JPS6236604B2 - - Google Patents

Info

Publication number
JPS6236604B2
JPS6236604B2 JP54027025A JP2702579A JPS6236604B2 JP S6236604 B2 JPS6236604 B2 JP S6236604B2 JP 54027025 A JP54027025 A JP 54027025A JP 2702579 A JP2702579 A JP 2702579A JP S6236604 B2 JPS6236604 B2 JP S6236604B2
Authority
JP
Japan
Prior art keywords
oxide
voltage
weight
composition
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54027025A
Other languages
Japanese (ja)
Other versions
JPS55120102A (en
Inventor
Shinya Shoji
Isamu Tsuruoka
Masaki Komori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISHIZUKA DENSHI KK
Original Assignee
ISHIZUKA DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHIZUKA DENSHI KK filed Critical ISHIZUKA DENSHI KK
Priority to JP2702579A priority Critical patent/JPS55120102A/en
Publication of JPS55120102A publication Critical patent/JPS55120102A/en
Publication of JPS6236604B2 publication Critical patent/JPS6236604B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、非直線抵抗器の製造法、特に低電圧
領域(3〜15V程度)に使用するのに適した堰層
型の電圧非直線抵抗器の製造法に関する。 従来から過電圧保護用の半導体素子として電圧
非直線抵抗器があり、そのひとつとしてSiCバリ
スタが実用に供されていた。その電圧−電流特性
は、電圧をV、電流をIとすると近似的にI=
KV〓で表わされる。ここにKはバリスタの材料
の種類によつて決まる定数であり、αは非直線係
数と呼ばれるものであつてαの値が大きいほど良
いバリスタと言えるものである。 SiCバリスタはSiC粒子を磁器結合剤で焼き固
めたもので、その構造はSiC粒子が直並列接続し
ていて粒子間の接触部の非直線特性を利用したも
のである。従来このSiCバリスタは比較的高電圧
領域で使用されていたが近年、電子機器の発展に
ともない低電圧領域で使用できるSiCバリスタの
要求が多くなつてきた。しかしながらSiCバリス
タは上記したように電極間でSiC粒子が直並列接
続した構造であるために低電圧(低抵抗)品を製
造するためには厚みを薄くしなければならない。
しかし厚みを薄くすれば直列の粒子接触触数が減
るので粒子接触面にかかる電圧が高くなり安定性
の面から問題があつた。またSiCバリスタは多孔
性であるため薄くすると強度が弱くなるなどの問
題点があつた。そこでこのような問題点を解決す
るために磁器結合剤とともにカーボン等の導電性
物質を添加したり、カーボン中に埋没して焼成す
る方法が行なわれていた。しかしながら、このよ
うな方法によつて得られたSiCバリスタは、確か
に低抵抗となるけれども、その電圧−電流特性は
直線抵抗体(α=1)に近くなり非直線係数αが
小さく従つて過電圧抑制効果が小さくなつて性能
的に不十分であつた。 また、シリコン、ゲルマニウムを利用したダイ
オードは低電圧範囲の特性を得ることは比較的容
易であるがセラミツクスと違い各種形状の製品を
作ることは製造上難しい問題があつてコスト的に
も高価なものになつてしまう欠点があり、その用
途にもおのずと限界があつた。さらに低電圧バリ
スタとして酸化チタン系あるいはチタン酸バリウ
ム系半導体磁器を基板とし、この基板と電極間の
接触性を利用したものがある。このようなバリス
タは基板表面に電極として非オーム性電極を形成
することによつて半導体磁器基板と電極間に堰層
が形成され、この堰層をバリスタ特性として利用
したものである。しかしながらこの堰層は非常に
薄い層であるために電極面にリード線を半田付す
ると堰層が破壊されバリスタ特性が著しく劣化す
る欠点があつた。本発明は叙上の欠点を除去する
ものであつて、その目的とする所は、低電圧領域
(3〜15V程度)における使用に適し、電極と焼
結体素体との間に形成される電気的な障壁を利用
した耐ハンダ付特性、耐パルス特性の優れた電圧
非直線抵抗器の製造法を提供するにある。すなわ
ち電極を焼結体素体の間に形成される電気的な障
壁を利用した非直線抵抗器を得るために焼結体素
体の組成および素体表面に塗布するペースト材料
組成について詳細な実験を行なつた結果バリスタ
電圧は素体の比抵抗によつて主に決定されるもの
であり、また耐ハンダ付性については素体表面に
塗布するペースト材料の組成によつて左右され耐
パルス性に関しては焼結体素体中に含まれる成分
に影響されることが明らかになつた。 すなわち、目的とする低電圧用の非直線抵抗器
を得るためには焼結体素体の比抵抗は200Ω−cm
以下であることが必要であり、このために焼結体
素体中に高抵抗になる絶縁物相を生じさせること
なく低抵抗でオーム性の特性を有する焼結体を作
らなければならない。 そしてこの条件を満たす材料として酸化亜鉛、
酸化マグネシウム、酸化第2錫を基体組成とし、
これに添加物として酸化アンチモン、酸化ニオブ
を添加した材料がきわめて効果があることが明ら
かとなつた。またペースト材料としては銀粉末、
酸化銅、酸化ビスマス、酸化コバルトからなる組
成のハンダ付による特性劣化の防止に大きな効果
のあることが判明した。さらに耐パルス性に関し
ては素体表面に塗布するペースト材料には無関係
であつて焼結体素体の基体組成である酸化マグネ
シウムと酸化第2錫の添加によつて大きく改善さ
れることが明らかとなつた。 このように本発明は低電圧用の非直線抵抗器で
あり非直線係数αを損うことなく耐ハンダ付性、
耐パルス性に優れた電圧非直線抵抗器を提供する
ものであつて以下に本発明の実施例によつて説明
する。 実施例 半導体素材として酸化亜鉛(ZnO)40〜98モル
%、酸化マグネシウム(MgO)1〜50モル%、
酸化第2スズ(SnO2)0.1〜10モル%からなる基
体組成に不純物として酸化アンチモン(Sb2O3
および酸化ニオブ(Nb2O5)を基体組成に対して
それぞれ0.1〜6.0重量%添加しボールミルによつ
て2〜10時間湿式混合して十分均質な混合物とす
る。次に混合物を500〜1000℃で2〜7時間仮焼
し3%のバインダーを添加して造粒する。この時
必要に応じてバインダー共に潤滑剤を添加する。
造粒した混合物はプレス成形した後1200〜1400℃
の空気中で約2時間焼成して直径8.2mm、厚さ1.0
mmの円板状焼結体を得る。 一方、下記範囲に含まれる種々の組成比のペー
スト材料を作つた。 銀微粉末(銀に換算して) 30〜91重量% 銅または酸化銅(銅に換算して) 5〜50重量% 酸化ビスマス 1〜10重量% 酸化コバルト 1〜10重量% なお上記組成混合物は素体との密着性を良くし
塗布を容易にするため上記組成混合物100重量部
に対し低融点ガラスとして硼珪酸系ガラス粉末を
7重量部加え、さらに樹脂、溶剤の量を調整しロ
ールミルにより混練してスクリーン印刷に最適の
粘度をもつペースト材料とした。 次に、このようにして得られた焼結体の両面に
前記した組成範囲内にあるペースト材料を塗布し
乾燥した後600〜850℃で10〜80分焼付け、さらに
この上に半田付可能なオーム性電極(例えば銀電
極)を形成した。そして共晶点が180℃であるPb
−Sn系半田によつてリード線を取付けた。各素
子は半田付前と半田付後の電気特性を測定した。
これらの結果を第1図および表1、2に示した。
また測定は素子に1mAおよび10mAの電流を流
し1秒後の両端電圧をV1nAおよびV10nAとして
測定した。 なおペースト材料と銀電極(オーム性電極)は
同時に塗布し1回の焼付けで形成することも可能
である。 またペースト材料の銀微粉末は酸化銀
(Ag2O)であつても、金属銀および酸化銀の組合
せでもよい。また酸化銅の代りに金属銅を用いて
もよいことはもちろんである。 表1は焼結体素体の組成を種々変えた場合の素
体比抵抗の変化を示したものである。
The present invention relates to a method for manufacturing a non-linear resistor, particularly a weir layer type voltage non-linear resistor suitable for use in a low voltage region (approximately 3 to 15 V). Voltage nonlinear resistors have traditionally been used as semiconductor elements for overvoltage protection, and SiC varistors have been put into practical use as one of them. The voltage-current characteristic is approximately I=
It is expressed as KV〓. Here, K is a constant determined by the type of material of the varistor, and α is called a nonlinear coefficient, and the larger the value of α, the better the varistor. A SiC varistor is made by baking SiC particles with a ceramic binder, and its structure uses the non-linear characteristics of the contact between particles, with SiC particles connected in series and parallel. Conventionally, SiC varistors have been used in relatively high voltage ranges, but in recent years, with the development of electronic equipment, there has been an increasing demand for SiC varistors that can be used in low voltage ranges. However, as described above, SiC varistors have a structure in which SiC particles are connected in series and parallel between electrodes, so in order to manufacture low voltage (low resistance) products, the thickness must be reduced.
However, if the thickness is made thinner, the number of particle contacts in series decreases, which increases the voltage applied to the particle contact surface, which poses a problem in terms of stability. Additionally, since SiC varistors are porous, they have problems such as weakening their strength when made thinner. In order to solve these problems, methods have been used in which a conductive substance such as carbon is added to the ceramic binder, or the ceramic is buried in carbon and then fired. However, although the SiC varistor obtained by this method does have a low resistance, its voltage-current characteristics are close to those of a linear resistor (α = 1), and its nonlinear coefficient α is small, so it is susceptible to overvoltage. The suppressing effect was small and the performance was insufficient. In addition, it is relatively easy to obtain characteristics in the low voltage range with diodes that use silicon or germanium, but unlike ceramics, it is difficult to manufacture products in various shapes, and they are expensive. It had the disadvantage of becoming obsolete, and there were naturally limits to its uses. Furthermore, there are low-voltage varistors that use titanium oxide or barium titanate semiconductor ceramic as a substrate and utilize the contact between the substrate and the electrodes. In such a varistor, a weir layer is formed between the semiconductor ceramic substrate and the electrode by forming a non-ohmic electrode as an electrode on the surface of the substrate, and this weir layer is utilized as a varistor characteristic. However, since this weir layer is a very thin layer, it has the disadvantage that if a lead wire is soldered to the electrode surface, the weir layer is destroyed and the varistor characteristics are significantly deteriorated. The present invention is intended to eliminate the above-mentioned drawbacks, and its purpose is to be suitable for use in a low voltage region (approximately 3 to 15 V), and to form an electrode between an electrode and a sintered body. It is an object of the present invention to provide a method for manufacturing a voltage nonlinear resistor that utilizes an electrical barrier and has excellent soldering resistance and pulse resistance. In other words, in order to obtain a non-linear resistor that utilizes an electrical barrier formed between electrodes and a sintered body, detailed experiments were conducted on the composition of the sintered body and the composition of the paste material applied to the surface of the body. As a result, the varistor voltage is mainly determined by the specific resistance of the element, and the solder resistance is influenced by the composition of the paste material applied to the element surface, and the pulse resistance is determined by the composition of the paste material applied to the element surface. It has become clear that this is influenced by the components contained in the sintered body. In other words, in order to obtain the desired low-voltage nonlinear resistor, the specific resistance of the sintered body must be 200Ω-cm.
For this reason, it is necessary to produce a sintered body that has low resistance and ohmic characteristics without creating an insulating phase that becomes highly resistive in the sintered body. Zinc oxide is a material that satisfies this condition.
The base composition is magnesium oxide and stannic oxide,
It has become clear that a material to which antimony oxide and niobium oxide are added as additives is extremely effective. In addition, silver powder,
It has been found that a composition consisting of copper oxide, bismuth oxide, and cobalt oxide is highly effective in preventing property deterioration due to soldering. Furthermore, it is clear that the pulse resistance is not related to the paste material applied to the surface of the element, but is greatly improved by the addition of magnesium oxide and tin oxide, which are the base composition of the sintered element. Summer. In this way, the present invention is a non-linear resistor for low voltage use, and has excellent soldering resistance and high resistance to soldering without impairing the non-linear coefficient α.
The present invention provides a voltage non-linear resistor with excellent pulse resistance, and will be explained below with reference to embodiments of the present invention. Example Semiconductor materials include zinc oxide (ZnO) 40 to 98 mol%, magnesium oxide (MgO) 1 to 50 mol%,
Antimony oxide (Sb 2 O 3 ) as an impurity in a base composition consisting of 0.1 to 10 mol% of stannic oxide (SnO 2 )
and niobium oxide (Nb 2 O 5 ) are added in an amount of 0.1 to 6.0% by weight based on the base composition, and wet mixed for 2 to 10 hours using a ball mill to obtain a sufficiently homogeneous mixture. Next, the mixture is calcined at 500 to 1000°C for 2 to 7 hours, and 3% binder is added and granulated. At this time, a lubricant is added together with the binder if necessary.
The granulated mixture is heated to 1200-1400℃ after press molding.
Baked in the air for about 2 hours, the diameter is 8.2 mm and the thickness is 1.0 mm.
A disk-shaped sintered body of mm is obtained. On the other hand, paste materials having various composition ratios within the following range were prepared. Fine silver powder (in terms of silver) 30-91% by weight Copper or copper oxide (in terms of copper) 5-50% by weight Bismuth oxide 1-10% by weight Cobalt oxide 1-10% by weight The above composition mixture is In order to improve adhesion to the base body and facilitate application, 7 parts by weight of borosilicate glass powder was added as a low melting point glass to 100 parts by weight of the above composition mixture, and the amounts of resin and solvent were adjusted and kneaded using a roll mill. A paste material with the optimum viscosity for screen printing was created. Next, a paste material within the composition range described above is applied to both sides of the sintered body thus obtained, dried, and then baked at 600 to 850°C for 10 to 80 minutes. An ohmic electrode (eg, a silver electrode) was formed. and Pb whose eutectic point is 180℃
-The lead wires were attached using Sn-based solder. The electrical characteristics of each element were measured before and after soldering.
These results are shown in FIG. 1 and Tables 1 and 2.
Further, the measurement was carried out by applying currents of 1 mA and 10 mA to the element and measuring the voltages at both ends after 1 second as V 1nA and V 10nA . Note that the paste material and the silver electrode (ohmic electrode) can be applied at the same time and formed by one baking process. Further, the silver fine powder of the paste material may be silver oxide (Ag 2 O) or a combination of metallic silver and silver oxide. Moreover, it goes without saying that metallic copper may be used instead of copper oxide. Table 1 shows the changes in the specific resistance of the sintered body when the composition of the sintered body was varied.

【表】【table】

【表】 前述したように本発明に係る低電圧用の非直線
抵抗器を得るためには焼結体の比抵抗は200Ω−
cm以下の範囲でなければいけない。そして表より
明らかなように試料No.1〜7のZnO−SnO2系お
よびZnO−MgO−SnO2系では試料No.1〜2を除
いていずれも比抵抗が高く本発明に係る焼結体と
しては適さないことがわかる。No.1〜2は比抵抗
が低く低電圧用の非直線抵抗器として使用できる
焼結体ではあるが後述するようにMgOを含有し
ていないために耐パルス特性が悪くこの点におい
て目的とする焼結体としては望ましくない。また
試料No.8〜13はZnO−MgO−SnO2の基体組成に
Sb2O3およびNb2O5をそれぞれ単独添加したもの
である。Sb2O3は添加量の増加にともなつて比抵
抗は低くなり、さらに添加量が増加すると再び比
抵抗は高くなる傾向がある。一方Nb2O5の場合は
添加量が増えるに従つて比抵抗は低くなる一方で
あるがある程度下がると添加量の割合には比抵抗
は下がらなくなる。このようにSb2O3および
Nb2O5の添加によつてZnO−MgO−SnO2の3成
分系からなる焼結体の比抵抗を下げることがき
る。特に試料No.9、12、13は、焼結体の比抵抗が
200Ω−cm以下となり本発明の目的のひとつを満
足するものであるが、比抵抗のバラツキが大きい
ため量産に適したものとはいえず、本発明の目的
とする焼結体としては、まだ十分とはいえない。
No.15〜39(No.18を除く)はZnO−MgO−SnO2
基体組成にSb2O3およびNb2O5を同時添加したも
のである。表から、明らかなように他の試料と比
較して比抵抗がSb2O3およびNb2O5の単独添加に
比べ大きく減少し目的の範囲の比抵抗を有した焼
結体が得られることがわかる。 そして以上の実験結果から判明したことは
MgOの添加は耐パルス性に有効であるとともに
比抵抗を下げる効果を有するが添加量が50モル%
以上になると比抵抗が200Ω−cm以上になつて本
発明に係る焼結体として適さない。また1モル%
以下では耐パルス特性が悪く良好な非直線抵抗器
が得られない。SnO2を添加する場合はSb2O3およ
び(または)Nb2O5を同時に添加することによつ
て比抵抗を下げる効果が現れる。そしてSnO2
加量が10モル%以上になると比抵抗は200Ω−cm
を越え目的とする低電圧用の非直線抵抗器の焼結
体として実用上適さなくなる。また0.1モル%以
下では比抵抗が上昇するとともに耐パルス性が悪
くなる傾向があるので好ましくない。Sb2O3およ
びNb2O5の添加は6.0重量%以上添加された場合
焼結性が悪くなつて望ましい焼結体が得られなく
なる。 表2は焼結体の組成を一定とし、ペースト材料
の組成を変えた場合の電気特性の変化を示したも
のである。
[Table] As mentioned above, in order to obtain the low voltage non-linear resistor according to the present invention, the specific resistance of the sintered body must be 200Ω-
Must be within cm. As is clear from the table, in the ZnO-SnO 2 system and ZnO-MgO-SnO 2 system of Samples No. 1 to 7, except for Samples No. 1 to 2, all of the sintered bodies according to the present invention have a high resistivity. It turns out that it is not suitable as such. Nos. 1 and 2 are sintered bodies that have low specific resistance and can be used as non-linear resistors for low voltage, but as will be explained later, they do not contain MgO, so they have poor pulse resistance and are not intended for this purpose. This is not desirable as a sintered body. In addition, samples No. 8 to 13 have a substrate composition of ZnO−MgO−SnO 2 .
Sb 2 O 3 and Nb 2 O 5 were added individually. As the amount of Sb 2 O 3 added increases, the resistivity decreases, and when the amount added further increases, the resistivity tends to increase again. On the other hand, in the case of Nb 2 O 5 , as the amount added increases, the resistivity decreases, but once it decreases to a certain extent, the resistivity does not decrease as much as the amount added. Thus Sb 2 O 3 and
By adding Nb 2 O 5 , the specific resistance of the sintered body consisting of the ternary system of ZnO-MgO-SnO 2 can be lowered. In particular, for samples No. 9, 12, and 13, the specific resistance of the sintered body was
200 Ω-cm or less, which satisfies one of the objects of the present invention, but it cannot be said to be suitable for mass production due to large variations in resistivity, and is still insufficient as a sintered body for the purpose of the present invention. I can't say that.
Nos. 15 to 39 (excluding No. 18) have a base composition of ZnO-MgO-SnO 2 with Sb 2 O 3 and Nb 2 O 5 added simultaneously. As is clear from the table, the resistivity was significantly reduced compared to other samples when Sb 2 O 3 and Nb 2 O 5 were added alone, and a sintered body with a resistivity within the desired range was obtained. I understand. The above experimental results revealed that
Addition of MgO is effective for improving pulse resistance and lowering specific resistance, but the amount added is 50 mol%.
If it is more than that, the specific resistance will be 200 Ω-cm or more, making it unsuitable as a sintered body according to the present invention. Also 1 mol%
Below this, the pulse resistance is poor and a good nonlinear resistor cannot be obtained. When adding SnO 2 , adding Sb 2 O 3 and/or Nb 2 O 5 at the same time produces the effect of lowering the specific resistance. And when the amount of SnO2 added is 10 mol% or more, the specific resistance is 200Ω-cm
If the sintered body exceeds this value, it becomes unsuitable for practical use as a sintered body for a nonlinear resistor for low voltage use. Further, if it is less than 0.1 mol %, the specific resistance tends to increase and the pulse resistance tends to deteriorate, which is not preferable. If Sb 2 O 3 and Nb 2 O 5 are added in an amount of 6.0% by weight or more, the sinterability deteriorates and a desired sintered body cannot be obtained. Table 2 shows changes in electrical properties when the composition of the paste material was changed while the composition of the sintered body was kept constant.

【表】 なお参考例1、2および実施例1〜14(ただし
6、7を除く)の焼結体組成はZnO87.4モル%、
MgO12モル%、SnO20.6モル%にSb2O3および
Nb2O5をそれぞれ2.0重量%添加した焼結体であ
る。表においてV10nA変化率は半田付後の特性の
半田付前の初期特性に対する変化率であり、
V10/V1変化率はV10nAとV1nAの電圧比が半田付
後どの程度初期特性に対して変化しているかを示
すもので、この電圧比は直接に非直線係数に関係
する値であるからこの変化率が大きいということ
は、半田付後の特性が直線抵抗体に近づいている
ことを示すものである。すなわち電圧非直線抵抗
器としての性能が劣化していることを意味するも
のである。 表の参考例1はペースト材料組成が銀と酸化銅
からなるものでV10およびV10/V1変化率のいず
れもが小さな値を示し一見良好な材料のように思
えるが第1図に示すごとく素子に10mAの定電流
を流し測定すると素子の両端電圧は測定時間(電
流印加時間)と共に降下してしまう。すなわち電
圧非直線抵抗器としての性能は悪く安定性に乏し
いといえる。これに対し本発明品(実施例1〜
14)は非常に安定したものであることがわかる。
参考例2は銅成分を含まないものであるがこの素
子はV10/V1変化率が非常に大きく、これは非直
線係数αが半田付によつて小さくなることを示し
ており商品としての価値が小さく実用上適した材
料といえない。しかしながら本発明の範囲内のペ
ースト材料からなる実施例1〜14は、いずれも
V10およびV10/V1変化率が小さく優れた耐半田
付特性を示している。また前述したように本実施
例の範囲内においては第1図に示すように安定し
た特性も持つ優れた電圧非直線抵抗器である。し
かし銅成分が50重量%以上添加されると第1図に
参考例1と同様に不安定となり好ましくない。ま
たビスマス、コバルト成分が10重量%以上添加さ
れるとV10およびV10/V1変化率が10%以上にな
り半田付による特性の劣化が大きくなつてしま
う。またビスマス、コバルト成分が1重量%以下
では銅添加量が多い場合には参考例1のような電
圧の降下現象が現われ銅添加量が少なくなれば
V10、V10/V1変化率が大きく特性劣化が著し
い。なお実施例5、6、7はペースト材料組成が
同じであるにもかかわらず半田付前の特性(初期
特性)のV10nA値が大きく変化している。これは
基板となる半導体素材に組成が異なる結果であ
る。このことから必要に応じて素材の組成を自由
に電圧を可変できることがわかる。 また本発明品の耐パルス性を調べるためパルス
試験を行なつた。試験は直流60Vの電源から35μ
Fのコンデンサを充電し、このコンデンサからパ
ルス電圧を本発明品に10回印加し初期特性とパル
ス印加後の測定よりV10nAおよびV10/V1の変化
率を求めた。表3にその結果を示す。この表はペ
ースト材料の組成を固定して半導体素体組成を変
えたときの耐パルス性の試験結果を示したもので
ある。その結果によると本発明に係るペースト材
料および半導体素材を使用した場合においては、
10nA変化率は平均値で1.0%、V10/V1変化率は
平均値で2.9%と非常に小さな値であつた。また
ペースト材料組成を固定し半導体素材組成を変え
たものについてパルス試験を行なつた結果
MgO、SnO2がそれぞれ1.0モル%、0.1モル%以
上添加されるとV10nA、V10/V1変化率が著しく
小さくなることが明らかになつた。すなわち
MgO、SnO2を添加しない酸化亜鉛焼結体を使用
した場合V10nA変化率が平均値で−23%、V10
V1変化率が平均値で29%になり非常に大きな特
性劣化があつた。
[Table] The composition of the sintered bodies of Reference Examples 1 and 2 and Examples 1 to 14 (excluding 6 and 7) is ZnO87.4 mol%,
MgO 12 mol%, SnO 2 0.6 mol% Sb 2 O 3 and
These are sintered bodies to which 2.0% by weight of Nb 2 O 5 is added. In the table, the V 10nA change rate is the change rate of the characteristics after soldering with respect to the initial characteristics before soldering,
The V 10 /V 1 rate of change indicates how much the voltage ratio between V 10nA and V 1nA changes from the initial characteristics after soldering, and this voltage ratio is a value directly related to the nonlinear coefficient. The fact that this rate of change is large indicates that the characteristics after soldering are approaching those of a linear resistor. In other words, this means that the performance as a voltage non-linear resistor has deteriorated. Reference example 1 in the table has a paste material composition consisting of silver and copper oxide, and both V 10 and V 10 /V 1 change rate are small values, and at first glance it seems to be a good material, but as shown in Figure 1. If a constant current of 10 mA is applied to the device and measured, the voltage across the device will drop with the measurement time (current application time). In other words, it can be said that the performance as a voltage nonlinear resistor is poor and stability is poor. In contrast, the products of the present invention (Example 1 to
14) is found to be very stable.
Reference example 2 does not contain copper, but this element has a very large V 10 /V 1 change rate, which indicates that the non-linear coefficient α becomes smaller due to soldering, making it difficult to use as a product. It has little value and cannot be considered a material suitable for practical use. However, Examples 1 to 14 consisting of paste materials within the scope of the present invention are all
It exhibits excellent soldering resistance with small V 10 and V 10 /V 1 change rates. Furthermore, as described above, within the scope of this embodiment, it is an excellent voltage nonlinear resistor that also has stable characteristics as shown in FIG. However, if the copper component is added in an amount of 50% by weight or more, it becomes unstable as shown in FIG. 1 as in Reference Example 1, which is not preferable. Furthermore, if bismuth or cobalt components are added in an amount of 10% by weight or more, the V 10 and V 10 /V 1 change rates will be 10% or more, resulting in significant deterioration of properties due to soldering. In addition, if the bismuth and cobalt components are less than 1% by weight and the amount of copper added is large, a voltage drop phenomenon as in Reference Example 1 will appear, and if the amount of copper added is reduced,
The rate of change in V 10 and V 10 /V 1 is large and the characteristics deteriorate significantly. In Examples 5, 6, and 7, although the paste material compositions are the same, the V 10nA values of the characteristics before soldering (initial characteristics) vary greatly. This is a result of the different compositions of the semiconductor materials that serve as the substrate. This shows that the voltage can be freely varied depending on the composition of the material as needed. In addition, a pulse test was conducted to examine the pulse resistance of the product of the present invention. The test is 35μ from a DC 60V power supply.
A capacitor of F was charged, a pulse voltage was applied from the capacitor to the product of the present invention 10 times, and the rate of change in V 10 nA and V 10 /V 1 was determined from the initial characteristics and measurements after the pulse application. Table 3 shows the results. This table shows the pulse resistance test results when the composition of the paste material was fixed and the composition of the semiconductor element was changed. According to the results, when using the paste material and semiconductor material according to the present invention,
The average value of the V 10 nA change rate was 1.0%, and the average value of the V 10 /V 1 change rate was 2.9%, which were very small values. In addition, the results of pulse tests were conducted on paste materials whose composition was fixed and the semiconductor material composition was changed.
It has been revealed that when MgO and SnO 2 are added in an amount of 1.0 mol % or more and 0.1 mol % or more, respectively, the V 10 nA and the V 10 /V 1 change rate become significantly smaller. i.e.
When using a zinc oxide sintered body without MgO or SnO 2 added, the V 10 nA change rate is -23% on average, and the V 10 /
The average value of the V1 change rate was 29%, and there was a very large deterioration in characteristics.

【表】 以上のように本発明に係る電圧非直線抵抗器は
半導体素材として酸化亜鉛、酸化マグネシウム、
酸化第2スズを主成分とし不純物として酸化アン
チモン、酸化ニオブを含む焼結体表面に銀粉末、
酸化銅、酸化ビスマス、酸化コバルトからなるペ
ースト材料を塗布、焼付しこれにオーム性電極を
設けたものであつて耐半田付性、耐パルス性に優
れた低電圧領域の使用に適した電圧非直線抵抗器
であり、また半導体素材の組成を制御することに
より電圧を自由に可変でき任意の形状のものが製
造可能であつて従来のものと比べて特性的、コス
ト的にも優れ工業的に多くの利点を有するもので
ある。 なお実施例においてペースト材料の処理温度が
600℃以下の場合ペースト材料中に含まれるガラ
スフリツトが十分に溶融せず焼結体素体との接着
力が小さく好ましい特性が得られない。また850
℃以上になるとV10nAの値が上昇するとともに耐
パルス特性が悪くなる。これは素体表面の変質が
原因と考えられる。また処理時間についても10〜
80分の範囲外では上記の理由により好ましくな
い。なお処理温度、時間の上限、下限値は概略値
であつてこの範囲をはずれると急に電気特性にお
いて劣化するものではないことはもちろんであ
る。トランジスタ回路のように比較的低い動作電
圧を有する回路の異常高電圧の吸収や電圧安定化
用素子として広く応用することができる。また本
実施例は円板状素体の両面よりリード線を取り出
した形状のものであるが特殊な応用例としてはマ
イクロモータの火花消去素子として本発明よりな
る組成でリング状に成形した焼結体の表面に本発
明よりなる組成のペースト材料を整流子片数に対
応する数だけ円周上に分割形成しさらに整流子片
と半田付できるように銀電極を形成したリング状
の電圧非直線抵抗器とすることもできる。このリ
ング状電圧非直線抵抗器はマイクロモータの回転
子軸に挿入固定して使用される。 このように本発明は、低電圧用として有効な電
圧非直線抵抗器の製造法を提供するものである。
[Table] As described above, the voltage nonlinear resistor according to the present invention uses zinc oxide, magnesium oxide,
Silver powder on the surface of the sintered body, which is mainly composed of tin oxide and contains antimony oxide and niobium oxide as impurities.
A paste material consisting of copper oxide, bismuth oxide, and cobalt oxide is coated and baked, and ohmic electrodes are attached to it.It is a voltage non-conductor suitable for use in the low voltage area with excellent soldering resistance and pulse resistance. It is a linear resistor, and by controlling the composition of the semiconductor material, the voltage can be freely varied and any shape can be manufactured.It has superior characteristics and costs compared to conventional resistors, making it suitable for industrial use. It has many advantages. In addition, in the examples, the processing temperature of the paste material was
If the temperature is below 600°C, the glass frit contained in the paste material will not be sufficiently melted and the adhesive force with the sintered body will be low, making it impossible to obtain desirable characteristics. 850 again
When the temperature exceeds .degree. C., the value of V 10nA increases and the pulse resistance characteristics deteriorate. This is thought to be caused by alteration of the surface of the element. Also, the processing time is 10~
Anything outside the 80 minute range is not preferred for the reasons mentioned above. Note that the upper and lower limits of the processing temperature and time are approximate values, and it goes without saying that the electrical characteristics will not suddenly deteriorate if the temperature and time are outside these ranges. It can be widely applied as an element for absorbing abnormally high voltage or stabilizing voltage in a circuit having a relatively low operating voltage such as a transistor circuit. In this example, lead wires are taken out from both sides of the disc-shaped element body, but as a special application example, a sintered ring-shaped material made of the composition of the present invention is used as a spark quenching element for a micromotor. A ring-shaped voltage non-linear electrode is formed by dividing a paste material having a composition according to the present invention on the surface of the body into pieces on the circumference in a number corresponding to the number of commutator pieces, and further forming silver electrodes so that they can be soldered to the commutator pieces. It can also be a resistor. This ring-shaped voltage nonlinear resistor is used by being inserted and fixed onto the rotor shaft of a micromotor. Thus, the present invention provides a method for manufacturing a voltage nonlinear resistor that is effective for low voltage applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による電圧非直線抵抗器の焼
結体基体の組成を一定としペースト材料の組成を
変えた時のV10/V1変化率(%)特性を示し、参
考例1(ペースト材料組成比は表2を参照)と併
記して示す。
FIG. 1 shows the V 10 /V 1 change rate (%) characteristics when the composition of the sintered body base of the voltage nonlinear resistor according to the present invention is kept constant and the composition of the paste material is changed. The paste material composition ratio is shown in Table 2).

Claims (1)

【特許請求の範囲】 1 酸化亜鉛(ZnO)40〜98モル%、酸化マグネ
シウム(MgO)1〜50モル%、酸化第2スズ
(SnO2)0.1〜10モル%からなる基体成分に不純
物として酸化アンチモン(Sb2O3)および酸化ニ
オブ(Nb2O5)がそれぞれ0.1〜6.0重量%添加され
てなる焼結体表面にペースト材料を塗布、焼付
し、これにオーム性電極を設けた電圧非直線抵抗
器の製造方法。 2 前記ペースト材料は銀微粉末30〜91重量%、
銅または酸化銅(銅に換算して)5〜50重量%、
酸化ビスマス1〜10重量%、酸化コバルト1〜10
重量%からなりこれに低融点ガラス、樹脂、溶剤
を加えたものである前記特許請求の範囲第1項記
載の電圧非直線抵抗器の製造方法。
[Claims] 1 Oxidized as an impurity to a base component consisting of 40 to 98 mol% zinc oxide (ZnO), 1 to 50 mol% magnesium oxide (MgO), and 0.1 to 10 mol% tin oxide (SnO 2 ). A paste material is applied and baked on the surface of a sintered body containing 0.1 to 6.0% by weight of antimony (Sb 2 O 3 ) and niobium oxide (Nb 2 O 5 ), respectively. How to make a linear resistor. 2. The paste material contains 30 to 91% by weight of fine silver powder,
Copper or copper oxide (in terms of copper) 5-50% by weight,
Bismuth oxide 1-10% by weight, cobalt oxide 1-10%
% by weight to which low melting point glass, resin, and solvent are added.
JP2702579A 1979-03-08 1979-03-08 Method of manufacturing voltage nonnlinear resistor Granted JPS55120102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2702579A JPS55120102A (en) 1979-03-08 1979-03-08 Method of manufacturing voltage nonnlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2702579A JPS55120102A (en) 1979-03-08 1979-03-08 Method of manufacturing voltage nonnlinear resistor

Publications (2)

Publication Number Publication Date
JPS55120102A JPS55120102A (en) 1980-09-16
JPS6236604B2 true JPS6236604B2 (en) 1987-08-07

Family

ID=12209531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2702579A Granted JPS55120102A (en) 1979-03-08 1979-03-08 Method of manufacturing voltage nonnlinear resistor

Country Status (1)

Country Link
JP (1) JPS55120102A (en)

Also Published As

Publication number Publication date
JPS55120102A (en) 1980-09-16

Similar Documents

Publication Publication Date Title
US4015230A (en) Humidity sensitive ceramic resistor
US4031498A (en) Non-linear voltage-dependent resistor
CA1095181A (en) Thick film varistor
JPS5928962B2 (en) Manufacturing method of thick film varistor
EP0452511B1 (en) Zinc oxide varistor, manufacture thereof, and crystallized glass composition for coating
JPS6243326B2 (en)
JPS644322B2 (en)
US4349496A (en) Method for fabricating free-standing thick-film varistors
JPS5941284B2 (en) Manufacturing method of voltage nonlinear resistor
US4146677A (en) Resistor material, resistor made therefrom and method of making the same
JPS6236604B2 (en)
JP2018067640A (en) Composition for positive temperature coefficient resistor, paste for positive temperature coefficient resistor, positive temperature coefficient resistor, and method for manufacturing positive temperature coefficient resistor
KR0153126B1 (en) Voltage nonlinearity resistance and manufacture method thereof
JP2985559B2 (en) Varistor
JPS648442B2 (en)
JP2962056B2 (en) Voltage non-linear resistor
JPS6236605B2 (en)
JPS626325B2 (en)
JP2555791B2 (en) Porcelain composition and method for producing the same
KR810000920B1 (en) Non-linear resistors
JPS6241403B2 (en)
JP2715717B2 (en) Voltage non-linear resistor
JPS626323B2 (en)
JPS5821804B2 (en) Atsumakubarista youdenkiyokuzairiyo
JPH0732085B2 (en) Electrode material for voltage nonlinear resistors