JPS6237347B2 - - Google Patents

Info

Publication number
JPS6237347B2
JPS6237347B2 JP53142554A JP14255478A JPS6237347B2 JP S6237347 B2 JPS6237347 B2 JP S6237347B2 JP 53142554 A JP53142554 A JP 53142554A JP 14255478 A JP14255478 A JP 14255478A JP S6237347 B2 JPS6237347 B2 JP S6237347B2
Authority
JP
Japan
Prior art keywords
voltage
time
vehicle battery
signal
check signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53142554A
Other languages
Japanese (ja)
Other versions
JPS5568835A (en
Inventor
Toshuki Yamaguchi
Akira Kuno
Toshinobu Kuroyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP14255478A priority Critical patent/JPS5568835A/en
Publication of JPS5568835A publication Critical patent/JPS5568835A/en
Publication of JPS6237347B2 publication Critical patent/JPS6237347B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は車載用バツテリーの残存容量を報知す
る車載用バツテリーチエツカーに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an on-vehicle battery checker that notifies the remaining capacity of an on-vehicle battery.

従来、バツテリー残存容量チエツカーは電流
150A放電の放電開始後5秒目の電圧を端定し、
この測定電圧が設定電圧より高ければ良、低けれ
ば不良と判定するものが知られている。又、この
5秒目が10秒目、20秒目のものもある。この種の
装置は150Aの電流を5秒乃至それ以上の長時間
流して電圧を測定するため、電流を抵抗に流した
場合、12volt×150A×5秒=9000ジユールの熱が
発生する為大きな電力容量の抵抗が必要となり、
車載用には不適当であつた。また、従来、特開昭
52−98933号公報に示されるように、一回の放電
時間を数100μsecという極めて短い時間にし、一
定周期で反復して複数回放電させるものもある
が、一般に車載用蓄電池ではこのような極めて短
い時間では通常応答し難く、やはり車載用として
は適さなかつた。
Traditionally, battery remaining capacity checkers use current
Determine the voltage 5 seconds after the start of 150A discharge,
There is a known device in which the device is determined to be good if the measured voltage is higher than the set voltage, and is determined to be defective if the measured voltage is lower than the set voltage. Also, there are cases where this 5th second is the 10th or 20th second. This type of device measures voltage by passing a current of 150A for a long time of 5 seconds or more, so if the current is passed through a resistor, 12 volts x 150 A x 5 seconds = 9000 Joules of heat is generated, which is a large amount of electricity. A capacitive resistor is required,
It was unsuitable for automotive use. In addition, conventionally,
As shown in Publication No. 52-98933, there are some batteries in which the discharge time is extremely short, several hundred microseconds, and the discharge is repeated multiple times at a constant cycle, but in general, in-vehicle storage batteries have such extremely short discharge times. It is usually difficult to respond within hours, so it is not suitable for automotive use.

本発明は上記の点に鑑み、大きな負荷電流を流
す時間を短かくし、それにより小さな寸法の抵抗
を負荷に用いることができ、またチエツク時に測
定値を保持して比較的長時間判定表示ができるよ
うにすることにより正確かつ容易に判定を報知で
き、さらに、チエツク信号を車載エンジンの作動
状態に応じて発生するようにして、運転者に負担
をかけることなく、常にバツテリーの残存容量を
検出するのに適切な時期にバツテリーチエツクが
できる車載用バツテリーチエツカーを提供するこ
とを目的とするものである。
In view of the above points, the present invention shortens the time during which a large load current is passed, thereby allowing a resistor with a small size to be used as a load, and also allows judgments to be displayed for a relatively long time by holding measured values during a check. By doing this, it is possible to accurately and easily notify the determination, and furthermore, by generating a check signal according to the operating state of the vehicle engine, the remaining capacity of the battery can be constantly detected without putting a burden on the driver. The object of the present invention is to provide an on-vehicle battery checker that can perform a battery check at an appropriate time.

以下本発明を図に示す実施例について説明す
る。添付図面の第1図は本発明の第1の実施例の
全体構成を示す電気結線図で、1は残存容量がチ
エツクされる車載バツテリー、2は大電流を流す
負荷抵抗である。10は定電圧を発生し各回路に
供給する定電圧部である。20は記憶部で、車載
バツテリー1の電圧を(+)電圧検出端子bと
(−)電圧検出端子cを介して入力して、チエツ
ク信号が来ない時はバツテリーの端子電圧に対応
した値を常時出力し、チエツク信号が来た時はバ
ツテリー電圧の最低値に対応した値を保持して出
力する。30は表示部で、記憶部20よりの出力
を受けて電圧値を表示する。50はチエツク信号
整形部で、入力端子eにエンジン作動状態を検出
する作動検出部90よりチエツク開始信号が印加
された場合にそれを波形整形するものである。6
0はチエツク信号時限部で、入力端子eにチエツ
ク開始信号が印加された場合に一定時間(本実施
例では約200msec)出力端子60aにチエツク時
限信号を発生すると共に、チエツク信号発生後一
定時間(本実施例では約6秒間)経過しないと再
びチエツク信号が発生しないようにしてあり、こ
の一定時間に記憶部20でバツテリー電圧の最低
値に対応した値を保持する為の保持信号を出力端
子60bに発生する。70は負荷抵抗駆動部で、
チエツク信号時限部60からのチエツク時限信号
によりトランジスタ701,702をONしてリ
レーコイル703を駆動し、リレー接点704を
閉成して負荷抵抗2を車載バツテリー1の(+)
端子と(−)端子間に接続させるものである。7
05,706は逆起電力吸収用ダイオードであ
る。また80はクロツク発振部で、チエツク信号
時限部60に基準クロツク(本実施例では約1280
Hz)を出力端80aより出力するものである。9
0は作動検出部で、エンジンの作動状態を検出し
てチエツク開始信号を発生するものであり、例え
ばエンジン始動前、または始動直後これを検知し
て自動的にチエツク開始信号を発生するものであ
る。
The present invention will be described below with reference to embodiments shown in the drawings. FIG. 1 of the accompanying drawings is an electrical wiring diagram showing the overall configuration of the first embodiment of the present invention, in which numeral 1 represents an on-vehicle battery whose remaining capacity is checked, and numeral 2 represents a load resistor through which a large current flows. 10 is a constant voltage section that generates a constant voltage and supplies it to each circuit. 20 is a storage unit which inputs the voltage of the vehicle battery 1 through the (+) voltage detection terminal b and (-) voltage detection terminal c, and when the check signal does not come, it inputs the value corresponding to the terminal voltage of the battery. It is always output, and when a check signal is received, it holds and outputs the value corresponding to the lowest battery voltage. 30 is a display section that receives the output from the storage section 20 and displays the voltage value. Reference numeral 50 denotes a check signal shaping section, which shapes the waveform of a check start signal when it is applied to the input terminal e from the operation detecting section 90 that detects the engine operating state. 6
0 is a check signal time limit section, which generates a check time signal at the output terminal 60a for a certain period of time (approximately 200 msec in this embodiment) when a check start signal is applied to the input terminal e, and also generates a check signal at the output terminal 60a for a certain period of time (approximately 200 msec in this embodiment) after the check signal is generated. In this embodiment, the check signal is not generated again until approximately 6 seconds have elapsed, and during this fixed period of time, a hold signal is output to the output terminal 60b for holding the value corresponding to the lowest battery voltage in the storage unit 20. occurs in 70 is a load resistance drive section,
The check time signal from the check signal time limit unit 60 turns on transistors 701 and 702 to drive the relay coil 703, closes the relay contact 704, and connects the load resistor 2 to the (+) terminal of the vehicle battery 1.
It is connected between the terminal and the (-) terminal. 7
05,706 is a diode for absorbing back electromotive force. Reference numeral 80 is a clock oscillator, which supplies the check signal timer 60 with a reference clock (approximately 1280 in this embodiment).
Hz) from the output end 80a. 9
0 is an operation detection unit that detects the operating state of the engine and generates a check start signal. For example, it detects this before or immediately after starting the engine and automatically generates a check start signal. .

次に、入力端子eにチエツク開始信号が印加さ
れた場合を述べる。入力端子eが“1”レベルか
ら“0”レベルになるとインバータ3ケと抵抗等
で構成されたチエツク信号整形部50の50a端
子の出力は“0”から“1”レベルに変化し、そ
れによりチエツク信号時限部60のDフリツプフ
ロツプ601の出力は“1”から“0”とな
る。そこで計数回路603はリセツトが解除さ
れ、クロツク発振部80からクロツクパルスを
NORゲート604を介して入力計数し、約
200msec後に出力端子Q9は“0”から“1”とな
り、Dフリツプフロツプ602の出力Qは“0”
から“1”となる。従つてNORゲート605は
Dフリツプフロツプ601の出力とDフリツプ
フロツプ602のQ出力を入力してその60a端
子には約200msec間だけ“1”となりその後
“0”に戻るチエツク時限信号を出力する。さら
にDフリツプフロツプ601は計数回路603の
出力Q14が“1”になるまで(本実施例では約6
秒間)リセツトされず、その間出力は“0”の
ままであるからこの間にチエツク開始信号がいく
ら入つてきてもチエツク信号時限部60の出力端
子60aにはチエツク時限信号は発生しない。な
お、Dフリツプフロツプ601,602として本
実施例では公知のRCA社製ICのCD4013を、また
計数回路603にはCD4020を用いた。
Next, a case will be described in which a check start signal is applied to input terminal e. When the input terminal e changes from the "1" level to the "0" level, the output of the check signal shaping section 50, which is composed of three inverters and resistors, changes from the "1" level to the output from the terminal 50a. The output of the D flip-flop 601 of the check signal timer 60 changes from "1" to "0". The counting circuit 603 is then released from reset and receives clock pulses from the clock oscillator 80.
The input is counted through the NOR gate 604, and approximately
After 200 msec, the output terminal Q9 changes from "0" to "1", and the output Q of the D flip-flop 602 becomes "0".
becomes “1”. Therefore, the NOR gate 605 inputs the output of the D flip-flop 601 and the Q output of the D flip-flop 602, and outputs a check time signal to its 60a terminal which becomes "1" for about 200 msec and then returns to "0". Further, the D flip-flop 601 operates until the output Q14 of the counting circuit 603 becomes "1" (approximately 6 in this embodiment).
2 seconds) and the output remains at "0" during that period, no check time signal is generated at the output terminal 60a of the check signal time limit section 60, no matter how many check start signals are received during this time. In this embodiment, the D flip-flops 601 and 602 are CD4013, a well-known IC made by RCA, and the counting circuit 603 is a CD4020.

さて、出力端子60aが“1”レベルになると
負荷抵抗駆動部70のトランジスタ701,70
2はともに導通してリレーコイル703を作動さ
せて接点704を閉じ、負荷抵抗2は車載バツテ
リー1の(+)端子aと(−)端子dの間に接続
される。この際本実施例では負荷抵抗2は50mΩ
であるからバツテリー電圧12Vのとき240Aの大電
流が流れる。しかしながら、電流が流れる時間が
わずか200mseeと短いので発熱量は576ジユール
程度であり、この負荷抵抗2の寸法形状は70×30
×5mm程度の大きさでもつて充分に電力容量をも
つことができる。そして負荷抵抗2に大電流を流
している間中記憶部20は車載バツテリー1の電
圧を測定し、バツテリー残存容量が少ない場合に
は規定値以下にバツテリー端子電圧が低下するた
め、このバツテリー1の容量低下を検出、報知で
きる。
Now, when the output terminal 60a becomes "1" level, the transistors 701 and 70 of the load resistance drive section 70
2 are electrically connected to operate the relay coil 703 and close the contact 704, and the load resistor 2 is connected between the (+) terminal a and the (-) terminal d of the vehicle battery 1. At this time, in this example, the load resistance 2 is 50mΩ
Therefore, when the battery voltage is 12V, a large current of 240A flows. However, since the current flow time is short, only 200 msee, the amount of heat generated is about 576 Joules, and the dimensions and shape of this load resistor 2 are 70 x 30
Even with a size of about 5 mm, it can have sufficient power capacity. While a large current is flowing through the load resistor 2, the storage unit 20 measures the voltage of the vehicle battery 1. If the remaining capacity of the battery is low, the battery terminal voltage drops below the specified value. Capacity reduction can be detected and notified.

次に、記憶部20は、大電流が流れに時低下し
たバツテリー電圧を、大電流が流れ終えた(約
200msec後)も保持して表示の規認性を良くする
ものである。この記憶部20は演算増幅器205
及び215、ダイオード208、コンデンサ21
4、リレー212等で構成される負のピークホー
ルド回路が主体となる。
Next, the storage unit 20 stores the battery voltage, which decreased when the large current was flowing, after the large current has finished flowing (approximately
200msec later) to improve display regularity. This storage section 20 is an operational amplifier 205
and 215, diode 208, capacitor 21
4. A negative peak hold circuit consisting of a relay 212 and the like is the main component.

抵抗201,202によつて分圧されたバツテ
リー電圧は、保護用ダイオード203,204を
通つて演算増幅器205の非反転入力端子205
aに印加される。チエツク信号が来ない時、リレ
ー212の常閉接点212aは閉じており、演算
増幅器205と215はリレー212、保護用抵
抗211、記憶用コンデンサ214、帰還抵抗2
07、帰還ダイオード206を通して全体で増幅
率1の増幅器として働く。演算増幅器215の出
力215aにはバツテリ電圧に対応した電圧が表
われ、抵抗216を通して端子20aに出力され
表示部30(この場合電流計)に加わる。一方、
チエツク信号がチエツク信号時限部60に加わる
と、出力端子60bの保持信号は“1”から
“0”レベルになつて、計数回路603の出力
Q14が“0”から“1”レベルになる時まで(約
6.2秒)持続する。そこで出力端子60bが
“0”レベルになると、記憶部20のインバータ
220の出力は“1”レベルとなり抵抗221を
通してリレー駆動トランジスタ222のベースに
加わり、トランジスタ222は導通してリレー2
12の接点212aを開く。この時、演算増幅器
205,215、ダイオード206,208,2
10及び記憶用コンデンサ214、抵抗207,
209,211は負のピークホールド回路を構成
することになる。演算増幅器は入力インピーダン
スが充分高く、オフセツト電流、オフセツト電
圧、オフセツトドリフトともに微小なものを要す
るが、本実施例ではROA社製ICのCA3140を用い
た。またダイオードは逆方向もれ電流の少ないも
のを要し、ここでは206,208に東芝電気社
製のIS1588,210に同じく東芝電気社製の
2SK30Aのゲート・ソース接合部を用いた。記憶
用コンデサは容量の割にもれ電流の少ないものを
要するが、本実施例ではジ―メンス社製の積層ポ
リエステル・フイルムコンデンサを用いた。
The battery voltage divided by resistors 201 and 202 passes through protective diodes 203 and 204 to non-inverting input terminal 205 of operational amplifier 205.
applied to a. When the check signal is not received, the normally closed contact 212a of the relay 212 is closed, and the operational amplifiers 205 and 215 are connected to the relay 212, the protective resistor 211, the memory capacitor 214, and the feedback resistor 2.
07. Through the feedback diode 206, the entire amplifier functions as an amplifier with an amplification factor of 1. A voltage corresponding to the battery voltage appears at the output 215a of the operational amplifier 215, is output to the terminal 20a through the resistor 216, and is applied to the display section 30 (in this case, an ammeter). on the other hand,
When the check signal is applied to the check signal timer 60, the holding signal at the output terminal 60b changes from "1" to "0" level, and the output of the counting circuit 603 changes from "1" to "0" level.
Until Q 14 goes from “0” to “1” level (approximately
6.2 seconds) lasts. Therefore, when the output terminal 60b becomes "0" level, the output of the inverter 220 of the storage section 20 becomes "1" level and is applied to the base of the relay drive transistor 222 through the resistor 221, and the transistor 222 becomes conductive and the relay drive transistor 222 becomes conductive.
12 contacts 212a are opened. At this time, operational amplifiers 205, 215, diodes 206, 208, 2
10 and memory capacitor 214, resistor 207,
209 and 211 constitute a negative peak hold circuit. The operational amplifier requires a sufficiently high input impedance and minimal offset current, offset voltage, and offset drift, and in this example, an IC CA3140 manufactured by ROA was used. In addition, diodes with low reverse leakage current are required, and here we use IS1588 and 210, also manufactured by Toshiba Electric, for 206 and 208.
A 2SK30A gate-source junction was used. The memory capacitor needs to have a small leakage current in relation to its capacity, and in this example, a laminated polyester film capacitor manufactured by Siemens was used.

以下、このピークホールド回路の動作について
述べる。リレー212の常閉接点212aが開い
た直後には、記憶用コンデンサ214の電圧は常
閉接点212aが開く直前の値を保つている。コ
ンデンサの電圧は演算増幅器215の出力215
aにも現れ、抵抗207により演算増幅器205
の反転入力端子205bに加わる。今、増幅器2
05の非反転入力端子205aへの入力電圧がコ
ンデンサ214に記憶された電圧より低くなる
と、増幅器205出力は下がりダイオード206
は遮断状態、ダイオード208,210は導通状
態となつてコンデンサ214の電圧は下げられ、
再び増幅器215を通して増幅器205に帰還さ
れ、205bの電圧即ち215aの出力電圧が入
力端子205aの電圧と等しくなる所で安定す
る。
The operation of this peak hold circuit will be described below. Immediately after the normally closed contact 212a of the relay 212 opens, the voltage of the storage capacitor 214 maintains the value immediately before the normally closed contact 212a opens. The voltage on the capacitor is the output 215 of the operational amplifier 215.
It also appears in a, and the operational amplifier 205 is connected by the resistor 207.
It is applied to the inverting input terminal 205b of. Now amplifier 2
When the input voltage to the non-inverting input terminal 205a of the amplifier 205 becomes lower than the voltage stored in the capacitor 214, the output of the amplifier 205 decreases and the diode 206
is cut off, diodes 208 and 210 are turned on, and the voltage across capacitor 214 is lowered.
It is fed back to the amplifier 205 through the amplifier 215 again, and stabilizes when the voltage of 205b, that is, the output voltage of 215a, becomes equal to the voltage of the input terminal 205a.

次に、増幅器205の非反転入力端子205a
の電圧が最低値を示した後、上昇しようとする時
を説明する。記憶用コンデンサの電圧、即ち21
5aの電圧及び205bの電圧は205bの電圧
の最低値までは前記の様に追従して下がつていく
が、205aの電圧が205bの電圧より少しで
も高くなろうとすると増幅器205の出力電圧は
上昇し、帰還ダイオード206は導通して増幅器
205の出力は205aの入力電圧よりダイオー
ド206の順方向降下電圧だけ高くなる。一方、
ダイオード208,210は遮断状態となり、記
憶用コンデンサ214の電圧は保持されて増幅器
215によつて出力される。この出力は帰還抵抗
207によつて端子205bに加わるが、ダイオ
ード206のインピーダンスが低いため増幅器2
05にはほとんど影響しない。従つて、増幅器2
05と増幅器215は別々に働らき、入力端子2
05aの電圧が上昇しても出力端子215aには
最低値が継続して出力される。
Next, the non-inverting input terminal 205a of the amplifier 205
We will explain when the voltage starts to rise after reaching its lowest value. The voltage of the storage capacitor, i.e. 21
The voltage of 5a and the voltage of 205b follow the voltage of 205b as described above and decrease until it reaches the lowest value of the voltage of 205b, but if the voltage of 205a tries to become even slightly higher than the voltage of 205b, the output voltage of amplifier 205 increases. However, the feedback diode 206 becomes conductive, and the output of the amplifier 205 becomes higher than the input voltage of the amplifier 205a by the forward drop voltage of the diode 206. on the other hand,
Diodes 208 and 210 are cut off, and the voltage on storage capacitor 214 is held and output by amplifier 215. This output is applied to the terminal 205b by the feedback resistor 207, but since the impedance of the diode 206 is low, the amplifier 2
It has almost no effect on 05. Therefore, amplifier 2
05 and amplifier 215 work separately, and input terminal 2
Even if the voltage of 05a increases, the lowest value continues to be output to the output terminal 215a.

ここで、抵抗209は出力端子215aの電圧
をダイオード208,210に加えて逆方向電圧
の大部分をダイオード208に負担させ、ダイオ
ード210は小さな逆方向電圧で動作させるもの
である。小さな逆方向電圧に対しては漏れ電流が
少ない為、コンデンサ214の電圧を長く保持す
ることができる。
Here, the resistor 209 applies the voltage of the output terminal 215a to the diodes 208 and 210, causing the diode 208 to bear most of the reverse voltage, and the diode 210 to operate with a small reverse voltage. Since the leakage current is small for a small reverse voltage, the voltage of the capacitor 214 can be maintained for a long time.

なお、上述の実施例では、作動検出部90はエ
ンジンの作動状態を検出してチエツク開始信号を
発生させるようにしているが、具体的にはバツテ
リー自体の残存容量を検出するのに最適で、かつ
運転者に警報を与えて認識させやすい時期であ
る。すなわちキースイツチ投入よりスターター駆
動前の間、またはエンジン始動直後、またはエン
ジン停止直後にチエツク開始信号を発生させるの
が好ましい。そのたせ作動検出部90はキースイ
ツチの投入を検知する構成や、オルタネータの出
力やエンジン回転数を検知する構成や、またイグ
ニツシヨンスイツチの開放を検知する構成が考え
られる。
In the above-described embodiment, the operation detection section 90 detects the operating state of the engine and generates a check start signal, but specifically, it is most suitable for detecting the remaining capacity of the battery itself. This is also the time when it is easy to give a warning to the driver and make him/her aware of the situation. That is, it is preferable to generate the check start signal after the key switch is turned on and before the starter is driven, or immediately after the engine is started, or immediately after the engine is stopped. The lag operation detection section 90 may have a configuration that detects the turning on of a key switch, a configuration that detects the output of the alternator or the engine speed, or a configuration that detects the opening of the ignition switch.

また、チエツク信号時限部60にてデジタル的
に時限を構成したが、抵抗とコンデンサを用いた
時限回路等アナログ的に作成してもよい。
Furthermore, although the check signal time limit section 60 has configured the time limit digitally, it may also be created analogously, such as a time limit circuit using a resistor and a capacitor.

次に、第2図に示す第2の実施例について述べ
る。第1の実施例の記憶部20において、非チエ
ツク時は増幅器215の出力がバツテリー電圧に
対応する値となるはずだが、バツテリー電圧が下
がりすぎ第1図の定電圧部10の出力電圧Vが下
がると、演算増幅器205,215は正常な動作
をしなくなる。そこで、第2図のように抵抗21
7とリレー218を追加して、リレー218の常
開接点218aには抵抗216を通して前記の増
幅器215の出力を加え、常閉接点218bには
抵抗217を通してバツテリー端子電圧を加える
と、リレー218が動作できないほど定電圧部出
力Vが下がつた時は常閉接点218bからの値が
端子20aに出力されるので、バツテリー電圧が
OVになるまで端子20aにはバツテリー端子電
圧に対応した値が得られる。バツテリー電圧が充
分に高い時は第1の実施例と同様となる。
Next, a second embodiment shown in FIG. 2 will be described. In the storage unit 20 of the first embodiment, when not checking, the output of the amplifier 215 should be a value corresponding to the battery voltage, but the battery voltage drops too much and the output voltage V of the constant voltage unit 10 in FIG. 1 drops. Then, the operational amplifiers 205 and 215 no longer operate normally. Therefore, as shown in Figure 2, the resistor 21
7 and a relay 218 are added, and the output of the amplifier 215 is applied through the resistor 216 to the normally open contact 218a of the relay 218, and the battery terminal voltage is applied through the resistor 217 to the normally closed contact 218b, so that the relay 218 is activated. When the constant voltage section output V drops to such an extent that it cannot be used, the value from the normally closed contact 218b is output to the terminal 20a, so the battery voltage
A value corresponding to the battery terminal voltage is obtained at the terminal 20a until it reaches OV. When the battery voltage is sufficiently high, it is similar to the first embodiment.

次に、第3図に示す第3の実施例について述べ
る。第1の実施例の記憶部20において、バツテ
リー電圧の最低値に対応した値を保持する時間は
チエツク信号が来てから一定時間である。これを
任意の時刻まで延ばすために、第1図のインバー
タ220を第3図のようにインバータ219と
NANDゲート223に変更する。インバータ21
9には端子50aからチエツク信号を加え、
NANDゲートの一方の入力には端子60bから保
持信号を加えると、保持信号はチエツク信号が来
てから約6.2秒後に消えるが、チエツク信号をさ
らに継続して加えるようにすれば、チエツク信号
が出ている間はNADゲート出力が“1”レベル
となり、トランジスタ222を導通させてリレー
212の常閉接点212aが開き、前記の負ピー
クホールド状態を持続させることができる。任意
の長さのチエツク信号は、作動検出部90にエン
ジンの作動状態に無関係なスイツチ等を設け、任
意の時刻にもチエツク開始信号を発生できるよう
な構造にすることにより得られる。
Next, a third embodiment shown in FIG. 3 will be described. In the storage section 20 of the first embodiment, the time for holding the value corresponding to the lowest value of the battery voltage is a certain period of time after the check signal is received. In order to extend this to an arbitrary time, inverter 220 in Fig. 1 is replaced with inverter 219 as shown in Fig. 3.
Change to NAND gate 223. Inverter 21
9, add a check signal from terminal 50a,
When a hold signal is applied from terminal 60b to one input of the NAND gate, the hold signal disappears approximately 6.2 seconds after the check signal arrives, but if the check signal is continued to be applied, the check signal is output. During this period, the NAD gate output is at the "1" level, the transistor 222 is made conductive, the normally closed contact 212a of the relay 212 is opened, and the negative peak hold state described above can be maintained. A check signal of arbitrary length can be obtained by providing the operation detecting section 90 with a switch or the like that is unrelated to the operating state of the engine, so that the structure is such that the check start signal can be generated at any arbitrary time.

なお、表示部30は本実施例では電流計を用い
たが、アナログ、デジタルを問わず、また視覚に
限らず音階表現の様に聴覚に訴える報知、その他
人間が識別できるものならどのような手段で表現
するものでも良い。
Although an ammeter is used as the display unit 30 in this embodiment, it may be analog or digital, and may be not only visual but also auditory such as musical scale expression, or any other means that humans can identify. It may also be expressed as

また、第1の実施例の記憶部20において、チ
エツク信号が来ない時はバツテリー電圧に応じた
値を常時出力するようにしたが、バツテリー電圧
の最大値以上に相当する電圧に固定して出力する
ようにしても良い。
In addition, in the storage unit 20 of the first embodiment, a value corresponding to the battery voltage is always output when no check signal is received, but the output is fixed to a voltage corresponding to the maximum value of the battery voltage or more. You may also do this.

また、第2の実施例の記憶部20において、リ
レー218の常閉接点218bには抵抗217を
通してバツテリー端子電圧を加えたが、抵抗21
7の他にバツテリー端子電圧に対応した値を出力
し、電源電圧Vの影響を受けない受動素子網なら
何でも良い。
Furthermore, in the storage unit 20 of the second embodiment, the battery terminal voltage was applied to the normally closed contact 218b of the relay 218 through the resistor 217;
In addition to 7, any passive element network may be used as long as it outputs a value corresponding to the battery terminal voltage and is not affected by the power supply voltage V.

以上述べたように、本発明では、車載エンジン
の作動状態に応じて発生されるチエツク信号を受
けてチエツク信号時限部にて車載バツテリの応答
時間以上の比較的短時間の時限信号を作成し、こ
の時限時間のみ負荷抵抗駆動部にて所定の負荷抵
抗を前記バツテリーに接続させてバツテリーを放
電させているから、運転者に負担をかけることな
く常に適切な時期にバツテリーチエツクができる
と共に、負荷抵抗による発熱をより抑えるように
して、チエツク信号発生時にバツテリー残存容量
の異常低下を検出、報知でき、かつチエツク時に
測定値を一定時間保持できる記憶部を設けている
から、短時間で終わるために感知できないような
バツテリー電圧の変化も容易に、かつ確実に知る
ことができるという効果がある。
As described above, in the present invention, in response to a check signal generated in accordance with the operating state of the vehicle engine, the check signal timer generates a relatively short time signal longer than the response time of the vehicle battery. Only during this time limit, the load resistance drive section connects a predetermined load resistance to the battery to discharge the battery, so the battery can always be checked at an appropriate time without putting any burden on the driver, and the load resistance It is possible to detect and notify an abnormal decrease in the remaining battery capacity when a check signal is generated by further suppressing the heat generated by the check signal, and since it is equipped with a memory unit that can hold the measured value for a certain period of time during the check, the detection can be completed in a short time. This has the advantage that it is possible to easily and reliably detect changes in battery voltage that would otherwise be difficult to detect.

次に、本発明の実施態様として、前記負荷抵抗
を前記バツテリーに接続する時間が比較的短時間
であつても連続して接続させると次第に負荷抵抗
の温度が上昇してこの負荷抵抗が破壊する恐れが
あるが、前記チエツク信号時限部をチエツク後一
定時間経過しないと再度時限信号を発生しないよ
うにしているから、負荷抵抗の破壊を未然に防止
できるようになる。
Next, as an embodiment of the present invention, even if the load resistor is connected to the battery for a relatively short time, if the load resistor is connected continuously, the temperature of the load resistor gradually increases and the load resistor is destroyed. However, since the timer signal is not generated again until a certain period of time has elapsed after checking the check signal timer, it is possible to prevent damage to the load resistor.

また、チエツク時の測定値の保持時間を任意の
時間にできるようにしているから、誤認するよう
なこともなく余裕をもつて正確に知ることができ
るようになる。
In addition, since the holding time of the measured value at the time of checking can be set to an arbitrary time, it is possible to obtain accurate information with plenty of time without any misunderstandings.

また、チエツク時以外のバツテリー電圧に対応
した値を出力できるように構成しているから、バ
ツテリーがあらゆる動作状態で正常かどうかを判
定することができるようになる。
In addition, since it is configured to output a value corresponding to the battery voltage at times other than when checking, it becomes possible to determine whether the battery is normal in any operating state.

さらに、能動素子が動作できないほど回路の電
源電圧が低下した時は受動素子を通して測定値を
出力できるようにしているから、バツテリー電圧
がOV近くまで低下しても正しく値を知ることが
できるようになる。
Furthermore, when the power supply voltage of the circuit drops to such a level that the active elements cannot operate, the measured value can be output through the passive element, so even if the battery voltage drops to near OV, the value can be accurately determined. Become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の第1の実施例を示す電気
結線図、第2図は本発明装置の第2の実施例を示
す電気結線図、第3図は本発明装置の第3の実施
例を示す電気結線図である。 1……車載バツテリー、2……負荷抵抗、10
……定電圧部、20……記憶部、30……表示
部、50……チエツク信号整形部、60……チエ
ツク信号時限部、70……負荷抵抗駆動部、80
……クロツク発振部、90……作動検出部。
Fig. 1 is an electrical wiring diagram showing a first embodiment of the device of the present invention, Fig. 2 is an electrical wiring diagram showing a second embodiment of the device of the invention, and Fig. 3 is a third embodiment of the device of the invention. FIG. 3 is an electrical wiring diagram showing an example. 1... Vehicle battery, 2... Load resistance, 10
... Constant voltage section, 20 ... Storage section, 30 ... Display section, 50 ... Check signal shaping section, 60 ... Check signal time limit section, 70 ... Load resistance drive section, 80
. . . Clock oscillation section, 90 . . . Operation detection section.

Claims (1)

【特許請求の範囲】 1 車載エンジンの作動状態に応じて車載用バツ
テリーのチエツク信号を発生する作動検出部と、
このチエツク信号に応じて前記車載用バツテリー
の応答時間より長い一定短時間の間時限信号を1
回発生するチエツク信号時限部と、このチエツク
信号時限部からの時限信号により前記一定短時間
の間前記車載バツテリーの両端子間に所定の負荷
抵抗を接続させる負荷抵抗駆動部と、前記チエツ
ク信号を受けて作動し前記車載バツテリーの端子
電圧の最低値に対応した値を一定時間保持する記
憶部と、この記憶部の出力を報知する表示部とを
備えることを特徴とする車載用バツテリーチエツ
カー。 2 前記時限信号の終了後一定時間の間は再度前
記チエツク信号が発生しても時限信号を発生させ
ないように前記チエツク信号時限部を構成したこ
とを特徴とする特許請求の範囲第1項記載の車載
用バツテリーチエツカー。 3 前記記憶部において、バツテリー端子電圧の
最低値に対応した値を保持すべき時間を外部操作
に応じて任意に変更できるように構成したことを
特徴とする特許請求の範囲第1項または第2項記
載の車載用バツテリーチエツカー。 4 前記チエツク信号が来ない時は、バツテリー
端子電圧に対応した値を常時出力するように前記
記憶部を構成したことを特徴とする特許請求の範
囲第1項記載の車載用バツテリーチエツカー。 5 能動素子が正常動作できないほど電源電圧が
低下した時、受動素子によりバツテリー端子電圧
に対応した値を出力できるように前記記憶部を構
成したことを特徴とする特許請求の範囲第4項記
載の車載用バツテリーチエツカー。
[Scope of Claims] 1. An operation detection unit that generates a check signal for an on-vehicle battery depending on the operating state of an on-vehicle engine;
In response to this check signal, the timer signal is activated for a certain period of time longer than the response time of the vehicle battery.
a load resistance drive section that connects a predetermined load resistance between both terminals of the vehicle battery for the predetermined period of time according to the time signal from the check signal timer; An on-vehicle battery checker comprising: a memory section that operates in response to the received voltage and holds a value corresponding to the lowest terminal voltage of the on-vehicle battery for a certain period of time; and a display section that notifies the output of the memory section. 2. The check signal timer according to claim 1, wherein the check signal timer is configured so as not to generate the timer signal even if the check signal is generated again for a certain period of time after the end of the timer signal. In-vehicle battery checker. 3. Claims 1 or 2, characterized in that the storage unit is configured to be able to arbitrarily change the time period during which the value corresponding to the lowest value of the battery terminal voltage is to be held in accordance with an external operation. The in-vehicle battery checker described in Section 1. 4. The on-vehicle battery checker according to claim 1, wherein the storage section is configured to always output a value corresponding to the battery terminal voltage when the check signal is not received. 5. The storage unit according to claim 4, wherein the storage unit is configured so that when the power supply voltage drops to such a level that the active element cannot operate normally, the passive element can output a value corresponding to the battery terminal voltage. In-vehicle battery checker.
JP14255478A 1978-11-17 1978-11-17 Automotive battery checker Granted JPS5568835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14255478A JPS5568835A (en) 1978-11-17 1978-11-17 Automotive battery checker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14255478A JPS5568835A (en) 1978-11-17 1978-11-17 Automotive battery checker

Publications (2)

Publication Number Publication Date
JPS5568835A JPS5568835A (en) 1980-05-23
JPS6237347B2 true JPS6237347B2 (en) 1987-08-12

Family

ID=15318034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14255478A Granted JPS5568835A (en) 1978-11-17 1978-11-17 Automotive battery checker

Country Status (1)

Country Link
JP (1) JPS5568835A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186931A (en) * 1981-05-13 1982-11-17 Mitsubishi Heavy Ind Ltd Airboarne battery conditioner
JP2554978Y2 (en) * 1990-11-26 1997-11-19 カシオ計算機株式会社 Battery voltage detector
JP6747926B2 (en) 2015-09-30 2020-08-26 日東電工株式会社 Method for manufacturing spiral type separation membrane element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298933A (en) * 1976-02-14 1977-08-19 Aichi Electric Mfg Detecting device for residual capacity of storage battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298933A (en) * 1976-02-14 1977-08-19 Aichi Electric Mfg Detecting device for residual capacity of storage battery

Also Published As

Publication number Publication date
JPS5568835A (en) 1980-05-23

Similar Documents

Publication Publication Date Title
JPH0255355U (en)
JPS6237347B2 (en)
US4004223A (en) Audible resistance or voltage tester
JPH04352212A (en) Electronic equipment
US4438384A (en) Generation indicating apparatus for vehicle alternators
JP4014995B2 (en) Storage battery deterioration determination method and apparatus
JPS6215148A (en) Diagnostic device for vehicle-mounted battery
JP3508443B2 (en) Battery charge / discharge control device
EP0248849A1 (en) Adaptive switching circuit
JPH0212619Y2 (en)
JPH074595Y2 (en) Insulation resistance tester
JP3048933B2 (en) Charger
JPS6310490Y2 (en)
JP2890804B2 (en) Low voltage detector for automotive battery
JPH0342386Y2 (en)
JPS61145423A (en) Electronic clinical thermometer
JPS59137580U (en) Battery remaining capacity detection device
JPS6234299Y2 (en)
JPH0612579A (en) Device for monitoring removal of electronic equipment
JPS6123804Y2 (en)
JP2001108533A (en) Battery temperature detection circuit
JPS5956575U (en) Insulation resistance screening device for capacitive elements
JPH0640711B2 (en) Peak detection circuit
JPH0225772A (en) Undischarge alarm for insulation tester
JPS63209434A (en) Charger