JPS6236668B2 - - Google Patents

Info

Publication number
JPS6236668B2
JPS6236668B2 JP56209266A JP20926681A JPS6236668B2 JP S6236668 B2 JPS6236668 B2 JP S6236668B2 JP 56209266 A JP56209266 A JP 56209266A JP 20926681 A JP20926681 A JP 20926681A JP S6236668 B2 JPS6236668 B2 JP S6236668B2
Authority
JP
Japan
Prior art keywords
acetic acid
starch
polymerization
hydrolyzate
starch hydrolyzate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56209266A
Other languages
Japanese (ja)
Other versions
JPS58111678A (en
Inventor
Jinichi Sato
Toshiro Kurisu
Seiki Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sato Foods Industries Co Ltd
Original Assignee
Sato Foods Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sato Foods Industries Co Ltd filed Critical Sato Foods Industries Co Ltd
Priority to JP56209266A priority Critical patent/JPS58111678A/en
Priority to GB08219829A priority patent/GB2112621A/en
Priority to AU85967/82A priority patent/AU8596782A/en
Priority to FR8212250A priority patent/FR2518874A1/en
Priority to DE19823226282 priority patent/DE3226282A1/en
Publication of JPS58111678A publication Critical patent/JPS58111678A/en
Publication of JPS6236668B2 publication Critical patent/JPS6236668B2/ja
Granted legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/60Salad dressings; Mayonnaise; Ketchup
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/82Acid flavourants

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は酢酸分を主成分とする含酢酸調味液の
粉末化において揮発性成分である酢酸分を高歩留
で、且つ高含度に乾燥粉末中に含有せしめ、しか
も得られる粉末の品質がすぐれる含酢酸調味液の
粉末化法に関するものである。 従来、含酢酸調味液の粉末化法としては特許
929540号に係る方法がすでに知られている。この
方法は含酢酸調味液へデキストリン、糊化せる酸
化澱粉の如き澱粉誘導体の一種或いは二種以上を
主成分とする水溶性物質を添加溶解するに当り、
水溶性物質の量が含酢酸調味液中の水分量の少く
とも70%以上になり、且つ生成混溶液が噴霧可能
な水溶性物質の種類を選択して添加混合し、その
混溶液を可及的低温下に噴霧乾燥することによる
粉末化法であるが、この方法では製造上の噴霧適
性、酢酸分の歩留、製出された粉末の耐固結性、
酢酸分の安定性、溶解性、溶解したものの粘性等
に種々の欠陥があり含酢酸調味液の粉末としてす
ぐれた製品を得ることは困難であつた。即ち、例
えば酢酸分を少くとも10%以上の高含度に粉末中
に含有せしめた製品の固結現象を生じさせないた
めには高分子のデキストリンや酸化澱粉を使用す
るとよいが、これらは本質的に粘性がたかく、酢
酸水溶液中の水分量に対して少くとも70%以上溶
解するとますます粘性がたかくなり、噴霧操作が
きわめて困難となり、しかも得られた製品も水に
とかして使用する時粘性がたかく用途面で種々の
障害になつており、また、酢酸分の歩留、酢酸分
の安定性、耐固結性などの品質も必ずしもすぐれ
ていなかつた。なおまた、酸化澱粉は冷水不溶の
澱粉であるため噴霧乾燥前の混溶液の作成におい
て非常に不便であつた。 そこで、本発明者らは、先に、これらの欠点を
改善するために澱粉加水分解物を用い、澱粉の加
水分解の程度によつて種々である澱粉加水分解物
のなかで、一般に澱粉加水分解物の性状を表わす
とされているDE値を規制することによつて高歩
留で高品質の含酢酸調味液粉末の製造を試みたの
であるが、製品の酢酸分の歩留及び品質にばらつ
きがみられ満足する結果を得ることが出来なかつ
た。例えば経験的に良いと思われたDE14前後の
澱粉加水分解物を各種調製し、それぞれによつて
含酢酸調味液粉末を製造してみたが、同じDE14
前後のものを使用したにもかかわらず製品の酢酸
分の歩留においてばらつき、しかも酢酸分の安定
性、耐固結性、溶解性等の品質においてもばらつ
くということが判つたのである。 更に、本発明者らは含酢酸調味液粉末の製造上
の多くの欠点を改善すべくDE値を脱却して研究
をすすめたところ、各段階のグルコース重合度を
もつ糖質により構成される澱粉加水分解物のなか
で、グルコース重合度1〜3のものは粉末化基
材・酢酸・水の三主要成分からなる混合液の乾燥
において全く粉末化基材としての性能を有しない
こと、またおおよそグルコース重合度4〜5のも
のは粉末化基材としての性能に著しく劣ること、
並びに、これらのグルコース重合度5以下のも
の、特にグルコース重合度3以下のものの澱粉加
水分解物中に占める割合がふえる程、これに比例
して乾燥性、酢酸分の歩留及び品質に劣化傾向が
みられることが判つた。また一方グルコース重合
度がおおよそ6以上のものにおいてはその重合度
が大になる程酢酸分の粉末化基材としての性能が
たかまり製出された粉末の耐固結性などの保存安
定性も高まるが、その重合度があまり大きくなる
と粘度がまし噴霧処理に支障を来たすようにな
り、また、粘度を下げるために水を加える(水に
対する澱粉加水分解物の添加量を減らす)と歩留
が低下するため、グルコース重合度の大きさに限
界のあることが判り、用いる澱粉加水分解物の重
合度の範囲はグルコースの平均重合度としておお
よそ6〜18が好適であることが判つた。即ち、含
酢酸調味液に澱粉加水分解物を添加混合し、この
得られる混溶液を噴霧乾燥するにあたり、含酢酸
調味液粉末の酢酸分の歩留及び品質は澱粉加水分
解物のグルコース重合度に左右されるもので、グ
ルコース重合度が5以下のオリゴ糖類の占める割
合が20%以下で、しかもグルコース重合度が3以
下の糖類は7%以下であり、かつ全体のグルコー
ス重合度の平均が6〜18で構成される澱粉加水分
解物を選択して用いれば酢酸分を少くとも10%以
上含有する高含度の含酢酸調味液の粉末を酢酸分
の歩留が少くとも70%以上の高歩留で、且つすぐ
れた品質の含酢酸調味液の粉末を得るに効果的で
あることを知つた。更にまた、本発明者らは研究
をすすめた結果グルコース重合度の構成が上記範
囲内においてグルコース重合の仕方が特殊であ
る、即ち環状に重合した環状オリゴ糖類やアミロ
ペクチンからなる澱粉類を比較的軽度に加水分解
したものを単独に、或いは他の澱粉加水分解物と
併用して用いると好適であることも分つた。 本発明は、これらの知見により完成されたもの
で、グルコース重合度が5以下のオリゴ糖が20%
以下で、かつグルコース重合度が3以下のオリゴ
糖が7%以下である澱粉加水分解物を、含酢酸調
味液に対して含酢酸調味液中の水分量の70%以上
になるように添加混合せしめ、噴霧乾燥すること
を特徴とする含酢酸調味液の粉末化法である。 本発明において使用する澱粉加水分解物のより
好ましいものは、澱粉加水分解物が、平均重合度
6乃至18であり、かつ50%濃度で40℃水溶液にお
ける粘度が300cps以下であり、グルコース重合
度が5以下のオリゴ糖が15%以下で、かつグルコ
ース重合度3以下のオリゴ糖が5%以下のもので
ある。 また、本発明において使用する澱粉加水分解物
は、 a アミロペクチン及びアミロースからなる澱粉
類の加水分解物 b アミロペクチンからなる澱粉類の加水分解物 c 環状オリゴ糖を含有するところの、アミロペ
クチン及びアミロースからなる澱粉類の加水分
解物 d 環状オリゴ糖を含有するところの、アミロペ
クチンからなる澱粉類の加水分解物 以上a、b、c及びdからなる群から選択され
た1種又は2種以上の混合物である。 また、本発明において使用する澱粉加水分解物
は、α、β又はγ環状オリゴ糖を含有せしめてな
るものであつてもよい。 なお、本発明で云う平均重合度は環状オリゴ糖
類を含まない澱粉加水分解物の場合は澱粉加水分
解物の全体量を澱粉加水分解物中の還元糖量で除
した数値に基くものであり、環状オリゴ糖を含む
澱粉加水分解物にあつては環状オリゴ糖の重合度
の平均値に環状オリゴ糖が澱粉加水分解物中に占
める割合を乗じたものと非環状部分の上記方法に
よつてもとめた平均重合度に非環状部分が澱粉加
水分解物中に占める割合を乗じたものとの合計数
値に基づくものである。また、Gはグルコースを
示し、その後の数は重合度を示しており、例えば
G1はグルコース、G2はマルトース、G3はマルト
トリオース、G4は重合度4のオリゴ糖、G9〜n
重合度9以上の糖を示すものである。 本発明で使用する澱粉加水分解物において、通
常のアミロペクチン及びアミロースからなる澱粉
類を加水分解してグルコース重合度5以下のもの
が20%以下で、しかもグルコース重合度3以下の
ものが7%以下であり、且つ平均重合度が6〜18
である澱粉加水分解物を得る方法として以下のよ
うな方法をとるものであるが、これらの方法によ
り得られたものを単一に用いてもよく、また組合
せ使用してもよいものである。なおまたこれら以
外の方法によつて得られる澱粉加水分解物でも本
発明の使用目的に合致するものであればよい。 〔A〕 常法により酵素または酸により加水分解
された澱粉加水分解物(主として酵素または酸
により加水分解されたDE6〜20の澱粉加水分解
物を用いるのが好ましい)をアルコール水を用
いて分画し、上記範囲のグルコース重合度構成
になるように不要部分を分離除去する方法。 〔B〕澱粉を特殊に2段液化すること(澱粉類
を二段液化するにあたり、第一段階の分解液の
DEが3に至る範囲で一旦加熱蒸煮し、第二段
階でα−アミラーゼを加えてDEが約6〜16ま
で加水分解する)により澱粉加水分解物を得る
方法。 〔C〕 常法により得られた澱粉加水分解物(主
として酵素により加水分解されたDEが約10〜
20の澱粉加水分解物を用いるのが好ましい)の
グルコース、マルトース及びマルトトリオース
を酵母菌等の微生物で資化させる方法。 次に本発明においてはグルコースの平均重合度
が6〜18で構成され、グルコース重合度5以下の
ものが20%以下、グルコース重合度3以下のもの
が7%以下である澱粉加水分解物を粉末化基材と
して用いるにあたり、特に(I)澱粉類を特殊に
加水分解して得られる重合度6〜8の環状オリゴ
糖類、(II)アミロペクチンからなる澱粉類を加
水分解して得られる平均重合度6〜50の澱粉加水
分解物を単独に或いは(III)通常の澱粉類を加水
分解して得られる平均重合度6〜18の澱粉加水分
解物などと組合せ使用する、即ち(I)+(II)、
(I)+(III)、(II)+(III)、又は(I)+(II)+
(III)という特定の組合せにより併用することを
特徴とするものでありこれによりその所期の目的
の効果を更に高めることができる。 これらの特定の澱粉加水分解物の各性質及びこ
れらの組合せについて記述すれば次の通りであ
る。 (I) 環状オリゴ糖について: 糊化または液化せる澱粉に環状オリゴ糖生成
酵素を作用させて得られるグルコースが6、7
或いは8のオリゴ糖が環状構造をつくつた環状
オリゴ糖(重合度6〜8)と非環状澱粉加水分
解物とからなる澱粉加水分解物(環状オリゴ糖
(I)+非環状澱粉加水分解物(II)の混合物)
は酢酸水への混合溶解は容易であり粘性も少な
いためにこれを酢酸水に添加混合せしめ得られ
た混溶液を噴霧乾燥せしめたところ、まずは噴
霧工程において混溶液の粘性が低いために噴霧
適性がよく、しかも本発明の基本的技術の一つ
である酢酸水中への水分量に対する粉末化基材
の添加量を70%以上の可及的多量にすることの
技術を一層高めることが可能となり、製出され
た粉末の酢酸分の歩留は向上した。また、製出
された酢酸含有粉末の保存安定性も非常にすぐ
れていることが判明した。 糊化または液化せる澱粉に環状オリゴ糖生成
酵素を作用させて得られる環状オリゴ糖を含有
する澱粉加水分解物を分離精製して得られるグ
ルコース重合度6、7及び8の環状オリゴ糖は
酢酸水への溶解度が低いので単独に粉末化基材
として使用することができないが、本発明の主
旨にそつて澱粉を加水分解した澱粉加水分解物
(III)、特定にアミロペクチンからなる澱粉を加
水分解した澱粉加水分解物(II)、澱粉に環状
オリゴ糖生成酵素を作用させて得られる環状オ
リゴ糖と非環状澱粉加水分解物の混合物(I+
II)のうち1種または2種以上と併用して環状
オリゴ糖が混合溶解しうる範囲内及び混合物の
平均重合度が6〜18になる範囲内において用い
れば本発明の目的を達成できるものであり、本
発明の粉末化基材として環状オリゴ糖類の使用
量は環状オリゴ糖が溶解しうる範囲内で使用す
るものであるが、粉末化基材中におおよそ5%
以上が好ましい。 (II) アミロペクチンからなる澱粉類を加水分解
して得られる澱粉加水分解物について: モチトウモロコシ澱粉やモチ米澱粉のような
アミロペクチンからなる澱粉類をα−アミラー
ゼを用いて加水分解していくとアミロペクチン
重合体のα−1・4グルコシド結合部分から切
れていくが、初期の段階ではまずアミロペクチ
ンの直鎖状部中間位置からの分解がはじまり、
分枝状重合構造を残しつつ次第に小さい重合体
に変化していくものである。アミロペクチンの
α−アミラーゼによる加水分解物は平均重合度
50〜70前後において急激な粘度の低下をはじめ
るが、平均重合度6〜50の範囲においてアミロ
ース及びアミロペクチン含有の通常の澱粉類の
加水分解物に較べて粘性が低く、酢酸水への混
合溶解性がよく、老化性のないものである。 本発明ではこの平均重合度6〜50に加水分解
したアミロペクチンの澱粉加水分解物(II)を
用いるに当り、これを粉末化基材として単独に
用いる場合は平均重合度が6〜18で糖組成がグ
ルコース重合度5以下のものが20%以下、グル
コース重合度3以下のものが7%以下の範囲に
あるものを選択して用いるが、この範囲におい
てはアミロペクチンの分枝状構造が確保され、
アミローズ含有澱粉類を同程度に加水分解した
ものよりも粘度が低いため噴霧状況がよく、且
つ酢酸水に対して濃厚に混合できるため酢酸分
の歩留がよく製出された粉末の保存安定性もす
ぐれたものとなる。また、このアミロペクチン
由来の澱粉加水分解物を他の澱粉加水分解物と
組合せ使用する場合は平均重合度6〜50に加水
分解したもののうち主として平均重合度10〜50
のものを用いるが、通常の澱粉を加水分解した
澱粉加水分解物(III)、環状オリゴ糖(I)、環
状オリゴ糖(I)と非環状澱粉加水分解物
(III)の混合物の1種または2種以上と併用す
るにあたり粉末化基材として平均重合度が6
〜18で、グルコース重合度が5以下のオリゴ糖
が20%以下で、かつ、グルコース重合度が3以
下のオリゴ糖が7%以下であれば本発明の所期
の目的を達成できるものである。 なお、本発明においては、アラビアガム、ゼ
ラチン、CMCなどの高分子水溶性物質を加え
てもよいものである。 本発明においては、上述の澱粉加水分解物が
含酢酸調味液に対して含酢酸調味液中の水分量
の70%以上200%までの範囲内において添加混
合せしめられ、次いで噴霧乾燥されるものであ
る。 本発明で用いられる含酢酸調味液は米酢、粕
酢、酒精酢、麦芽酢、ブドー酒酢、リンゴ酢、
合成酢、ソース、酢酸水溶液またはこれらの濃
縮液、酢酸添加液、加工処理液など酢酸分を主
成分とする酸性調味料から選ばれたものであ
る。 また本発明においては含酢酸調味液を粉末化
するにあたり、酢酸分以外の各種香気成分も同
様に粉末化されるものであるが、上記醸造酢な
どの持つ低沸点の香気成分の歩留(香気保持
率)は酢酸分の歩留と殆ど比例するので香気成
分を得るためには酢酸分の歩留向上が極めて重
大となるのである。 次に本発明の試験例及び実施例を示す。 試験例 1 表1に示す分析値を有する試料A、B、C、
D、E、F、G、H及びIの澱粉加水分解物(乾
燥物)を用いて表2に示すように澱粉加水分解物
100部及び酢酸25部に対する水の量が各段階であ
る混溶液(40℃)を作成し、この混溶液を噴霧直
前にプレートヒーターで60℃に加温しながらチヤ
ンバー温度87℃の条件で噴霧乾燥する実験を行つ
たところ表2に示すような状況で含酢酸粉末を得
た。なお、試料として用いた澱粉加水分解物は次
のような方法で得られたものである。 試料A:酸−酵素により加水分解されたDE17.9
の市販澱粉加水分解物。 試料B:酵素−酵素により加水分解された
DE14.5の市販澱粉加水分解物。 試料C:コーンスターチの澱粉乳液にα−アミラ
ーゼを加え加熱加水分解せしめ、DEが1.5に達
したとき分解液を130℃まで加熱して10分間保
つた後冷却し、再びα−アミラーゼを加え
DE16.8まで加水分解してから、この得られる
分解液中のグルコース、マルトース及びマルト
トリオースを酵母菌により資化させて調製した
DE14.1の澱粉加水分解物。 試料D:酸により加水分解されたDE13.9の市販
澱粉加水分解物。 試料E:コーンスターチの澱粉乳液をα−アミラ
ーゼを用いて試料Cと同様にして2段分解する
にあたり、第一段階でDE1.5まで分解し、第二
段階でDE11まで加水分解して調製した澱粉加
水分解物。 試料F:試料Eと同様にして第二段階でDE8.2ま
で加水分解し調製した澱粉加水分解物。 試料G:試料Eと同様にして第二段階でDE6.4ま
で加水分解し調製した澱粉加水分解物。 試料H:試料Eと同様にして第二段階でDE5.6ま
で加水分解し調製した澱粉加水分解物。 試料I:試料Eと同様にして第二段階でDE4.5ま
で加水分解し調製した澱粉加水分解物。 次に市販グルコース、市販マルトース(マルト
ース95%、グルコース5%の糖組成)、プルラン
(林原K.K.プルランPF−10)をプルラナーゼ
(天野製薬K.K.KC20−L)で分解し調製したマ
ルトトリオース(マルトトリオース90%、マルト
ヘキサオース5%の糖組成)及び前記試料Aの澱
粉加水分解物よりグルコース、マルトース、マル
トトリオースの一部を酵母菌により資化させて後
更にアルコール水により分画調製したマルトテト
ラオースとマルトペンタオースが主体である澱粉
加水分解物(G10.4%、G21.3%、G315.4%、
G425.2%、G520.6%、G615.8%、G79.5%、G84.2
%、G9〜n7.6%)を用いて表3に示す混溶液を
作成し、チヤンバー温度87℃の条件で噴霧乾燥し
たところ表3に示すような結果を得た。 なお、本発明における糖組成、粘度並びに酢酸
分の歩留の算出方法は次の通りである。 糖組成:液体クロマトグラフを使用し、カラムに
はPNH2−10/S2504(島津製作所K.K.)、移動
相にはアセトニトリル−水系を用い、検出器に
は示差屈折計を用いて定性定量した。 粘度:澱粉加水分解物の水溶液の粘度は試料500
gを水500gに溶解し、40℃における粘度を円
筒型回転粘度計にて測定した。なお、乾燥前の
混溶液の粘度は40℃における粘度を同様にして
測定した。 酢酸分の歩留算出法:使用した酢酸量(A)、使用し
た澱粉加水分解物(固形分)量(B)、製出された
含酢酸粉末中の固形分%(C)、製出された含酢酸
粉末中の酢酸分%(D)とすると酢酸分歩留(残存
率)%= B/C×D×100/Aで算出する。
The present invention is capable of containing acetic acid, which is a volatile component, in a high yield and in a high content in a dry powder when powdering an acetic acid-containing seasoning liquid containing acetic acid as a main component, and also improves the quality of the obtained powder. This invention relates to an excellent method of powderizing acetic acid-containing seasoning liquid. Previously, the method for powderizing acetic acid-containing seasoning liquid was patented.
The method according to No. 929540 is already known. This method involves adding and dissolving a water-soluble substance containing one or more starch derivatives such as dextrin and gelatinizable oxidized starch as main components to an acetic acid-containing seasoning solution.
The amount of water-soluble substances is at least 70% of the water content in the acetic acid-containing seasoning liquid, and the types of water-soluble substances that can be sprayed are selected and mixed, and the mixed solution is made as much as possible. This is a powdering method by spray drying at a relatively low temperature, but this method has several issues such as spray suitability during manufacturing, acetic acid content retention, caking resistance of the produced powder,
It has been difficult to obtain an excellent acetic acid-containing seasoning powder as a powder due to various defects in the stability, solubility, and viscosity of the acetic acid content. In other words, for example, in order to prevent the caking phenomenon of products containing acetic acid at a high content of at least 10%, it is recommended to use polymeric dextrin or oxidized starch, but these are essentially has a high viscosity, and when it dissolves at least 70% of the water content in the acetic acid aqueous solution, it becomes even more viscous, making spraying extremely difficult, and the resulting product also becomes viscous when used after being dissolved in water. This has caused various problems in terms of usage, and the quality of acetic acid content such as yield, stability of acetic acid content, and caking resistance has not always been excellent. Furthermore, since oxidized starch is a starch that is insoluble in cold water, it is very inconvenient to prepare a mixed solution before spray drying. Therefore, the present inventors first used starch hydrolysates to improve these drawbacks, and among starch hydrolysates that vary depending on the degree of starch hydrolysis, starch hydrolysates are generally used. They attempted to produce high-yield, high-quality acetic acid-containing seasoning liquid powder by regulating the DE value, which is said to indicate the properties of a product, but the yield and quality of the acetic acid content of the product varied. However, it was not possible to obtain satisfactory results. For example, we prepared various starch hydrolysates with a DE of around 14 , which were considered to be good based on experience, and tried producing acetic acid-containing seasoning liquid powder using each, but the same DE 14
It was found that even though the previous and previous products were used, the yield of acetic acid content in the product varied, and the quality of the acetic acid content, such as stability, caking resistance, and solubility, also varied. Furthermore, in order to improve the many drawbacks in the production of acetic acid-containing seasoning liquid powder, the present inventors conducted research to overcome the DE value and found that starch composed of carbohydrates with various degrees of glucose polymerization was obtained. Among the hydrolysates, glucose with a degree of polymerization of 1 to 3 has no performance as a powdered base material at all in drying a mixed solution consisting of the three main components of powdered base material, acetic acid, and water, and approximately Glucose with a degree of polymerization of 4 to 5 has significantly inferior performance as a powdered base material;
In addition, as the proportion of these glucose polymerization degrees of 5 or less, especially glucose polymerization of 3 or less, in the starch hydrolyzate increases, the drying properties, acetic acid content retention, and quality tend to deteriorate in proportion to this. was found to be visible. On the other hand, in cases where the degree of glucose polymerization is approximately 6 or more, the higher the degree of polymerization, the higher the performance of the acetic acid content as a powder base material, and the greater the storage stability such as the caking resistance of the produced powder. However, if the degree of polymerization becomes too large, the viscosity will increase and cause trouble in spraying, and adding water to lower the viscosity (reducing the amount of starch hydrolyzate added to water) will reduce the yield. Therefore, it was found that there is a limit to the degree of glucose polymerization, and it was found that the suitable range of the degree of polymerization of the starch hydrolyzate used is approximately 6 to 18 as the average degree of polymerization of glucose. That is, when a starch hydrolyzate is added to and mixed with an acetic acid-containing seasoning liquid and the resulting mixed solution is spray-dried, the acetic acid content retention and quality of the acetic acid-containing seasoning liquid powder depend on the degree of glucose polymerization of the starch hydrolyzate. The proportion of oligosaccharides with a degree of glucose polymerization of 5 or less is 20% or less, the proportion of saccharides with a degree of glucose polymerization of 3 or less is 7% or less, and the average degree of glucose polymerization of the whole is 6. If a starch hydrolyzate composed of ~18 is selected and used, a high acetic acid seasoning liquid powder containing at least 10% of acetic acid can be produced with a high acetic acid content of at least 70%. It has been found that this method is effective in obtaining acetic acid-containing seasoning liquid powder with low yield and excellent quality. Furthermore, the present inventors conducted research and found that within the above-mentioned range of glucose polymerization degree composition, the way of glucose polymerization is special, that is, starch consisting of cyclic oligosaccharides and amylopectin polymerized in a cyclic manner is relatively mild. It has also been found that it is suitable to use starch hydrolyzed alone or in combination with other starch hydrolysates. The present invention was completed based on these findings, and contains 20% oligosaccharides with a degree of glucose polymerization of 5 or less.
A starch hydrolyzate containing the following and containing 7% or less of oligosaccharides with a degree of glucose polymerization of 3 or less is added to the acetic acid-containing seasoning solution and mixed so that the water content in the acetic acid-containing seasoning solution is 70% or more of the water content in the acetic acid-containing seasoning solution. This is a method of powderizing an acetic acid-containing seasoning liquid, which is characterized by drying and spray-drying. More preferably, the starch hydrolyzate used in the present invention has an average degree of polymerization of 6 to 18, a viscosity of 300 cps or less in an aqueous solution at 40°C at 50% concentration, and a degree of glucose polymerization of 15% or less of oligosaccharides with a glucose polymerization degree of 3 or less, and 5% or less of oligosaccharides with a degree of glucose polymerization of 3 or less. In addition, the starch hydrolyzate used in the present invention is: a) a hydrolyzate of starch consisting of amylopectin and amylose; b) a hydrolyzate of starch consisting of amylopectin; c) a hydrolyzate of starch consisting of amylopectin and amylose containing cyclic oligosaccharides; A hydrolyzate of starch consisting of amylopectin containing a cyclic oligosaccharide A hydrolyzate of starch consisting of amylopectin containing a cyclic oligosaccharide A hydrolyzate of starch consisting of one or more types selected from the group consisting of a, b, c and d. It is a mixture. Furthermore, the starch hydrolyzate used in the present invention may contain α, β, or γ cyclic oligosaccharides. In addition, in the case of a starch hydrolyzate that does not contain cyclic oligosaccharides, the average degree of polymerization referred to in the present invention is based on the value obtained by dividing the total amount of the starch hydrolyzate by the amount of reducing sugar in the starch hydrolyzate. In the case of starch hydrolyzate containing cyclic oligosaccharides, the average value of the degree of polymerization of cyclic oligosaccharides multiplied by the proportion of cyclic oligosaccharides in the starch hydrolyzate and the non-cyclic portion can be determined by the above method. It is based on the total value of the average degree of polymerization multiplied by the proportion of the acyclic portion in the starch hydrolyzate. In addition, G represents glucose, and the number after that represents the degree of polymerization, for example
G1 is glucose, G2 is maltose, G3 is maltotriose, G4 is an oligosaccharide with a degree of polymerization of 4, and G9 to n are sugars with a degree of polymerization of 9 or more. In the starch hydrolyzate used in the present invention, when starch consisting of normal amylopectin and amylose is hydrolyzed, 20% or less has a glucose polymerization degree of 5 or less, and 7% or less has a glucose polymerization degree of 3 or less. and the average degree of polymerization is 6 to 18
The following methods are used to obtain the starch hydrolyzate, and the products obtained by these methods may be used singly or in combination. Furthermore, starch hydrolysates obtained by methods other than these may also be used as long as they meet the purpose of use of the present invention. [A] Starch hydrolyzate hydrolyzed with an enzyme or acid in a conventional manner (it is preferable to use a starch hydrolyzate with a DE6 to 20 that has been hydrolyzed mainly with an enzyme or acid) and fractionated using alcoholic water. A method in which unnecessary portions are separated and removed so that the glucose polymerization degree composition falls within the above range. [B] Special two-stage liquefaction of starch (in two-stage liquefaction of starches, the decomposition liquid of the first stage is
A method of obtaining a starch hydrolyzate by first heating and steaming until the DE reaches 3, and in the second step, adding α-amylase to hydrolyze the starch to a DE of about 6 to 16. [C] Starch hydrolyzate obtained by conventional methods (mainly enzyme-hydrolyzed DE of about 10~
A method of assimilating glucose, maltose, and maltotriose (preferably using a starch hydrolyzate of 20%) using microorganisms such as yeast. Next, in the present invention, a starch hydrolyzate having an average degree of polymerization of glucose of 6 to 18, 20% or less of glucose with a degree of polymerization of 5 or less, and 7% or less of glucose with a degree of polymerization of 3 or less is powdered. When used as a base material, in particular (I) a cyclic oligosaccharide with a degree of polymerization of 6 to 8 obtained by special hydrolysis of starch, and (II) an average degree of polymerization obtained by hydrolyzing starch consisting of amylopectin. A starch hydrolyzate having a polymerization degree of 6 to 50 is used alone or in combination with (III) a starch hydrolyzate having an average degree of polymerization of 6 to 18 obtained by hydrolyzing ordinary starches, that is, (I) + (II). ),
(I)+(III), (II)+(III), or (I)+(II)+
It is characterized in that it is used in combination with the specific combination (III), which can further enhance the intended effect. The properties of these specific starch hydrolysates and their combinations are described below. (I) Regarding cyclic oligosaccharides: Glucose obtained by applying a cyclic oligosaccharide producing enzyme to starch that is gelatinized or liquefied is 6 to 7
Alternatively, a starch hydrolyzate (cyclic oligosaccharide) consisting of a cyclic oligosaccharide (degree of polymerization 6 to 8) in which 8 oligosaccharides form a cyclic structure and an acyclic starch hydrolyzate
(I) + acyclic starch hydrolyzate (II) mixture)
Since it is easy to mix and dissolve in acetic acid water and has low viscosity, we added it to acetic acid water and mixed it, and the resulting mixed solution was spray-dried. It has good suitability, and furthermore, it is possible to further improve the technology of increasing the amount of powdered base material added to the water content in acetic acid water as much as possible, at least 70%, which is one of the basic techniques of the present invention. As a result, the yield of acetic acid in the produced powder improved. It was also found that the acetic acid-containing powder produced had excellent storage stability. Cyclic oligosaccharides with glucose polymerization degrees of 6, 7, and 8 obtained by separating and refining a starch hydrolyzate containing cyclic oligosaccharides obtained by applying a cyclic oligosaccharide-producing enzyme to starch to be gelatinized or liquefied are treated with acetic acid. Although it cannot be used alone as a powder base material because of its low solubility in water, it is a starch hydrolyzate obtained by hydrolyzing starch in accordance with the spirit of the present invention.
(III), starch hydrolyzate (II) obtained by hydrolyzing starch specifically composed of amylopectin, and a mixture of cyclic oligosaccharides and acyclic starch hydrolyzate obtained by reacting starch with a cyclic oligosaccharide-forming enzyme ( I+
The object of the present invention can be achieved if used in combination with one or more of II) within a range where cyclic oligosaccharides can be mixed and dissolved and within a range where the average degree of polymerization of the mixture is 6 to 18. Therefore, the amount of cyclic oligosaccharide used as the powdered base material of the present invention is within the range in which the cyclic oligosaccharide can be dissolved, but it is approximately 5% in the powdered base material.
The above is preferable. (II) Regarding starch hydrolysates obtained by hydrolyzing starches consisting of amylopectin: When starches consisting of amylopectin, such as waxy corn starch and waxy rice starch, are hydrolyzed using α-amylase. The amylopectin polymer breaks down from the α-1,4 glucoside bond, but in the early stages, the decomposition starts from the middle position of the linear part of amylopectin.
It gradually changes into a smaller polymer while retaining its branched polymer structure. The hydrolyzate of amylopectin by α-amylase has an average degree of polymerization.
The viscosity begins to drop rapidly at around 50 to 70 degrees, but in the average polymerization degree range of 6 to 50, the viscosity is lower than that of ordinary starch hydrolysates containing amylose and amylopectin, and it is difficult to dissolve in acetic acid water. It has good mixing solubility and is non-aging. In the present invention, when using starch hydrolyzate (II) of amylopectin hydrolyzed to an average degree of polymerization of 6 to 50, when this is used alone as a powder base material, the average degree of polymerization is 6 to 18 and the sugar composition is The branched structure of amylopectin is selected and used within the range of 20% or less with a glucose polymerization degree of 5 or less, and 7% or less with a glucose polymerization degree of 3 or less. secured,
It has a lower viscosity than amylose-containing starches that have been hydrolyzed to the same degree, so it is easier to spray, and it can be mixed thickly with acetic acid water, so the yield of acetic acid content is high and the produced powder is stable in storage. The sex will also be excellent. In addition, when using this starch hydrolyzate derived from amylopectin in combination with other starch hydrolysates, the starch hydrolyzate derived from amylopectin should be mainly used with an average degree of polymerization of 10 to 50 among those hydrolyzed to an average degree of polymerization of 6 to 50.
Starch hydrolyzate (III), cyclic oligosaccharide (I), cyclic oligosaccharide (I) and acyclic starch hydrolyzate are used.
When used in combination with one or more of the mixtures in (III), the average degree of polymerization is 6 as a powder base material.
~18, the intended purpose of the present invention can be achieved if the oligosaccharides with a glucose polymerization degree of 5 or less are 20% or less, and the oligosaccharides with a glucose polymerization degree of 3 or less are 7% or less. be. In the present invention, water-soluble polymeric substances such as gum arabic, gelatin, and CMC may be added. In the present invention, the above-mentioned starch hydrolyzate is added to and mixed with an acetic acid-containing seasoning solution within a range of 70% to 200% of the water content in the acetic acid-containing seasoning solution, and then spray-dried. It is. The acetic acid-containing seasoning liquid used in the present invention is rice vinegar, lees vinegar, alcoholic vinegar, malt vinegar, grape vinegar, apple cider vinegar,
Acidic seasonings containing acetic acid as a main component, such as synthetic vinegar, sauces, aqueous acetic acid solutions, their concentrates, acetic acid-added solutions, and processing solutions. In addition, in the present invention, when powdering the acetic acid-containing seasoning liquid, various aroma components other than acetic acid are also powdered, but the yield of low-boiling aroma components such as the above-mentioned brewed vinegar ( Since the aroma retention rate is almost proportional to the yield of acetic acid, improving the yield of acetic acid is extremely important in order to obtain aroma components. Next, test examples and examples of the present invention will be shown. Test Example 1 Samples A, B, C, having the analysis values shown in Table 1,
Using the starch hydrolysates (dry products) of D, E, F, G, H and I, starch hydrolysates were prepared as shown in Table 2.
Prepare a mixed solution (40°C) with different amounts of water for 100 parts and 25 parts of acetic acid, and spray this mixed solution at a chamber temperature of 87°C while heating it to 60°C with a plate heater just before spraying. When a drying experiment was conducted, acetic acid-containing powder was obtained under the conditions shown in Table 2. The starch hydrolyzate used as a sample was obtained by the following method. Sample A: DE17.9 hydrolyzed by acid-enzyme
commercially available starch hydrolyzate. Sample B: Enzyme - hydrolyzed by the enzyme
Commercial starch hydrolyzate with DE14.5. Sample C: Add α-amylase to a starch emulsion of cornstarch and heat to hydrolyze it. When the DE reached 1.5, the decomposition solution was heated to 130°C, kept for 10 minutes, cooled, and α-amylase was added again.
After hydrolysis to DE16.8, the glucose, maltose, and maltotriose in the resulting decomposition solution were assimilated by yeast.
Starch hydrolyzate of DE14.1. Sample D: Commercially available starch hydrolyzate with DE13.9 hydrolyzed with acid. Sample E: Prepared by decomposing cornstarch starch emulsion in two steps using α-amylase in the same manner as sample C, decomposing it to DE1.5 in the first step and hydrolyzing it to DE11 in the second step. starch hydrolyzate. Sample F: A starch hydrolyzate prepared in the same manner as Sample E by hydrolyzing it to DE8.2 in the second step. Sample G: A starch hydrolyzate prepared in the same manner as Sample E by hydrolyzing it to DE6.4 in the second step. Sample H: A starch hydrolyzate prepared in the same manner as Sample E by hydrolyzing it to DE5.6 in the second step. Sample I: Starch hydrolyzate prepared in the same manner as Sample E by hydrolyzing to DE4.5 in the second step. Next, maltotriose (maltotriose) was prepared by decomposing commercially available glucose, commercially available maltose (sugar composition of 95% maltose and 5% glucose), and pullulan (Hayashibara KK Pullulan PF-10) with pullulanase (Amano Pharmaceutical KKKC20-L). 90% maltohexaose and 5% maltohexaose) and a malt obtained by assimilating glucose, maltose, and a part of maltotriose from the starch hydrolyzate of Sample A using yeast bacteria, and then fractionating and preparing the mixture with alcoholic water. Starch hydrolyzate mainly composed of tetraose and maltopentaose (G 1 0.4%, G 2 1.3%, G 3 15.4%,
G 4 25.2%, G 5 20.6%, G 6 15.8%, G 7 9.5%, G 8 4.2
%, G 9-7.6 %) to prepare a mixed solution shown in Table 3 and spray-dry it at a chamber temperature of 87° C., and the results shown in Table 3 were obtained. In addition, the calculation method of sugar composition, viscosity, and acetic acid content yield in the present invention is as follows. Sugar composition: Qualitative and quantitative determination was carried out using a liquid chromatograph using PNH 2 -10/S2504 (Shimadzu KK) as the column, acetonitrile-water system as the mobile phase, and a differential refractometer as the detector. Viscosity: The viscosity of the aqueous solution of starch hydrolyzate is sample 500.
g was dissolved in 500 g of water, and the viscosity at 40°C was measured using a cylindrical rotational viscometer. The viscosity of the mixed solution before drying was measured in the same manner as the viscosity at 40°C. Acetic acid yield calculation method: Amount of acetic acid used (A), amount of starch hydrolyzate (solid content) used (B), % solid content in the produced acetic acid-containing powder (C), production If the acetic acid content % (D) in the acetic acid-containing powder is the acetic acid content percentage (residual rate) % = B/C x D x 100/A.

【表】【table】

【表】 表2に示されるように、 (イ) 平均重合度が5.6と小さく、しかもG1〜G3
16.1%、G1〜G5が27.1%含有される試料Aを用
いた実験では乾燥性および歩留が非常に悪く、
しかも得られた粉末は非常に固結しやすいもの
であつた。 (ロ) 試料B、C及びDはいずれもDE値がほぼ14
のものであるが、得られた粉末の酢酸分の歩留
及び耐固結性を比較すると、G1〜G3が13.0%、
G1〜G5が23.2%含まれる試料Bを用いた場合が
歩留及び耐固結性とももつとも悪く、G1〜G3
が12.4%、G1〜G5が20.5%含まれる試料Dを用
いた場合は澱粉加水分解物100部に対する水の
量が100部になると酢酸分歩留は確保されるよ
うになるが耐固結性が悪く、G1〜G3が7.3%、
G1〜G5が20.7%含まれる試料Cを用いた場合
は試料Dの場合と比較して歩留及び耐固結性は
良くなる、しかし未だ耐固結性にやや難点があ
る。 (ハ) G1〜G5の占める割合が20%以内であり、澱
粉加水分解物の平均重合度が9.1、12.2及び15.6
である試料E、F及びGを用いた場合の実験で
は澱粉加水分解物100部に対する水の量が130部
(水に対する澱粉加水分解物の量が77%)以下
の場合乾燥性、酢酸分の歩留及び耐固結性など
の品質のすべての面で良い結果を得た。しかし
水に対する澱粉加水分解物の量が減ると酢酸分
の歩留はかなり低下することがわかる。 (ニ) 平均重合度が17.9である試料Hは粘度の高い
ものであり澱粉加水分解物100部に対する水の
量が100部の混溶液では粘度がたかく機械的に
噴霧ができなくなり、噴霧可能な範囲になる水
の量が160部である場合は酢酸分の歩留がわる
く水の量を130部用いた場合の酢酸分の歩留は
80.8%であつた。平均重合度が22.2である試料
Iは噴霧困難で歩留もわるい。
[Table] As shown in Table 2, (a) the average degree of polymerization is as low as 5.6, and G 1 to G 3 are
In an experiment using sample A containing 16.1% and 27.1% of G1 to G5 , the drying performance and yield were very poor.
Moreover, the obtained powder was very easy to caking. (b) Samples B, C, and D all have a DE value of approximately 14.
However, when comparing the acetic acid content retention and caking resistance of the obtained powder, G 1 to G 3 is 13.0%,
When sample B containing 23.2% of G 1 to G 5 was used, both yield and caking resistance were poor, and G 1 to G 3
When using sample D, which contains 12.4% of starch and 20.5% of G1 to G5 , the acetic acid content retention is secured when the amount of water per 100 parts of starch hydrolyzate is 100 parts, but the solidification resistance is Poor cohesion, G 1 to G 3 7.3%,
When sample C containing 20.7% of G 1 to G 5 is used, the yield and caking resistance are improved compared to sample D, but there is still some difficulty in caking resistance. (c) The proportion of G 1 to G 5 is within 20%, and the average degree of polymerization of the starch hydrolyzate is 9.1, 12.2, and 15.6.
In experiments using Samples E, F, and G, which are Good results were obtained in all aspects of quality, including yield and caking resistance. However, it can be seen that when the amount of starch hydrolyzate relative to water decreases, the yield of acetic acid content decreases considerably. (d) Sample H, which has an average degree of polymerization of 17.9, has a high viscosity, and a mixed solution of 100 parts of water to 100 parts of starch hydrolyzate has a high viscosity and cannot be mechanically sprayed, making it difficult to spray. If the amount of water that falls within the range is 160 parts, the yield of acetic acid will be poor; if the amount of water used is 130 parts, the yield of acetic acid will be
It was 80.8%. Sample I, which has an average degree of polymerization of 22.2, is difficult to spray and has a poor yield.

【表】【table】

【表】 上記表3に示されるように、グルコース、マル
トースは勿論のことマルトトリオース(G3)もそ
の混溶液を噴霧乾燥した時、乾燥性が極めてわる
くチヤンバー壁に付着溶融して粉末を回収できな
い。このことはマルトトリオースが97%酢酸水溶
液に溶解してしまうことからも察せられる。G1
〜G5は少く、G4〜G5が50%近くを占める澱粉加
水分解物を用いた実験では乾燥性、歩留及び耐固
結性が非常にわるいことが判り、グルコース重合
度が4〜5のものは酢酸分を被覆包含する粉末化
基材としての性能を殆んど有していないものと考
えられる。 以上、総合的に判断すればグルコース重合度5
以下のオリゴ糖類の占める割合は20%以下であ
り、しかもグルコース、マルトース、及びマルト
トリオースの糖類は7%以下であり、全体のグル
コースの平均重合度が6〜18で構成される澱粉加
水分解物を選択して後、選択されたる澱粉加水分
解物を酢酸水溶液の水分量のおおよそ70%以上に
なるように酢酸水溶液に添加混合し、得られた混
溶液を可及的低温下に噴霧乾燥すれば酢酸分が高
含度で、高歩留である含酢酸粉末を製出すること
ができ、得られる含酢酸粉末は耐固結性、耐湿
性、保香性、水への溶解性などに非常にすぐれた
性状になるものであることがわかつた。 試験例 2 試験に供した澱粉加水分解物とその糖組成につ
いて ☆馬鈴薯澱粉に環状オリゴ糖生成酵素を作用させ
て得られる環状オリゴ糖含有液化液より分離精
製されたα−サイクロデキストリン ・環状オリゴ糖(α:100%) ……(I)− ☆馬鈴薯澱粉にα−アミラーゼを作用させて後、
環状オリゴ糖生成酵素を作用させて得た環状オ
リゴ糖(α:60%、β:25%、γ:15%の混合
物)が50%と平均重合度11.8の(非環状)澱粉
加水分解物が50%とからなるもの。 ・環状オリゴ糖(α:60%、β:25%、γ:15
%) ……(I)− ・平均重合度11.8の澱粉加水分解物 ……(III)− ☆ワキシースターチ(アミロペクチンからなる澱
粉)をα−アミラーゼにより加水分解して得た
それぞれ平均重合度12.5及び25.0を有するアミ
ロペクチンの加水分解物 ・平均重合度12.5のアミロペクチンの加水分解
物 (II)− ・平均重合度25.0のアミロペクチンの加水分解
物 ……(II)− ☆馬鈴薯澱粉(アミローズ及びアミロペクチン含
有澱粉)をα−アミラーゼにより加水分解して
得たそれぞれの平均重合度5.0、7.6、11.8及び
13.3を有する澱粉加水分解 ・平均重合度5.0の澱粉加水分解物 ……(III)− ・平均重合度7.6の澱粉加水分解物 ……(III)− ・平均重合度11.8の澱粉加水分解物 ……(III)− ・平均重合度13.3の澱粉加水分解物 ……(III)−
[Table] As shown in Table 3 above, when a mixed solution of not only glucose and maltose but also maltotriose (G 3 ) is spray-dried, the drying properties are extremely poor and the powder adheres to the chamber wall and melts. It cannot be recovered. This can be seen from the fact that maltotriose dissolves in a 97% acetic acid aqueous solution. G 1
In experiments using starch hydrolyzate, in which G 4 to G 5 is small and G 4 to G 5 account for nearly 50%, it was found that the drying properties, yield, and caking resistance were very poor, and the degree of glucose polymerization was 4 to 4. It is considered that No. 5 has almost no performance as a powdered base material that coats and contains an acetic acid component. Judging from the above, the degree of glucose polymerization is 5.
The proportion of the following oligosaccharides is 20% or less, and the sugars of glucose, maltose, and maltotriose are 7% or less, and the average degree of polymerization of the entire glucose is 6 to 18. After selecting the starch hydrolyzate, the selected starch hydrolyzate is added to and mixed with an acetic acid aqueous solution so that the water content is approximately 70% or more of the water content of the acetic acid aqueous solution, and the resulting mixed solution is spray-dried at the lowest possible temperature. By doing so, it is possible to produce acetic acid-containing powder with a high acetic acid content and high yield, and the resulting acetic acid-containing powder has properties such as caking resistance, moisture resistance, fragrance retention, and solubility in water. It was found that it has very good properties. Test Example 2 About the starch hydrolyzate used in the test and its sugar composition ☆ α-Cyclodextrin separated and purified from a liquefied liquid containing cyclic oligosaccharides obtained by treating potato starch with a cyclic oligosaccharide-forming enzyme ・Cyclic oligosaccharides Sugar (α: 100%) ...(I)− ☆After allowing α-amylase to act on potato starch,
Hydrolyzed (non-cyclic) starch with 50% cyclic oligosaccharide (a mixture of α: 60%, β: 25%, γ: 15%) and an average degree of polymerization of 11.8 obtained by the action of a cyclic oligosaccharide-forming enzyme. Something that consists of 50% of something.・Cyclic oligosaccharide (α: 60%, β: 25%, γ: 15
%) ...(I)- ・Starch hydrolyzate with an average degree of polymerization of 11.8 ...(III)- ☆Produced by hydrolyzing waxy starch (starch consisting of amylopectin) with α-amylase Each with an average degree of polymerization of 12.5 and 25.0 ・Amylopectin hydrolyzate with an average degree of polymerization of 12.5 (II)− ・Amylopectin hydrolyzate with an average degree of polymerization of 25.0 …(II)− ☆Potato starch (containing amylose and amylopectin) The respective average degrees of polymerization obtained by hydrolyzing (starch) with α-amylase were 5.0, 7.6, 11.8 and
13.3 - Starch hydrolyzate with an average degree of polymerization of 5.0 ... (III) - - Starch hydrolyzate with an average degree of polymerization of 7.6 ... (III) - - Starch hydrolyzate with an average degree of polymerization of 11.8 ... (III)− ・Starch hydrolyzate with an average degree of polymerization of 13.3 ……(III)−

【表】 これらの澱粉加水分解物を1種又は2種以上使
用し、それぞれを20%酢酸水溶液に酢酸水溶液中
の水分量の125%に当る量になるように添加混合
して混溶液を作成し、これをチヤンバー温度95℃
の条件で噴霧乾燥試験を行い、その時の噴霧の状
況、酢酸分の歩留、製出された粉末の酢酸分の安
定性及び耐固結性について観察した結果を第5表
にまとめて示した。 この表から、次のことが明らかに判る。 (1)通常のアミローズ及びアミロペクチン含有澱
粉類を加水分解して得た澱粉加水分解物を用い
たNo.1〜No.4の実験の通り、平均重合度の小さ
く、G5以下が20%以上の澱粉加水分解物
(III)−を用いたNo.1では粘度が低く、噴霧適
性には、なんら問題点はないが酢酸分を被覆す
る性能が劣り、乾燥中乾燥壁に付着し、しかも
酢酸分の残存率がわるい。しかも製出されたも
のの酢酸分の安定性及び耐固結性も非常にわる
い。 一方平均重合度の大きい澱粉加水分解物
(III)−を用いたNo.4では水に対する粉末化基
材の量を125%にした場合には粘度がたかいた
め噴霧が出来ず、製品を得ることが出来ない。
澱粉加水分解物(III)−より粘度の低い澱粉
加水分解物(III)−を用いたNo.3の実験では
粘度がまだややたかく噴霧がやや不良であるも
のの酢酸分の歩留も比較的よく噴出されたもの
は固結しにくく、酢酸分の安定性も比較的よ
い。但し、澱粉加水分解物(III)−の場合、
酢酸水溶液中の水分に対する添加量をこれ以上
増加することは出来ないので、これ以上の酢酸
分の歩留向上は非常に困難である。澱粉加水分
解物(III)−と澱粉加水分解物(III)−との
中間にある澱粉加水分解物(III)−を用いた
No.2では噴霧適性、酢酸分の歩留は比較的よい
が、耐固結性及び酢酸分の安定性の面で劣る。 (2)実験No.5及びNo.6は環状オリゴ糖(I)−
と平均重合度11.8の澱粉加水分解物(III)−
の混合物、及びこれらにさらに平均重合度11.8
の澱粉加水分解物(III)−を混合したものを
用いた場合であり、環状オリゴ糖に粘性がな
く、しかも環状オリゴ糖が酢酸分と一種の結合
性を有しているため、噴霧適性がよく、酢酸分
の歩留、酢酸分の安定性が非常に向上し、しか
も耐固結性にすぐれている。実験No.5及びNo.6
の粉末化基材の配合に於いて、粉末化基材配合
物の酢酸水溶液中の水分量に対する添加量を噴
霧可能な範囲で更にたかめたところ、その酢酸
分歩留は一層向上した。 (3)実験No.7は環状オリゴ糖(α−サイクロデキ
ストリン)(I)−を粉末化基材として単独で
用いることを試みた試験例であるが環状オリゴ
糖を混合溶解することが出来ず、環状オリゴ糖
は沈澱分離した。 (4)実験No.8〜No.10はワキシースターチを加水分
解して平均重合度12.5に調整したもの(II)−
を用いているが、このものの粘度は通常のア
ミローズ及びアミロペクチン含有澱粉を平均重
合度9になるように分解したものと同じ位であ
り、平均重合度が大きいにもかかわらず粘度が
低いものであり、且つ、アミロペクチン特有の
分枝状重合構造を保持するものである。 この平均重合度12.5のアミロペクチンの加水
分解物(II)−と環状オリゴ糖(I)−と組
合わせたもの(実験No.8)、このアミロペクチ
ンの加水分解物(II)−を単独で用いたもの
(実験No.9)及びこのアミロペクチンの加水分
解物(II)−と実験No.3で用いた平均重合度
11.8の澱粉加水分解物(III)−を組合わせた
もの(実験No.10)は噴霧適性、酢酸分の歩留、
酢酸分の安定性、耐固結性のすべての面で実験
No.1〜No.4よりすぐれていた。特に実験No.8に
おいては良い結果を得た。 実験No.11はワキシースターチを加水分解して
平均重合度25.0に調整したもの(II)−を用
いており、これは比較的粘度がたかく、多量に
用いることは出来ないが、単独使用で欠陥のあ
つた澱粉加水分解物(III)−と組合わせて用
いると、澱粉加水分解物(III)−の欠陥を補
つて良い効果を得た。 実験No.12は上記の(II)−を多量に用いた
場合であるが、粘度が高く噴霧できなかつた。 (5)実験No.13は環状デキストリン(I)−、平
均重合度11.8の澱粉加水分解物(III)−及び
アミロペクチンの加水分解物(II)−宗の3者
を併用し、これらの特性を配合に組み入れたも
ので噴霧適性、酢酸分の歩留、酢酸分の安定
性、耐固結性のすべての点で最もすぐれている
ものである。 ※ 酢酸分の残存率は生成粉末中の酢酸分含有
率に生成粉末の重量を乗じた値即ち残存酢酸
分重量を使用した酢酸水中の酢酸分重量で除
して100を乗じたものである。 ※※ 酢酸ガスの透過性のよいポリエチレン袋
(厚さ0.05mm)に各々を50gずつ封入し、35
℃の恒温槽にて8日間保存した後、粉末中に
含有する酢酸分を測定し、 保存後の粉末中の酢酸分/保存前の粉末中の酢酸分
×100 =酢酸分の安定 を計算した。 ※※※ アルミ箔に封入し、40℃にて10日間保
存した結果を観察した。
[Table] Use one or more of these starch hydrolysates and create a mixed solution by adding each to a 20% acetic acid aqueous solution in an amount equivalent to 125% of the water content in the acetic acid aqueous solution. Then, set the chamber temperature to 95℃.
A spray drying test was conducted under the following conditions, and Table 5 summarizes the results of observations regarding the spraying conditions, the acetic acid content retention, the stability of the acetic acid content, and the caking resistance of the produced powder. . From this table, it is clear that: (1) As shown in experiments No. 1 to No. 4 using starch hydrolyzate obtained by hydrolyzing ordinary amylose and amylopectin-containing starches, the average degree of polymerization is small, and G 5 or less is 20. % or more of starch hydrolyzate
No. 1 using (III)- has a low viscosity and there are no problems with sprayability, but its ability to cover acetic acid is poor, it adheres to the dry wall during drying, and acetic acid remains. The rate is bad. Moreover, the stability of the acetic acid content and the caking resistance of the produced product are also very poor. On the other hand, starch hydrolyzate with a high average degree of polymerization
In No. 4 using (III)-, when the amount of powdered base material to water was 125%, the viscosity was so high that spraying was impossible and a product could not be obtained.
In experiment No. 3 using starch hydrolyzate (III), which has a lower viscosity than starch hydrolyzate (III), the viscosity was still somewhat thick and spraying was somewhat poor, but the yield of acetic acid was also compared. When ejected in a well-targeted manner, it is difficult to solidify, and the acetic acid content is relatively stable. However, in the case of starch hydrolyzate (III)-,
Since the amount added to the water in the acetic acid aqueous solution cannot be increased any further, it is extremely difficult to further improve the yield of acetic acid. We used starch hydrolyzate (III), which is intermediate between starch hydrolyzate (III) and starch hydrolyzate (III).
No. 2 has relatively good sprayability and acetic acid content retention, but is inferior in terms of caking resistance and acetic acid content stability. (2) Experiment No. 5 and No. 6 are cyclic oligosaccharides (I)-
and starch hydrolyzate (III) with an average degree of polymerization of 11.8.
and a mixture of these with an average degree of polymerization of 11.8
This is the case when a mixture of starch hydrolyzate (III)- is used, and the cyclic oligosaccharide has no viscosity and has a kind of binding property with the acetic acid content, so it is suitable for spraying. It has excellent acetic acid yield, greatly improved acetic acid stability, and excellent caking resistance. Experiment No.5 and No.6
In formulating the powdered base material, when the amount of the powdered base material mixture added to the water content in the acetic acid aqueous solution was further increased to the extent that it could be sprayed, the acetic acid fraction yield was further improved. (3) Experiment No. 7 is a test example in which a cyclic oligosaccharide (α-cyclodextrin) (I) was attempted to be used alone as a powder base material, but it was not possible to mix and dissolve the cyclic oligosaccharide. , cyclic oligosaccharides were separated by precipitation. (4) Experiments No. 8 to No. 10 were conducted by hydrolyzing waxy starch and adjusting the average degree of polymerization to 12.5 (II)-
However, the viscosity of this product is about the same as that of normal starch containing amylose and amylopectin decomposed to an average degree of polymerization of 9, and the viscosity is low despite the high average degree of polymerization. Moreover, it maintains the branched polymer structure characteristic of amylopectin. This amylopectin hydrolyzate (II) with an average degree of polymerization of 12.5 was used in combination with cyclic oligosaccharide (I) (Experiment No. 8), and this amylopectin hydrolyzate (II) was used alone. (Experiment No. 9) and the hydrolyzate (II) of this amylopectin and the average degree of polymerization used in Experiment No. 3.
The combination of starch hydrolyzate (III) of 11.8 (Experiment No. 10) had good sprayability, acetic acid content retention,
Experiments on all aspects of acetic acid content stability and caking resistance
It was superior to No. 1 to No. 4. Particularly good results were obtained in experiment No. 8. Experiment No. 11 used waxy starch that had been hydrolyzed and adjusted to an average degree of polymerization of 25.0 (II), which has a relatively high viscosity and cannot be used in large quantities, but it may cause defects if used alone. When used in combination with hot starch hydrolyzate (III), a good effect was obtained by compensating for the defects of starch hydrolyzate (III). Experiment No. 12 used a large amount of the above (II)-, but the viscosity was so high that it could not be sprayed. (5) Experiment No. 13 used a combination of cyclic dextrin (I), starch hydrolyzate (III) with an average degree of polymerization of 11.8, and amylopectin hydrolyzate (II), and investigated their properties. It is the best in terms of sprayability, acetic acid content retention, acetic acid content stability, and caking resistance. *The residual rate of acetic acid is the value obtained by multiplying the acetic acid content in the produced powder by the weight of the produced powder, that is, the residual acetic acid content divided by the acetic acid content in the acetic acid water used, multiplied by 100. ※※ Seal 50g of each in a polyethylene bag (thickness 0.05mm) with good permeability to acetic acid gas, and
After storing it in a constant temperature bath at ℃ for 8 days, the acetic acid content contained in the powder was measured, and the acetic acid content in the powder after storage / the acetic acid content in the powder before storage x 100 = stability of the acetic acid content was calculated. . ※※※ The results were observed after being sealed in aluminum foil and stored at 40℃ for 10 days.

【表】【table】

【表】 実施例 1 コーンスターチの澱粉乳液をα−アミラーゼを
用いて2段加水分解するにあたり、α−アミラー
ゼ(クライスターゼKD、大和化成K.K.)を用い
て液化し、第一段階の分解液のDEが1.7に達した
時、加熱蒸煮して酵素失活並びに澱粉の膨潤分散
を行つて後、第二段階でα−アミラーゼ(ク
ライスターゼKD)を加えてDEが7.2になるまで
加水分解して調製したものを乾燥して澱粉加水分
解物(水分4%)を得たが、これらの糖組成は
G1trace%、G21.4%、G32.6%、G42.4%、G52.0
%、G62.3%、G73.9%、G83.7%、G9〜n81.7%で
あり平均重合度は約14であつた。 この得られた澱粉加水分解物100kgを水90kgと
99%酢酸30kgよりなる酢酸水溶液に混合溶解せし
めて後プレートヒーターで55℃に加温しながらチ
ヤンバー92℃の条件で噴霧乾燥したところ酢酸分
を20.6%含有する含酢酸粉末を約125kg得た。 この得られた含酢酸粉末は酢酸分を高含度に含
有し、しかも耐固結性につよいものであるため各
種ソースやスープ類の即席調味料類の酸味料とし
て極めて有効なものである。 実施例 2 DE15の市販澱粉加水分解物(糖組成G11.2%、
G25.3%、G38.2%、G45.4%、G54.9%、G69.3
%、G79.9%、G85.1%、G9〜n50.7%)100kgを水
250kgに溶解し、この水溶液に硫酸マグネシウム
10g、リン酸−1−カリウム70g、酵母エキス
100g、ペプトン50g、及ぶパン酵母200gを加え
て撹拌溶解せしめ、溶液1当り60ml/minの除
菌空気を通気しながら30℃±1℃に保ち約48時間
培養した後、pHを6.5に調整し、90℃まで加熱し
て滅菌し、脱色、脱塩、脱臭してから噴霧乾燥し
て澱粉加水分解物(水分3.5%)70kgを得た。こ
の得られた澱粉加水分解物の糖組成はG1trace
%、G20.4%、G35.4%、G46.1%、G55.3%
G610.1%、G710.8%、G85.6%、G9〜n56.3%であ
り、平均重合度は約8.9であつた。 この得られた澱粉加水分解物50kgをワインビネ
ガー(酢酸分12.0%、エキス分2.0%)50kgに添
加混合せしめ、この得られた混溶液をプレートヒ
ーターで50℃に加温しつつチヤンバー温度90℃の
条件で噴霧乾燥したところ酢酸分を9.5%含有す
る粉末ワインビネガー約55kgを得た。この粉末ワ
インビネガーはワインビネガーとしての特有の風
味を有するもので、耐固結性、耐吸湿性、溶解性
などの品質にすぐれるものであつた。 実施例 3 DE17.5の市販澱粉加水分解物(糖組成G14.3
%、G25.5%、G35.3%、G45.6%、G56.5%、
G65.5%、G74.9%、G84.3%、G9〜n58.1%)50kg
を60w/w%のアルコール水溶液200kgに混合
し、この混溶液を24時間静置する。静置後、上下
2層に透明に分離した溶液を分液し、下層溶液70
kgと上層溶液180kgを得た。この得られた下層液
(固形分60%、アルコール分15%)からアルコー
ル分を蒸留回収してから乾燥したところ澱粉加水
分解物(水分4.0%)約40kgを得ることができ
た。この澱粉加水分解物の糖組成はG11.4%、
G21.8%、G33.4%、G44.8%、G55.5%、G64.6
%、G75.1%、G86.8%、G9〜n66.6%で、平均重
合度は約13.1であつた。この得られた澱粉加水分解
物20kgを凍結濃縮して得た米酢(酢酸分20%、エ
キス分2.7%)20kgに添加混合しプレートヒータ
ーで50℃に加温しながらチヤンバー温度92℃の条
件で噴霧乾燥したところ酢酸分14.7%を含有する
粉末米酢約24kgを得ることができた。 この得られた粉末は米酢の特有の芳香を有する
ものであり、耐固結性、溶解性、溶解したときの
粘性等の品質にもすぐれたものであるので、これ
に砂糖等を調合すれば極めて便利な即席の三杯
酢、粉末すしの素ができるものである。 実施例 4 酒精酢(酢酸分15.0%、エキス分0.5%、水分
84.5%)100kgと99%酢酸20kgとからなる溶液
に、馬鈴薯澱粉にα−アミラーゼを作用させた後
環状オリゴ糖生成酵素を作用させて得た環状オリ
ゴ糖(α:60%、β:25%、及びγ:15%の混合
物)50%及び平均重合度12の非環状の澱粉加水分
解物50%からなる澱粉加水分解物80kgと市販の平
均重合度11の澱粉加水分解物30kgとからなる粉末
化基材(平均重合度9.8、G10.4%、G21.1%、
G32.1%、G42.3%、G52.7%)を添加混合した混
溶液(粘度105cps40℃)を得た。 次にこの得られた混溶液をプレートヒーターで
60℃に加温しつつノズル型噴霧乾燥機を用いてチ
ヤンバー温度95℃の条件で噴霧乾燥したところ約
140kgの粉末製品を得ることができた。 この得られた粉末は酢酸分を23.0%と高含度に
含有する粉末酢であり、これに食塩、砂糖、調味
料粉末などを添加混合すれば即席のすし酢、二杯
酢、三杯酢のような製品が出来上るものである
が、これらの混合物を包装紙に封入して保存した
ものの酢酸分の揮発安定性、耐固結性などは従来
方法によつて得られたものに比較してすぐれるも
のであつた。 実施例 5 ワインビネガー(酢酸分12.0%、エキス分2.0
%、水分86.0%)100kgにワキシースターチをα
−アミラーゼにより分解して得た平均重合度33の
澱粉加水分解物20kgと市販の平均重合度10の澱粉
加水分解物80kgとからなる粉末化基材(平均重合
度14.6、G1trace%、G21.6%、G33.0%、G43.2
%、G53.2%)を添加混合して混溶液(粘度
120cps、40℃)を得た。 次にこの得られた混溶液をプレートヒーターで
加温しつつ噴霧乾燥機を用いてチヤンバー温度
100℃の条件で乾燥したところ約110kgの粉末製品
を得ることができた。この得られた粉末製品は酢
酸分を10.2%含有したワインビネガー風味を有す
る粉末であり、これは粉末状のテーブルビネガー
となり、また各種のドレツシングミツクスパウダ
ー、ソースミツクスパウダー等の洋風即席調味料
類の原料として使用できるものである。この得ら
れた粉末を砂糖、食塩、アミノ酸などの原料を混
合したところ、酢酸分は安定であり固結すること
はなかつた。 実施例 6 凍結濃縮して得たサイダービネガー(酢酸分
20.0%、エキス分2.5%、水分77.5%)60kgに対し
て馬鈴薯澱粉をα−アミラーゼにより液化して後
環状オリゴ糖生成酵素を作用させて得た環状オリ
ゴ糖(重合度の平均6.5)50%及び平均重合度12
の非環状の澱粉加水分解物50%とからなる澱粉加
水分解物40kgとワキシースターチをα−アミラー
ゼにより分解した平均重合度18の澱粉加水分解物
20kgとからなる粉末化基材(平均重合度12.2、
G10.3%、G20.8%、G31.8%、G42.1%、G52.4
%)を混合溶解せしめこれをプレートヒーターで
60℃に加温しつつ(粘度75cps60℃)チヤンバー
温度95℃の条件で噴霧乾燥したところ粉末製品約
71kgを得たが、この得られた粉末製品に含有され
る酢酸分は15.8%であり、乾燥による酢酸分の損
失は極めて少なく酢酸分の残存率は94%である。
なお、この得られた粉末はリンゴ酢の芳香を有し
た粉末醸造酢で種々の即席調味料や菓子などの原
料として用いられるものである。 実施例 7 リンゴ酢(酢酸分12.0%、エキス分1.5%)50
kg、酒精酢(酢酸分15.0%、エキス分0.5%)50
kg、醤油(エキス分14.5%、食塩分16.0%)60kg
及びかつお節抽出液(エキス分10%)20kgからな
る混溶液に、ワキシースターチをα−アミラーゼ
により加水分解した平均重合度12.5の澱粉加水分
解物(G10%、G22.6%、G32.6%、G42.4%、
G52.2%)140kgを添加混合溶解させ、65℃に加温
しつつチヤンバー温度100℃にて噴霧乾燥したと
ころ約170kgの粉末製品を得た。 この得られた粉末は酢酸分7.0%、食塩分5.6
%、種々のエキス分6.8%を含有するもので、こ
れを水に溶解すれば、かつお節風味の味ぽん酢が
得られる。 この粉末製品は酢酸分の他に食塩分や種々のエ
キス分を含有するが、酢酸分及びその他風味の安
定性にすぐれ、耐固結性も大変よいものである。
[Table] Example 1 In performing two-stage hydrolysis of starch emulsion of corn starch using α-amylase, it was liquefied using α-amylase (Clistase KD, Daiwa Kasei KK), and the DE of the first-stage decomposition solution was When DE reaches 1.7, it is heated and steamed to deactivate the enzyme and swell and disperse the starch. In the second step, α-amylase (Klystase KD) is added and hydrolyzed until the DE reaches 7.2. The starch hydrolyzate (water content: 4%) was obtained by drying it, but the sugar composition of these products was
G 1 trace%, G 2 1.4%, G 3 2.6%, G 4 2.4%, G 5 2.0
%, G6 2.3%, G7 3.9%, G8 3.7%, G9 -n 81.7%, and the average degree of polymerization was about 14. 100 kg of the starch hydrolyzate obtained was mixed with 90 kg of water.
The mixture was mixed and dissolved in an acetic acid aqueous solution consisting of 30 kg of 99% acetic acid, and then spray-dried in a chamber at 92° C. while being heated to 55° C. with a plate heater. Approximately 125 kg of acetic acid-containing powder containing 20.6% acetic acid was obtained. The obtained acetic acid-containing powder has a high content of acetic acid and is highly resistant to caking, so it is extremely effective as an acidulant for instant seasonings for various sauces and soups. Example 2 DE15 commercially available starch hydrolyzate (sugar composition G 1 1.2%,
G 2 5.3%, G 3 8.2%, G 4 5.4%, G 5 4.9%, G 6 9.3
%, G 7 9.9%, G 8 5.1%, G 9~n 50.7%) 100kg with water
Dissolve 250kg of magnesium sulfate in this aqueous solution.
10g, 1-potassium phosphate 70g, yeast extract
Add 100 g of peptone, 50 g of peptone, and 200 g of baker's yeast and stir to dissolve. After culturing for about 48 hours at 30°C ± 1°C while blowing sterilized air at 60 ml/min per solution, adjust the pH to 6.5. , sterilized by heating to 90°C, decolorized, desalted, and deodorized, and then spray-dried to obtain 70 kg of starch hydrolyzate (moisture 3.5%). The sugar composition of the obtained starch hydrolyzate is G 1 trace
%, G 2 0.4%, G 3 5.4%, G 4 6.1%, G 5 5.3%
G6 10.1%, G7 10.8%, G8 5.6%, G9 -n 56.3%, and the average degree of polymerization was about 8.9. 50 kg of starch hydrolyzate thus obtained was added and mixed with 50 kg of wine vinegar (acetic acid content 12.0%, extract content 2.0%), and the resulting mixed solution was heated to 50°C with a plate heater while the chamber temperature was 90°C. When spray-dried under the following conditions, approximately 55 kg of powdered wine vinegar containing 9.5% acetic acid was obtained. This powdered wine vinegar had a unique flavor as wine vinegar, and had excellent qualities such as caking resistance, moisture absorption resistance, and solubility. Example 3 Commercial starch hydrolyzate with DE17.5 (sugar composition G 1 4.3
%, G 2 5.5%, G 3 5.3%, G 4 5.6%, G 5 6.5%,
G 6 5.5%, G 7 4.9%, G 8 4.3%, G 9~n 58.1%) 50kg
was mixed with 200 kg of 60 w/w% alcohol aqueous solution, and this mixed solution was allowed to stand for 24 hours. After standing still, separate the transparent solution into two layers, upper and lower, and add 70% of the lower layer solution.
kg and 180 kg of upper layer solution were obtained. The alcohol content was distilled and recovered from the resulting lower layer liquid (solid content: 60%, alcohol content: 15%), and then dried, yielding approximately 40 kg of starch hydrolyzate (water content: 4.0%). The sugar composition of this starch hydrolyzate is G 1 1.4%,
G 2 1.8%, G 3 3.4%, G 4 4.8%, G 5 5.5%, G 6 4.6
%, G7 5.1%, G8 6.8%, G9 -n 66.6%, and the average degree of polymerization was about 13.1. 20 kg of the obtained starch hydrolyzate was added to 20 kg of freeze-concentrated rice vinegar (acetic acid content 20%, extract content 2.7%) and mixed, heated to 50°C with a plate heater and kept at a chamber temperature of 92°C. When spray-dried, approximately 24 kg of powdered rice vinegar containing 14.7% acetic acid was obtained. The obtained powder has the characteristic aroma of rice vinegar and has excellent qualities such as caking resistance, solubility, and viscosity when dissolved, so sugar etc. are mixed with it. This makes it extremely convenient to make instant sambai vinegar and powdered sushi base. Example 4 Alcohol vinegar (acetic acid content 15.0%, extract content 0.5%, water content
Cyclic oligosaccharide (α: 60%, β: 25%) obtained by reacting potato starch with α-amylase and then reacting with cyclic oligosaccharide-forming enzyme in a solution consisting of 100 kg of 84.5%) and 20 kg of 99% acetic acid. , and γ: 15% mixture) and powder consisting of 80 kg of starch hydrolyzate consisting of 50% of an acyclic starch hydrolyzate with an average degree of polymerization of 12 and 30 kg of a commercially available starch hydrolyzate with an average degree of polymerization of 11. base material (average degree of polymerization 9.8, G 1 0.4%, G 2 1.1%,
A mixed solution (viscosity: 105 cps, 40°C) was obtained by adding and mixing 2.1% of G 3 , 2.3% of G 4 , and 2.7% of G 5 . Next, the obtained mixed solution was heated using a plate heater.
When heated to 60℃ and spray-dried using a nozzle-type spray dryer at a chamber temperature of 95℃, approximately
We were able to obtain 140kg of powdered product. The obtained powder is a powdered vinegar containing a high acetic acid content of 23.0%, and by adding and mixing salt, sugar, seasoning powder, etc., products such as instant sushi vinegar, nibai vinegar, and sanbai vinegar can be made. However, when these mixtures are sealed in wrapping paper and stored, the volatile stability and caking resistance of the acetic acid content are superior to those obtained using conventional methods. It was hot. Example 5 Wine vinegar (acetic acid content 12.0%, extract content 2.0%)
%, moisture 86.0%) add waxy starch to 100 kg
- Powdered base material (average degree of polymerization 14.6, G 1 trace%, G 2 1.6%, G 3 3.0%, G 4 3.2
%, G 5 3.2%) and mix to make a mixed solution (viscosity
120cps, 40℃). Next, the resulting mixed solution was heated with a plate heater and heated to a chamber temperature using a spray dryer.
Approximately 110 kg of powder product was obtained by drying at 100°C. The obtained powder product is a wine vinegar-flavored powder containing 10.2% acetic acid, which can be used as powdered table vinegar and used in various Western-style instant preparations such as dressing mix powder and sauce mix powder. It can be used as a raw material for seasonings. When the obtained powder was mixed with raw materials such as sugar, salt, and amino acids, the acetic acid content was stable and did not solidify. Example 6 Cider vinegar obtained by freeze concentration (acetic acid content
20.0%, extract content 2.5%, moisture 77.5%) 60kg of cyclic oligosaccharides (average degree of polymerization 6.5) obtained by liquefying potato starch with α-amylase and acting on a post-cyclic oligosaccharide-forming enzyme (average degree of polymerization 6.5) 50% and average degree of polymerization 12
Starch hydrolyzate with an average degree of polymerization of 18 obtained by decomposing 40 kg of starch hydrolyzate consisting of 50% acyclic starch hydrolyzate and waxy starch with α-amylase.
Powdered base material consisting of 20 kg (average degree of polymerization 12.2,
G 1 0.3%, G 2 0.8%, G 3 1.8%, G 4 2.1%, G 5 2.4
%) and dissolve it using a plate heater.
When spray-dried at a chamber temperature of 95°C while heating to 60°C (viscosity 75 cps at 60°C), a powder product of approx.
Although 71 kg was obtained, the acetic acid content contained in the obtained powder product was 15.8%, and the loss of acetic acid content due to drying was extremely small, and the residual rate of acetic acid content was 94%.
The obtained powder is a powdered brewed vinegar having the aroma of apple cider vinegar, and is used as a raw material for various instant seasonings and sweets. Example 7 Apple cider vinegar (acetic acid content 12.0%, extract content 1.5%) 50
kg, alcoholic vinegar (acetic acid content 15.0%, extract content 0.5%) 50
kg, soy sauce (extract 14.5%, salt 16.0%) 60kg
A starch hydrolyzate with an average degree of polymerization of 12.5 (G 1 0%, G 2 2.6%, G 3 2.6 %, G 4 2.4%,
G5 2.2%) 140 kg was added, mixed and dissolved, and heated to 65°C and spray-dried at a chamber temperature of 100°C to obtain about 170 kg of powder product. The obtained powder has an acetic acid content of 7.0% and a salt content of 5.6%.
%, and contains 6.8% of various extracts, and by dissolving it in water, you can obtain bonito-flavored aji ponzu. This powder product contains salt and various extracts in addition to acetic acid, but it has excellent stability in acetic acid and other flavors, and has very good caking resistance.

Claims (1)

【特許請求の範囲】 1 グルコース重合度が5以下のオリゴ糖が20%
以下で、かつグルコース重合度が3以下のオリゴ
糖が7%以下である澱粉加水分解物を、含酢酸調
味液に対して含酢酸調味液中の水分量の70%以上
になるように添加混合せしめ、噴霧乾燥すること
を特徴とする含酢酸調味液の粉末化法。 2 澱粉加水分解物が、平均重合度6乃至18であ
り、かつ50%濃度で40℃水溶液における粘度が
300cps以下である特許請求の範囲第1項記載の
含酢酸調味液の粉末化法。 3 澱粉加水分解物が、グルコース重合度が5以
下のオリゴ糖が15%以下で、かつグルコース重合
度が3以下のオリゴ糖が5%以下のものである特
許請求の範囲第1項記載の含酢酸調味液の粉末化
法。 4 澱粉加水分解物が、 a アミロペクチン及びアミロースからなる澱粉
類の加水分解物 b アミロペクチンからなる澱粉類の加水分解物 c 環状オリゴ糖を含有するところの、アミロペ
クチン及びアミロースからなる澱粉類の加水分
解物 d 環状オリゴ糖を含有するところの、アミロペ
クチンからなる澱粉類の加水分解物 以上a、b、c及びdからなる群から選択され
た1種又は2種以上の混合物である特許請求の範
囲第1項記載の含酢酸調味液の粉末化法。 5 澱粉加水分解物がα・β又はγ環状オリゴ糖
を含有せしめてなるものである特許請求の範囲第
1項記載の含酢酸調味液の粉末化法。 6 含酢酸調味液が米酢、粕酢、酒精酢、麦芽
酢、ブドー酒酢、リンゴ酢、合成酢、酢酸水溶
液、ソース又はこれらの濃縮液、酢酸添加液、加
工処理液から選択されたものである特許請求の範
囲第1項記載の含酢酸調味液の粉末化法。
[Claims] 1. 20% oligosaccharide with a glucose polymerization degree of 5 or less
A starch hydrolyzate containing the following and containing 7% or less of oligosaccharides with a degree of glucose polymerization of 3 or less is added to the acetic acid-containing seasoning solution and mixed so that the water content in the acetic acid-containing seasoning solution is 70% or more of the water content in the acetic acid-containing seasoning solution. A method for powderizing an acetic acid-containing seasoning liquid, which is characterized by drying and spray-drying. 2. The starch hydrolyzate has an average degree of polymerization of 6 to 18, and has a viscosity of 40°C aqueous solution at 50% concentration.
A method for powderizing an acetic acid-containing seasoning liquid according to claim 1, wherein the acetic acid-containing seasoning liquid is 300 cps or less. 3. The starch hydrolyzate contains 15% or less of oligosaccharides with a degree of glucose polymerization of 5 or less, and 5% or less of oligosaccharides with a degree of glucose polymerization of 3 or less. Powderization method of acetic acid seasoning liquid. 4 Starch hydrolyzate: a Hydrolyzate of starch consisting of amylopectin and amylose b Hydrolyzate of starch consisting of amylopectin c Hydrolyzate of starch consisting of amylopectin and amylose containing cyclic oligosaccharides Decomposition product d Hydrolyzate of starch consisting of amylopectin containing a cyclic oligosaccharide A patent claim which is one or a mixture of two or more selected from the group consisting of a, b, c and d. A method for pulverizing an acetic acid-containing seasoning liquid according to Scope 1. 5. The method for pulverizing an acetic acid-containing seasoning liquid according to claim 1, wherein the starch hydrolyzate contains an α/β or γ cyclic oligosaccharide. 6 The acetic acid-containing seasoning liquid is selected from rice vinegar, lees vinegar, alcoholic vinegar, malt vinegar, grape vinegar, apple cider vinegar, synthetic vinegar, acetic acid aqueous solution, sauce, or concentrated liquid thereof, acetic acid-added liquid, and processing liquid. A method of powderizing an acetic acid-containing seasoning liquid according to claim 1.
JP56209266A 1981-12-25 1981-12-25 Powdering of acetic acid-containing seasoning solution Granted JPS58111678A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP56209266A JPS58111678A (en) 1981-12-25 1981-12-25 Powdering of acetic acid-containing seasoning solution
GB08219829A GB2112621A (en) 1981-12-25 1982-07-08 A powdered vinegar-like composition
AU85967/82A AU8596782A (en) 1981-12-25 1982-07-13 Powdered seasoning containing acetic acid
FR8212250A FR2518874A1 (en) 1981-12-25 1982-07-13 POWDERING A LIQUID SEASONING CONTAINING ACETIC ACID
DE19823226282 DE3226282A1 (en) 1981-12-25 1982-07-14 METHOD FOR POWDERING A LIQUID SEASON CONTAINING ACETIC ACID

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56209266A JPS58111678A (en) 1981-12-25 1981-12-25 Powdering of acetic acid-containing seasoning solution

Publications (2)

Publication Number Publication Date
JPS58111678A JPS58111678A (en) 1983-07-02
JPS6236668B2 true JPS6236668B2 (en) 1987-08-07

Family

ID=16570095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56209266A Granted JPS58111678A (en) 1981-12-25 1981-12-25 Powdering of acetic acid-containing seasoning solution

Country Status (5)

Country Link
JP (1) JPS58111678A (en)
AU (1) AU8596782A (en)
DE (1) DE3226282A1 (en)
FR (1) FR2518874A1 (en)
GB (1) GB2112621A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3824239B2 (en) * 1994-11-16 2006-09-20 松谷化学工業株式会社 Powdered substrate
DE10007061A1 (en) * 2000-02-16 2001-09-06 Aventis Cropscience Gmbh Process for the production of acid-modified starch
JP4521670B2 (en) * 2001-07-31 2010-08-11 松谷化学工業株式会社 Powdered food
JP5005880B2 (en) * 2004-03-26 2012-08-22 昭和産業株式会社 Saccharide and sugar composition and foods containing these
JP4659727B2 (en) * 2005-12-22 2011-03-30 株式会社キックオフ Taste improvement method
JP4714671B2 (en) * 2005-12-22 2011-06-29 株式会社キックオフ Method for improving taste of vinegar and method for improving taste of food using the same
JP4693760B2 (en) * 2005-12-22 2011-06-01 株式会社キックオフ Taste improvement method
JP4675928B2 (en) * 2006-03-31 2011-04-27 株式会社キックオフ Flavor improver, food and drink with improved flavor by adding flavor improver, and method for producing the same
KR101223807B1 (en) * 2010-09-08 2013-01-17 문지은 The Salicornia Hervacea vinegar manufacture method
WO2012119765A1 (en) * 2011-03-09 2012-09-13 Cargill, Incorporated A powdered acid-loaded carrier material
JP6512997B2 (en) * 2015-08-27 2019-05-15 昭和産業株式会社 Dried food

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531347A (en) * 1976-06-25 1978-01-09 Matsushita Electric Ind Co Ltd Freezing prevention means

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531347A (en) * 1976-06-25 1978-01-09 Matsushita Electric Ind Co Ltd Freezing prevention means

Also Published As

Publication number Publication date
GB2112621A (en) 1983-07-27
FR2518874A1 (en) 1983-07-01
DE3226282A1 (en) 1983-07-07
AU8596782A (en) 1983-06-30
JPS58111678A (en) 1983-07-02

Similar Documents

Publication Publication Date Title
US4454165A (en) Preparation of alcohol-containing powders
WO2004000990A1 (en) Beer-like alcoholic beverage and process for producing the same
JPS6236668B2 (en)
US3560343A (en) Low d. e. starch conversion products
US20080118957A1 (en) Process For The Production Of Maltodextrins And Maltodextrins
JPH089953A (en) New beer and its production
US4603110A (en) Starch hydrolyzates and preparation thereof
JP6512997B2 (en) Dried food
JPH08176202A (en) Production of hydrolyzed starch
JPS59213385A (en) Low alcohol content beer and production thereof
USRE30880E (en) Low D.E. starch conversion products
JP6374334B2 (en) Method for producing quality improved rice
US6177123B1 (en) Process for the production of a wine powder
JP2018174765A (en) Fragrance ingredient retaining agent and method for retaining fragrance ingredient in foods and beverages
JP3084637B2 (en) Reduced starch sugar composition, method for producing the same, and food and drink containing the composition
JPH11146778A (en) Fermented malt beverage and its production
KR20190045811A (en) Method of manufacturing bead type sweetener by using gelatinized grain or grain powder, and composition using the same
EP0428232B1 (en) A process for batchwise preparing a liquid having increased viscosity on the basis of milk
JPS6027509B2 (en) Powdered base for alcohol-containing materials and method for producing alcohol-containing powder using the same
JPS626780B2 (en)
JPH04179463A (en) Seasoned laver product
JPH0576339A (en) Preparation of liquor or food
JPH09299094A (en) Reducing starch sugar composition, its production and food and drink containing the same composition
JPS58129952A (en) Preparation of food and drink
JP3411672B2 (en) Method for producing vegetable and / or fruit bean jam