short Vertical Tube
JPH0227780A (en) Building for superconducting apparatus
Au A computational scheme for calculating refrigerant properties & heat transfer in boiling tube flow