JPS6236785B2 - - Google Patents

Info

Publication number
JPS6236785B2
JPS6236785B2 JP54099827A JP9982779A JPS6236785B2 JP S6236785 B2 JPS6236785 B2 JP S6236785B2 JP 54099827 A JP54099827 A JP 54099827A JP 9982779 A JP9982779 A JP 9982779A JP S6236785 B2 JPS6236785 B2 JP S6236785B2
Authority
JP
Japan
Prior art keywords
solder
soldering
soldered
solder bath
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54099827A
Other languages
Japanese (ja)
Other versions
JPS5626673A (en
Inventor
Takuya Suzuki
Ikuo Ito
Itaru Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP9982779A priority Critical patent/JPS5626673A/en
Publication of JPS5626673A publication Critical patent/JPS5626673A/en
Publication of JPS6236785B2 publication Critical patent/JPS6236785B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Molten Solder (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 この発明は、被はんだ付材を溶融はんだ浴中に
連続的に浸漬して、はんだ付を行う連続はんだ付
方法に関し、はんだ接合界面に気泡が残存しない
はんだ付を行うことを目的とし、特に極低温下で
熱伝達性を阻害する原因となるはんだ接合界面の
残留気泡を嫌う超電導線とその安定化材とのはん
だ付に用いて効果的である。
[Detailed Description of the Invention] The present invention relates to a continuous soldering method in which a soldering material is continuously immersed in a molten solder bath to perform soldering, and the soldering is performed without leaving any air bubbles at the solder joint interface. It is particularly effective for use in soldering superconducting wires and their stabilizing materials, which avoids residual air bubbles at the solder joint interface that can impede heat transfer at extremely low temperatures.

一般に、浸漬はんだ付は熔融はんだ浴中にフラ
ツクスをつけた被はんだ付材を浸漬してはんだ付
するのであるが、はんだ接合界面の欠陥がフラツ
クスに起因する気泡の発生によるものが多い。超
電導撚線に安定化材をはんだ付する方法を例にと
れば、フラツクス使用の浸漬はんだによるはんだ
付撚線とフラツクスを塗付した安定化材とをはん
だ浴に浸漬する方法、或ははんだ浴に浸漬せずし
て両者を加熱圧着してはんだ付する方法、撚線と
安定化材共にフラツクスを塗付してはんだ浴に浸
漬する方法などがある。然るにこれらの方法はい
づれもフラツクスを使用するのではんだ付部分に
フラツクスの分解による気泡が発生し、その気泡
ははんだ付後冷却に伴なつても大気中に放出し難
く、はんだ接合界面に残存し、ボイドと称されて
はんだ付性能を損うおそれがあつた。
In general, immersion soldering involves immersing a material to be soldered to which flux has been applied in a molten solder bath, and defects at the solder joint interface are often due to the generation of bubbles caused by flux. For example, a method of soldering a stabilizing material to a superconducting stranded wire is a method of immersing a soldering stranded wire using flux-based dip solder and a stabilizing material coated with flux in a solder bath, or There are two methods: one method involves heat-pressing and soldering the two wires without immersing them in a solder bath, and the other method involves applying flux to both the stranded wires and the stabilizing material and then immersing them in a solder bath. However, since these methods all use flux, bubbles are generated in the soldered area due to decomposition of the flux, and these bubbles are difficult to release into the atmosphere even when cooled after soldering and remain at the solder joint interface. , so-called voids, which could impair soldering performance.

この発明は、叙上の如きフラツクスに起因する
気泡の発生を皆無にし、依つて更にはんだ付部の
性能を著るしく改善したはんだ付方法である。即
ち、予め個々にはんだを被覆された複数の被はん
だ付材を、共にはんだ浴面に対して一定の傾斜を
保ちつゝ連続的に浸漬する。この際の被はんだ付
材ははんだ浴に接するまで非酸化性雰囲気を経て
はんだ浴中に斜めに進入する。好ましくは更に被
はんだ付材ははんだ浴に進入接する部分及びその
近傍では超音波振動が加えられる。
The present invention is a soldering method that completely eliminates the generation of bubbles caused by flux as described above, and further significantly improves the performance of the soldered parts. That is, a plurality of materials to be soldered, which have been individually coated with solder in advance, are continuously immersed while maintaining a constant inclination with respect to the solder bath surface. At this time, the material to be soldered diagonally enters the solder bath through a non-oxidizing atmosphere until it comes into contact with the solder bath. Preferably, the material to be soldered is subjected to ultrasonic vibration at a portion where it enters into contact with the solder bath and in the vicinity thereof.

更に図によつて詳細に説明する。第1図は、こ
の発明による連続浸漬はんだ付方法を実施するた
めのはんだ浴に被はんだ付材が連続浸漬されてい
る状態を示す側断面図である。図中1は被はんだ
付材(安定化Cu基材)を示し、2は非酸化性ガ
ス、3は非酸化性ガス2を満した導管、4ははん
だを被覆したもう一方の被はんだ付材(超電導導
体)5は超音波振動子、6ははんだ浴面、7はは
んだ付され一体化した複合超電導導体を示し、8
は熔融はんだを示し、矢印は被はんだ材のはんだ
浴中への進入方向を示す。第2図は溝付安定化
Cu基材1の断面図で11は溝を示す。第3図は
はんだ付され一体化された複合超電導導体7の横
断面の拡大図である。先づ、一方の被はんだ付材
である断面コの字形の安定化Cu基材1の溝内1
1に他方の被はんだ付材である超電導導体4を組
込んだものを溝11の上部を上にして導管3を通
つて熔融はんだ8の中に傾斜を保ち乍ら矢印の方
向に浸漬して行き、安定化Cu基材の表面のはん
だ付着防止被膜10のない溝内では浴面6で被は
んだ材1と4との予め被覆されたはんだが熔融し
はじめ、熔融はんだ8と共に安定化Cu基材1と
超電導導体4との界面においてはんだ付をなす。
この際フラツクスは使用していないのでフラツク
スの分解から生ずる気泡はない。然るに被はんだ
付材の表面に付着せる空気、大気中の空気、非酸
化性雰囲気のガス、などがはんだ浴中に巻き込ま
れ、これらによつて生じた気泡や、或ははんだ浴
自身に含まれているガスなどが被はんだ付材表面
に気泡となつて付着し、これらの気泡が残存した
まゝはんだが固化し、ボイドとなるおそれがあ
る。然るにこの発明では被はんだ付材が溝部11
を上にして傾斜してはんだ浴中に入るため、溝底
から溝表面に向け徐々にはんだ浴に浸漬され、気
泡ははんだ浴の表面から放出し易くなりボイドは
著るしく減少する。尚被はんだ材1と4ははんだ
浴に入る前で熔融はんだの熱により予熱されて酸
化するおそれがあり、酸化膜の生成ははんだ付に
悪影響を及ぼすので該酸化を防ぐために導管3の
中に非酸化性ガス2を通じ、管内を非酸化性雰囲
気にする。又被はんだ付材1と4に予め被覆され
たはんだは既に表面に薄い酸化膜が存在している
状態で浸漬されるからはんだ浴中で超音波振動子
5によつて超音波振動を与え被はんだ付材1と4
の該酸化膜を破り、両者のはんだ付を容易ならし
める。同時にこのときの超音波振動によつて被は
んだ付材に付着していた気泡は完全に排除され
る。非酸化性雰囲気とは窒素ガス、ヘリウムガ
ス、アルゴンガス、炭酸ガス等の非酸化性ガス及
び水素、一酸化炭素、アルコール等の還元性ガス
を単独又は混合して満した雰囲気である。
This will be further explained in detail with reference to the drawings. FIG. 1 is a side sectional view showing a state in which a material to be soldered is continuously immersed in a solder bath for carrying out the continuous immersion soldering method according to the present invention. In the figure, 1 indicates the material to be soldered (stabilized Cu base material), 2 is a non-oxidizing gas, 3 is a conduit filled with non-oxidizing gas 2, and 4 is the other material to be soldered covered with solder. (Superconducting conductor) 5 is an ultrasonic vibrator, 6 is a solder bath surface, 7 is a soldered and integrated composite superconducting conductor, 8
indicates molten solder, and the arrow indicates the direction of entry of the solder material into the solder bath. Figure 2 shows grooved stabilization
In the cross-sectional view of the Cu base material 1, reference numeral 11 indicates a groove. FIG. 3 is an enlarged cross-sectional view of the soldered and integrated composite superconducting conductor 7. First, inside the groove 1 of the stabilized Cu base material 1 having a U-shaped cross section, which is one of the materials to be soldered.
1 with superconducting conductor 4, which is the other material to be soldered, is passed through conduit 3 with the top of groove 11 facing up, and immersed in molten solder 8 in the direction of the arrow while keeping the slope. Then, in the groove where there is no solder adhesion prevention coating 10 on the surface of the stabilized Cu base material, the solder coated in advance on the solder materials 1 and 4 begins to melt at the bath surface 6, and the stabilized Cu base together with the molten solder 8 begins to melt. Soldering is performed at the interface between the material 1 and the superconducting conductor 4.
Since no flux is used at this time, there are no bubbles resulting from decomposition of the flux. However, air adhering to the surface of the soldering material, air in the atmosphere, gas in a non-oxidizing atmosphere, etc. may be drawn into the solder bath, resulting in air bubbles or bubbles contained in the solder bath itself. There is a risk that the gas, etc. attached to the soldering material may form bubbles on the surface of the soldering material, and the solder may solidify while these bubbles remain, resulting in voids. However, in this invention, the material to be soldered is the groove part 11.
Since it enters the solder bath at an angle upward, it is gradually immersed in the solder bath from the bottom of the groove toward the surface of the groove, making it easier for air bubbles to be released from the surface of the solder bath, thereby significantly reducing the number of voids. The solder materials 1 and 4 may be preheated by the heat of the molten solder and oxidized before entering the solder bath, and the formation of an oxide film will have a negative effect on soldering. The inside of the tube is made into a non-oxidizing atmosphere by passing non-oxidizing gas 2. In addition, since the solder coated on the soldering materials 1 and 4 is immersed in a state in which a thin oxide film already exists on the surface, ultrasonic vibrations are applied by the ultrasonic vibrator 5 in the solder bath. Soldering materials 1 and 4
This breaks the oxide film of the two and makes it easier to solder them together. At the same time, the ultrasonic vibrations at this time completely eliminate air bubbles that had adhered to the solder material. The non-oxidizing atmosphere is an atmosphere filled with a non-oxidizing gas such as nitrogen gas, helium gas, argon gas, or carbon dioxide gas, and a reducing gas such as hydrogen, carbon monoxide, or alcohol, either singly or in combination.

次に実施例について述べる。径2.3mmの超電導
素線にはんだめつきを施し、この素線15本から
4.3mm×17.0mmの超電導導体として成形撚線に加
工し、一方縦横12.6mm×27.0mmの純銅に4.5mm×
17.2mmの溝が切られた安定化材の銅条の溝内面に
素線と同様のはんだめつきを施した。この銅条の
溝内に成形撚線を組込み、これらを縦、横、長さ
2.5mm×50mm×500mmのTi角管に挿入し、該管を3/
80の傾斜ではんだ浴に斜めに入る様セツトし、
Ti管の片端から5%H2+N2の非酸化性ガスを吹
込んだ。該銅条のはんだ付速度は500mm/minと
し、はんだ浴より取出し水冷した。この様にして
この発明によるはんだ付をした撚線と銅条の溝内
面とのはんだの付着状況を透過X線で調査した。
その結果は、撚線と銅条との界面に殆んどボイド
はなかつた。さらに本実施例において超音波振動
を付加して行つた場合にはボイドは皆無であつ
た。比較のため、従来のはんだ付方法即ちフラツ
クスを使用し、水平浸漬によつて超音波振動を与
えず上記同様の超電導撚線と安定化材の溝付銅条
をはんだ付したところ、はんだ付部分は撚線界面
や撚線のはんだ付で下側になる撚目や撚線と銅条
との界面に多数のボイドが見られた。更に超音波
振動を付加して上記比較例の方法を行つたがボイ
ドの減少は殆んど認められなかつた。
Next, examples will be described. Soldering is applied to superconducting wires with a diameter of 2.3 mm, and from these 15 wires,
A superconducting conductor measuring 4.3 mm x 17.0 mm was processed into a formed stranded wire, while a pure copper wire measuring 12.6 mm x 27.0 mm in length and width was 4.5 mm x
The inner surface of the groove of the stabilizer copper strip with a 17.2 mm groove was soldered in the same way as the wire. Molded stranded wires are incorporated into the grooves of this copper strip, and these are arranged vertically, horizontally, and lengthwise.
Insert into a 2.5mm x 50mm x 500mm Ti square tube, and connect the tube to 3/
Set it so that it enters the solder bath diagonally at an angle of 80°,
A non-oxidizing gas of 5% H 2 +N 2 was blown into one end of the Ti tube. The soldering speed of the copper strip was 500 mm/min, and it was taken out from the solder bath and cooled with water. In this manner, the state of adhesion of solder between the stranded wire soldered according to the present invention and the inner surface of the groove of the copper strip was investigated using transmitted X-rays.
As a result, there were almost no voids at the interface between the stranded wire and the copper strip. Furthermore, in this example, when ultrasonic vibration was applied, there were no voids. For comparison, when we soldered the same superconducting stranded wire and a grooved copper strip as a stabilizing material using the conventional soldering method, that is, flux, by horizontal immersion without applying ultrasonic vibration, the soldered part A large number of voids were observed at the stranded wire interface, at the lower strands when the stranded wire was soldered, and at the interface between the stranded wire and the copper strip. Furthermore, although the method of the above comparative example was carried out by adding ultrasonic vibration, almost no reduction in voids was observed.

上述せる如く、この発明によれば次の如き効果
を有するものである。
As described above, the present invention has the following effects.

(1) フラツクスを使用しないのでフラツクスに起
因するボイドの発生は皆無である。
(1) Since no flux is used, there are no voids caused by flux.

(2) 被はんだ付材ははんだ浴に傾斜をもつて徐々
に浸漬されるので、該材に付着した気泡は浴面
より放出し易くなり、気泡のはんだ付部残留に
よるボイドの発生を防止する。
(2) Since the material to be soldered is gradually immersed in the solder bath at an angle, air bubbles attached to the material can be easily released from the bath surface, thereby preventing the generation of voids due to air bubbles remaining in the soldered area. .

(3) 被はんだ付材がはんだ浴に接する部分を非酸
化性雰囲気にするため、被はんだ付材の予熱に
よる酸化を防ぎ、はんだ付部のボイド発生を防
ぐ。
(3) Create a non-oxidizing atmosphere in the area where the soldering material comes into contact with the solder bath, thereby preventing oxidation of the soldering material due to preheating and preventing the generation of voids in the soldered area.

(4) 超音波振動を被はんだ付材が熔融はんだに接
する部分に加えるので被はんだ付材の薄い酸化
膜を破り、はんだ付作用を更に有効化し、且は
んだ付界面の気泡の放出を容易にする。
(4) Ultrasonic vibrations are applied to the part where the soldering material contacts the molten solder, which breaks the thin oxide film of the soldering material, making the soldering action more effective, and making it easier to release air bubbles at the soldering interface. do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明に係る連続浸漬はんだ付方
法を実施するための被はんだ付材とはんだ付装置
を示す側断面図である。第2図は溝付安定化材1
の断面図である。第3図は、複合電導導体7の横
断面の拡大図である。 1:被はんだ付材(安定化銅基材)、2:非酸
化性ガス、3:導管、4:被はんだ付材(超電導
導体)、5:超音波振動子、6::はんだ浴面、
7:複合超電導導体、8:熔融はんだ、9:はん
だ付部分、10:はんだ付着防止被膜、11:
溝。
FIG. 1 is a side sectional view showing a soldering material and a soldering device for carrying out the continuous immersion soldering method according to the present invention. Figure 2 shows grooved stabilizing material 1
FIG. FIG. 3 is an enlarged cross-sectional view of the composite conductor 7. FIG. 1: Solderable material (stabilized copper base material), 2: Non-oxidizing gas, 3: Conduit, 4: Solderable material (superconducting conductor), 5: Ultrasonic vibrator, 6: Solder bath surface,
7: Composite superconducting conductor, 8: Molten solder, 9: Soldering part, 10: Solder adhesion prevention coating, 11:
groove.

Claims (1)

【特許請求の範囲】 1 予め個々に、はんだを被覆された複数の被は
んだ付材を、共に溶融はんだの浴面に対して傾斜
を保ちつゝ連続的に浸漬することを特徴とする連
続浸漬はんだ付方法。 2 上記の被はんだ付材をはんだ浴に浸漬するに
当り、該材がはんだ浴面に接する部分を非酸化性
雰囲気に保つことを特徴とする特許請求の範囲第
1項記載の連続浸漬はんだ付方法。 3 上記の被はんだ付材がはんだ浴に浸漬される
に当り、該材が溶融はんだに接する部分を含む近
傍に、超音波振動を加えることを特徴とする特許
請求の範囲第1項または第2項記載の連続浸漬は
んだ付方法。
[Scope of Claims] 1. Continuous immersion characterized by continuously immersing a plurality of materials to be soldered that have been individually coated with solder in advance while maintaining an inclination with respect to the bath surface of molten solder. Soldering method. 2. Continuous immersion soldering according to claim 1, characterized in that when the material to be soldered is immersed in the solder bath, the part of the material in contact with the solder bath surface is maintained in a non-oxidizing atmosphere. Method. 3. Claims 1 or 2, characterized in that, when the material to be soldered is immersed in the solder bath, ultrasonic vibrations are applied to the vicinity of the material, including the portion in contact with the molten solder. Continuous immersion soldering method described in section.
JP9982779A 1979-08-07 1979-08-07 Continuous immersion soldering method Granted JPS5626673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9982779A JPS5626673A (en) 1979-08-07 1979-08-07 Continuous immersion soldering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9982779A JPS5626673A (en) 1979-08-07 1979-08-07 Continuous immersion soldering method

Publications (2)

Publication Number Publication Date
JPS5626673A JPS5626673A (en) 1981-03-14
JPS6236785B2 true JPS6236785B2 (en) 1987-08-08

Family

ID=14257646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9982779A Granted JPS5626673A (en) 1979-08-07 1979-08-07 Continuous immersion soldering method

Country Status (1)

Country Link
JP (1) JPS5626673A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62134168A (en) * 1985-12-04 1987-06-17 Murata Mfg Co Ltd Solder dipping method for resin covered wire
US4994633A (en) * 1988-12-22 1991-02-19 General Atomics Bend-tolerant superconductor cable
US5057489A (en) * 1990-09-21 1991-10-15 General Atomics Multifilamentary superconducting cable with transposition
JP6086852B2 (en) * 2013-09-26 2017-03-01 株式会社フジクラ Oxide superconducting wire, connecting structure of oxide superconducting wire, connecting structure of oxide superconducting wire and electrode terminal, superconducting device including the same, and manufacturing method thereof

Also Published As

Publication number Publication date
JPS5626673A (en) 1981-03-14

Similar Documents

Publication Publication Date Title
US6482535B2 (en) Porous electrode wire for use in electrical discharge machining and method of manufacturing the same
US3842487A (en) Terminating of electrical conductors
JPS5861505A (en) Inorganic insulated electric cable and element of similar type and method of producing same
JPS6236785B2 (en)
JP2004154864A (en) Lead-free soldering alloy
CN111868849A (en) Method for manufacturing insulated superconducting wire
EP0477029A1 (en) Process of producing a hot dipped wire
JPH08199325A (en) Production of tin coated flat square copper wire
JPH1157848A (en) Copper coated aluminum wire manufacture
JP2003166082A (en) Extrafine copper wire for bonding semiconductor element
JP3963067B2 (en) Tinned copper wire
SU1099343A1 (en) Process for stripping and servicing leads of wires with fluoroplastic insulation
JPS59177809A (en) Copper roughly drawing wire by dip forming
JPS6358910B2 (en)
JPH01201453A (en) Manufacture of zirconium-copper wire coated with oxygen-free copper
JPH02138452A (en) Method and device for hot-dipping wire
JP2830502B2 (en) Bonding wire for semiconductor device and method of manufacturing the same
JPH06158201A (en) High strength and high electric conductivity copper alloy
JPS6242707B2 (en)
JPH0617217A (en) Production of hot dipped wire
JPS6115535B2 (en)
JPH032344B2 (en)
JPH02129354A (en) Hot dipping method for wire
JPH02129355A (en) Hot dipping method for wire
JPH0530542B2 (en)