JPS6236614B2 - - Google Patents

Info

Publication number
JPS6236614B2
JPS6236614B2 JP56047733A JP4773381A JPS6236614B2 JP S6236614 B2 JPS6236614 B2 JP S6236614B2 JP 56047733 A JP56047733 A JP 56047733A JP 4773381 A JP4773381 A JP 4773381A JP S6236614 B2 JPS6236614 B2 JP S6236614B2
Authority
JP
Japan
Prior art keywords
zno
compound
nonlinearity
firing
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56047733A
Other languages
Japanese (ja)
Other versions
JPS57162404A (en
Inventor
Hoki Haba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP56047733A priority Critical patent/JPS57162404A/en
Publication of JPS57162404A publication Critical patent/JPS57162404A/en
Publication of JPS6236614B2 publication Critical patent/JPS6236614B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 本発明は、ZnOを主成分とした電圧非直線抵抗
体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a voltage nonlinear resistor containing ZnO as a main component.

サージアブソーバや避雷器の特性要素として、
ZnOを主成分としBi2O3を添加物の主構成成分と
した非直線抵抗体が普及しつつある。これはZnO
素子が優れた非直線性(非直線指数α>20)と高
いエネルギー吸収能力を有することを利用するも
ので、ギヤツプ要素を不要にしたいわゆる半導体
避雷器を実現させた。このZnO素子は、高純度の
ZnOにビスマス(Bi)、コバルト(Co)、マンガ
ン(Mn)、アンチモン(Sb)などの酸化物を微
量加えて混合、造粒、成形し、素体の側面に高抵
抗層を形成するための特殊処理を行なつた後、
Bi2O3の揮散を注意深く抑えた状態で1000℃以上
の高温で焼成することで作成されるが、その非直
線誘発機構は微細構造と直接に関係している。例
えば、避雷器用ZnO素子はCo、Mn、Ni等が固溶
する8〜30μmのZnO粒子の囲りをCo、Ni、
Mn、Zn、Sb等が固溶する1μm以下の酸化ビス
マス(Bi2O3)層が取り囲んだ基本構造を形成して
おり、ZnO素子とBi2O3層の界面で非直線性が誘
発される。
Characteristic elements of surge absorbers and lightning arresters include:
Nonlinear resistors containing ZnO as a main component and Bi 2 O 3 as an additive are becoming popular. This is ZnO
By taking advantage of the element's excellent nonlinearity (nonlinearity index α > 20) and high energy absorption ability, we have realized a so-called semiconductor lightning arrester that eliminates the need for gap elements. This ZnO element has high purity
A small amount of oxides such as bismuth (Bi), cobalt (Co), manganese (Mn), and antimony (Sb) are added to ZnO and mixed, granulated, and molded to form a high-resistance layer on the side of the element body. After special processing,
It is created by firing at a high temperature of over 1000°C while carefully suppressing the volatilization of Bi 2 O 3 , and its nonlinear induction mechanism is directly related to the microstructure. For example, ZnO elements for lightning arresters are made by surrounding ZnO particles of 8 to 30 μm in which Co, Mn, Ni, etc. are dissolved.
It forms a basic structure surrounded by a bismuth oxide (Bi 2 O 3 ) layer of less than 1 μm in which Mn, Zn, Sb, etc. are dissolved, and nonlinearity is induced at the interface between the ZnO element and the Bi 2 O 3 layer. Ru.

しかし、ZnO素子の非直線性の安定性は、焼成
後のZnO粒子及びBi2O3層に変化が起きないこと
を前提とすれば、Bi2O3層が焼成後にδ型又はβ
型のBi2O3相となつており非直線性もα>50と高
い値を示すが、非常に不安定で通常の課電によつ
て簡単に熱暴走してしまう。この熱暴走には500
℃以上の高温で再熱処理することによりBi2O3
をδ、β型からγ型に変えることで特性の安定化
を図ることができる。しかし、非直線性は悪くな
る(α20)。
However, the stability of the nonlinearity of the ZnO element is determined by assuming that the ZnO particles and the Bi 2 O 3 layer do not change after firing.
It has a three- phase Bi 2 O type and exhibits a high nonlinearity of α > 50, but it is extremely unstable and easily undergoes thermal runaway when normal electrical current is applied. 500 for this thermal runaway
The properties can be stabilized by reheating at a high temperature of ℃ or higher to change the Bi 2 O 3 phase from the δ and β types to the γ type. However, the nonlinearity becomes worse (α20).

この非直線性の低下は、直列ギヤツプを付けな
いで避雷器を構成し、高圧、超高圧送電系等に適
用すると、素子に常時印加される電圧が高いこと
即ち高課電率使用による大きな漏れ電流を招くこ
と、及び系統に頻繁に発生する過電圧により高い
課電率の併害としてZnO素子に過電流が流れ、
ZnO素子の焼損を招く恐れがある。
This decrease in nonlinearity is caused by the high voltage that is constantly applied to the element, that is, the large leakage current due to the use of a high charging rate, when the lightning arrester is configured without a series gap and applied to high voltage or ultra-high voltage power transmission systems. As a side effect of the high charging rate due to overvoltage that frequently occurs in the grid, overcurrent flows to the ZnO element,
There is a risk of burning out the ZnO element.

このように、従来のZnOを主成分とする非直線
抵抗体は、ZnO粒子を取り囲むBi2O3層の不安定
性を改善するために熱処理によるγ−Bi2O3化を
施すと、非直線性の低下を招く問題があつた。ま
た、Bi2O3の揮散を抑えた注意深い焼成を必要と
し、量産生に劣る問題があつた。
In this way, conventional non-linear resistors mainly composed of ZnO become non-linear when subjected to heat treatment to convert them into γ-Bi 2 O 3 in order to improve the instability of the Bi 2 O 3 layer surrounding ZnO particles. There was a problem that led to a decline in sexuality. In addition, careful firing was required to suppress the volatilization of Bi 2 O 3 , which led to problems with mass production.

本発明はBi2O3層に代えてモリブデン(Mo)化
合物層でZnO粒子を取り囲む構造とすることによ
り、熱的に安定しかつ非直線性に優れる電圧非直
線抵抗体を提供することを目的とする。
The purpose of the present invention is to provide a voltage nonlinear resistor that is thermally stable and has excellent nonlinearity by having a structure in which ZnO particles are surrounded by a molybdenum (Mo) compound layer instead of the three Bi 2 O layers. shall be.

本発明によるMo化合物層型非電圧直線抵抗体
は、従来のZnO素子製法と同一に一般のセラミツ
ク製法により形成されるが、焼成温度と焼成時間
に差異を有する。即ち、従来のZnO素子はBi2O3
が揮散し易いため、別途にBi2O3蒸気雰囲気を作
り可能な限り低温で短時間焼成が図られるが、本
発明におけるZnO素子は例えば酸化物が1400℃以
上の焼成にも揮散しにくいことから好ましい高温
長時間焼成にして焼成強度の向上即ちエネルギー
耐量を良好にするなど優れた焼結体となる。
The Mo compound layer type non-voltage linear resistor according to the present invention is formed by the same general ceramic manufacturing method as the conventional ZnO element manufacturing method, but there are differences in firing temperature and firing time. That is, the conventional ZnO element is Bi 2 O 3
However, in the ZnO element of the present invention, for example, oxides are difficult to volatilize even when fired at temperatures above 1400°C. Therefore, by firing at a preferable high temperature for a long time, an excellent sintered body can be obtained with improved firing strength, that is, good energy resistance.

本発明によるMo化合物型ZnO素子は以下のよ
うにして製造される。ZnOとして70〜99.9モルパ
ーセント、Mo化合物例えばMoO3として0.1〜20
モルパーントのZnOとMo化合物を基本組成と
し、この基本組成にCo化合物例えばCo2O3として
0.05〜5モルパーセント、Mn化合物例えばMnO2
を0.05〜5モルパーセント、Sb2O3として0〜5
モルパーセントの範囲で種々の割合で秤量し、ボ
ールミルで湿式混合する。この混合物にポリビニ
ルアルコール(PVA)等のバインダーを加えて
造粒後、250Kg/cm2の圧力で例えば40mm径、20mm
厚さに加圧成形し、900℃〜1000℃で一旦仮焼
し、バインダーの徐去と混合系内の反応及び予備
焼結する。この後、本焼成としてアルミナ質等か
ら成るヤサ中にSb2O3、MoO3、PbO等の混合蒸
気雰囲気を作り気相−固相反応による側面絶縁を
施した焼結を1100℃以上の高温で数時間以上焼成
する。出来た焼結体は例えば32mm径、16mm厚さに
なり、その両端面を研磨し、洗浄後アルミニウム
メタリコン電極をつけて素子を完成する。なお、
上記予備焼成は必ずしも必要としないし、また素
子の熱安定性を観測するためには焼結体にAgベ
ーストをつけ500〜800℃による焼付けを行なう。
また、上記焼成時の混合蒸気雰囲気については側
面材を焼成後つける場合やZnO−Sb2O3−MoO3
系特の無機質側面材を有機バインダーを加えたペ
ーストとして塗布する場合には必要としない。
The Mo compound type ZnO element according to the present invention is manufactured as follows. 70-99.9 mole percent as ZnO, 0.1-20 as Mo compound e.g. MoO3
Molpanto's ZnO and Mo compounds are the basic composition, and a Co compound such as Co 2 O 3 is added to this basic composition.
0.05-5 mole percent Mn compounds e.g. MnO 2
0.05 to 5 mol percent, 0 to 5 as Sb 2 O 3
Weigh out various proportions in a range of mole percentages and wet mix in a ball mill. After adding a binder such as polyvinyl alcohol (PVA) to this mixture and granulating it, for example, 40 mm diameter, 20 mm
It is pressure-molded to a thickness, calcined once at 900°C to 1000°C, and undergoes gradual removal of the binder, reaction in the mixing system, and preliminary sintering. After this, for the main firing, a mixed vapor atmosphere of Sb 2 O 3 , MoO 3 , PbO, etc. is created in the yarn made of alumina, etc., and side insulation is applied by a gas phase-solid phase reaction, and sintering is performed at a high temperature of 1100℃ or more Bake for several hours or more. The resulting sintered body has a diameter of, for example, 32 mm and a thickness of 16 mm, and both end faces are polished, and after cleaning, aluminum metallicon electrodes are attached to complete the device. In addition,
The above pre-firing is not necessarily necessary, and in order to observe the thermal stability of the element, the sintered body is coated with an Ag base and baked at 500 to 800°C.
In addition, regarding the mixed vapor atmosphere during the above-mentioned firing, there is a case where side materials are attached after firing, and when ZnO−Sb 2 O 3 −MoO 3
It is not necessary when applying a special inorganic side surface material as a paste with an organic binder added.

このようにして作成したZnO素子は、その微細
構造が第1図a〜fにXマイクロアナライザによ
る二次電子像(第1図a)及び各元素の分布像
(第1図b〜f)になる。この第1図に見られる
ように、本発明によるZnO素子はZnO粒子(第1
図b)の囲りをMoの酸化物(第1図c)が取り
囲んだ基本構造を有し、他の添加物であるCo2O3
(第1図f)、Sb2O3(第1図d)及びMnO2(第
1図e)はSbがZnとZn2.33Sb0.67O4スピネル構造
をなすが、Co及びMnはZnO粒子、Mo酸化物層、
スピネル層等に分散している。
The microstructure of the ZnO element created in this way is shown in Figure 1 a to f, as shown in the secondary electron image (Figure 1 a) and the distribution image of each element (Figure 1 b to f) by the X microanalyzer. Become. As seen in FIG. 1, the ZnO element according to the present invention has ZnO particles (first
It has a basic structure in which Mo oxide (Fig. 1 c) surrounds the box shown in Fig. b), and other additives such as Co 2 O 3
(Fig. 1 f), Sb 2 O 3 (Fig. 1 d), and MnO 2 (Fig. 1 e), Sb forms a spinel structure with Zn and Zn 2 . 33 Sb 0 . 67 O 4 , but Co and Mn are ZnO particles, Mo oxide layer,
It is dispersed in the spinel layer, etc.

上記構造を有する本発明のZnO素子の小電流域
(10-6〜10-3A)での電圧−電流特性を測定し
た。この測定結果から非直線性の良否を判別する
ため、電流と電圧Vと非直線指数αの関係式 I=(V/C)〓 但しCは定数 なる近似式から非直線指数αとその非直線性をう
みだすしきい電圧(動作開始電圧)V1mA/mm
を算出した。なお、非直線指数は上記式の両辺を
対数にとる下記式から算出される。
The voltage-current characteristics of the ZnO element of the present invention having the above structure in a small current range (10 -6 to 10 -3 A) were measured. In order to judge whether the nonlinearity is good or bad from this measurement result, the relational expression between the current, voltage V, and nonlinearity index α is I=(V/C)〓 where C is a constant, and from the approximate expression, the nonlinearity index α and its nonlinearity are Threshold voltage (starting voltage for operation) that produces the desired characteristics V 1 mA/mm
was calculated. Note that the non-linear index is calculated from the following equation in which both sides of the above equation are taken as logarithms.

上記測定とα算出をSb2O3添加量、MoO3添加
量、MnO2添加量を種々変えたZnO素子について
の結果は第2図〜第5図に示すものとなつた。第
2図はMoO3添加量を横軸にしてSb2O3を1モル
パーセント一定、Co2O3を0.5モルパーセント一
定としMnO2をパラメータとしたα値を示す。第
3図は第2図におけるMnO2を0.6モルパーセント
一定とし、Co2O3をパラメータとしたときのα値
を示す。第4図はCo2O3量を横軸にしてMoO3
0.5モルパーセント一定、Sb2O3を1モルパーセン
ト一定とし、MnO2をパラメータとしたα値を示
す。第5図はMnO2量を横軸にしてMoO3を5モ
ルパーセント一定、Sb2O3を1モルパーセント一
定とし、Co2O3をパラメータとしたα値を示す。
なお、しきい電圧V1mAは総ての素子で100V〜
300Vに入つた。
The results of the above measurements and α calculations for ZnO elements in which the amount of Sb 2 O 3 added, the amount of MoO 3 added, and the amount of MnO 2 added were varied are shown in FIGS. 2 to 5. FIG. 2 shows the α value with MnO 2 as a parameter, with Sb 2 O 3 constant at 1 mol percent and Co 2 O 3 constant at 0.5 mol percent, with the horizontal axis representing the amount of MoO 3 added. FIG. 3 shows the α value when MnO 2 in FIG. 2 is constant at 0.6 mol percent and Co 2 O 3 is used as a parameter. Figure 4 shows MoO 3 with the amount of Co 2 O 3 on the horizontal axis.
The α value is shown with 0.5 mol percent constant, Sb 2 O 3 constant at 1 mol percent, and MnO 2 as a parameter. FIG . 5 shows the α value with Co 2 O 3 as a parameter, with the amount of MnO 2 on the horizontal axis, MoO 3 constant at 5 mol percent, Sb 2 O 3 constant at 1 mol percent.
In addition, the threshold voltage V 1 mA is 100V ~ for all elements.
I entered 300V.

これら測定値から明らかなように、本発明によ
る素子はZnO粒子の囲りをMo化物が取り囲んだ
基本構造を有し、ZnOとMo化合物を基本組成と
し、Co化合物、Mn化合物、Sb化合物を適当に配
合し、造粒、成形して高温長時間焼成により高い
非直線性を持つZnO素子を実現できることが判つ
た。特に、ZnO、Mo化合物としては第2図、第
3図から明らかなようにZnOを70〜99.8モルパー
セント、Mo化合物は0.1〜20モルパーセントの範
囲で他の添加物との兼ね合いで決定し、Co化合
物は第4図に示すように0.05〜5モルパーセント
の範囲、Mn化合物は第5図に示すように0.05〜
5モルパーセント、残りのSb化合物は0〜5モ
ルパーセントの範囲で添加した組成で非直線特性
に優れるZnO素子を実現できる。なお、Mo化合
物の添加量下限0.1モルパーセントとするのはそ
れ以下では焼成時に液相ができにくく焼成温度を
より高くする必要性のためである。また、Mo化
合物の上限を20モルパーセントとしたのはそれ以
上では非直線性が悪くなることによる。同様に、
Co、Sb、Mn化合物についてもその添加量範囲外
では顕著な非直線性が出なくなるためである。
As is clear from these measured values, the element according to the present invention has a basic structure in which ZnO particles are surrounded by Mo compounds, and the basic composition is ZnO and Mo compounds, with Co compounds, Mn compounds, and Sb compounds as appropriate. It was found that a ZnO element with high nonlinearity could be realized by blending, granulating, molding, and firing at high temperature for a long time. In particular, as for ZnO and Mo compounds, as is clear from Fig. 2 and Fig. 3, ZnO is determined in the range of 70 to 99.8 mol%, and Mo compound is determined in the range of 0.1 to 20 mol%, taking into account other additives. The Co compound ranges from 0.05 to 5 mol percent as shown in Figure 4, and the Mn compound ranges from 0.05 to 5 mole percent as shown in Figure 5.
A ZnO element with excellent nonlinear characteristics can be realized by adding 5 mol percent of the Sb compound and the remaining Sb compound in the range of 0 to 5 mol percent. The lower limit of the amount of Mo compound added is set at 0.1 mol percent because if it is less than that, a liquid phase is difficult to form during firing, so it is necessary to raise the firing temperature. Further, the reason why the upper limit of the Mo compound is set to 20 mol percent is that the nonlinearity deteriorates when the amount exceeds this value. Similarly,
This is because significant nonlinearity does not occur when Co, Sb, and Mn compounds are added in amounts outside the range.

次に、本発明によるZnO素子の非直線特性の安
定性については、Ag電極を焼付けるもα値及び
しきい電圧V1mA/mmに変化は現われないし、
140℃の雰囲気中での課電条件として0.7×V1mA
の直流電圧を印加し、時間に対する漏れ電流の増
加を測定したがその値は10-3mA/h程度の低い
増加率になり、優れた安定性を持つことを確認す
ることができた。
Next, regarding the stability of the nonlinear characteristics of the ZnO element according to the present invention, there is no change in the α value and the threshold voltage V 1 mA/mm even after baking the Ag electrode.
0.7×V 1 mA as a charging condition in an atmosphere of 140℃
The increase in leakage current with respect to time was measured by applying a DC voltage of 10 -3 mA/h, and the increase rate was as low as 10 -3 mA/h, confirming excellent stability.

以上のとおり、本発明においては、酸化ビスマ
スBi2O3に代えてモリブデン化合物をZnO粒子と
の界面形成要素とする基本組成とするため、焼成
時の揮散の問題が解消されて例えば1500℃で数十
時間の焼成にも揮散を抑え得ることから焼成体に
最適の焼成温度を選択でき、焼結体は熱的不安定
性がなく再熱処理を必要としないし常時課電によ
る組成の熱破損の恐れもない安定した素子にな
る。また、ZnO粒子の囲りをMo化合物が取り囲
んだ基本組成に、その非直線性誘発要素として
Co、Mn等の遷移金属やSb等を固溶させることに
よりZnO粒子とMo化合物層との界面に電気的な
障壁を形成させることで非直線性を得るが、その
非直線性の安定性はZnO粒子とMo化合物層によ
るものでMo化合物層が非常に安定していること
から非直線性も安定する。
As described above, in the present invention, since the basic composition is a molybdenum compound as an interface forming element with ZnO particles instead of bismuth oxide Bi 2 O 3 , the problem of volatilization during firing is solved, and the Since volatilization can be suppressed even during firing for several tens of hours, it is possible to select the optimal firing temperature for the fired body, and the sintered body is not thermally unstable and does not require reheating, and its composition does not suffer from thermal damage due to constant electrical application. Become a stable element without fear. In addition, the basic composition of ZnO particles surrounded by Mo compounds has a nonlinearity-inducing factor.
Nonlinearity is obtained by forming an electrical barrier at the interface between the ZnO particles and the Mo compound layer by dissolving transition metals such as Co and Mn and Sb, etc., but the stability of the nonlinearity is This is due to the ZnO particles and Mo compound layer, and since the Mo compound layer is very stable, nonlinearity is also stable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電圧非直線抵抗体のX線
マイクロアナライザによる二次電子像aと各元素
の分布像b,c,d,e,fを示す図、第2図、
第3図、第4図及び第5図は本発明による電圧非
直線抵抗体の非直線指数特性図である。
FIG. 1 is a diagram showing a secondary electron image a and distribution images b, c, d, e, f of each element taken by an X-ray microanalyzer of a voltage nonlinear resistor according to the present invention; FIG.
3, 4, and 5 are nonlinear exponential characteristic diagrams of the voltage nonlinear resistor according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化亜鉛(ZnO)とモリブデン(Mo)化合
物とコバルト(Co)化合物とマンガン(Mn)化
合物とアンチモン(Sb)化合物を混合、造粒、
成形し、高温焼成することにより酸化亜鉛粒子の
周りをモリブデン化合物が取り囲んだ基本構造で
アンチモン(Sb)が亜鉛とスピネル構造をな
し、コバルト(Co)及びマンガン(Mn)が全体
に分散した構造を有する焼結体としたことを特徴
とする電圧非直線抵抗体。
1 Mix zinc oxide (ZnO), molybdenum (Mo) compound, cobalt (Co) compound, manganese (Mn) compound, and antimony (Sb) compound, granulate,
By molding and firing at high temperatures, a basic structure is created in which zinc oxide particles are surrounded by a molybdenum compound, antimony (Sb) forms a spinel structure with zinc, and cobalt (Co) and manganese (Mn) are dispersed throughout. A voltage nonlinear resistor characterized by being a sintered body comprising:
JP56047733A 1981-03-31 1981-03-31 Voltage nonlinear resistor Granted JPS57162404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56047733A JPS57162404A (en) 1981-03-31 1981-03-31 Voltage nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56047733A JPS57162404A (en) 1981-03-31 1981-03-31 Voltage nonlinear resistor

Publications (2)

Publication Number Publication Date
JPS57162404A JPS57162404A (en) 1982-10-06
JPS6236614B2 true JPS6236614B2 (en) 1987-08-07

Family

ID=12783534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56047733A Granted JPS57162404A (en) 1981-03-31 1981-03-31 Voltage nonlinear resistor

Country Status (1)

Country Link
JP (1) JPS57162404A (en)

Also Published As

Publication number Publication date
JPS57162404A (en) 1982-10-06

Similar Documents

Publication Publication Date Title
JPS6015127B2 (en) Voltage nonlinear resistor and its manufacturing method
JPS6236614B2 (en)
JP5264929B2 (en) Method for manufacturing voltage nonlinear resistor
JP2005145809A (en) Zinc oxide-based sintered compact, zinc oxide varistor, and lamination type zinc oxide varistor
JPS6236612B2 (en)
JPS6236613B2 (en)
JP2005097070A (en) Zinc oxide-based sintered compact and zinc oxide varistor
JP2625178B2 (en) Varistor manufacturing method
JP2003109806A (en) Nonlinear resistor and its manufacturing method
JP2985619B2 (en) Method of manufacturing voltage non-linear resistor and lightning arrester
JP2531586B2 (en) Voltage nonlinear resistor
JPH0439761B2 (en)
JP2572882B2 (en) Voltage nonlinear resistor and manufacturing method thereof
JP5388937B2 (en) Voltage non-linear resistor and lightning arrester equipped with voltage non-linear resistor
JPS6028121B2 (en) Manufacturing method of voltage nonlinear resistor
JPS62208601A (en) Manufacture of voltage nonlinear resistance device
JP2020047685A (en) Zinc oxide element
KR20040078915A (en) Zinc Oxide Sintered Body, and Manufacturing Method thereof and Zinc Oxide Varistor
JPH10308302A (en) Zinc oxide-based porcelain composition and its production and zinc oxide varistor
JPH07109803B2 (en) Voltage nonlinear resistor and method of manufacturing the same
JPS6236615B2 (en)
JP2020047686A (en) Zinc oxide element
JPS589562B2 (en) Manufacturing method of voltage nonlinear resistor
JPH08203708A (en) Nonlinear resistor
JPH08124717A (en) Nonlinear resistor