JPS6236368B2 - - Google Patents
Info
- Publication number
- JPS6236368B2 JPS6236368B2 JP18237682A JP18237682A JPS6236368B2 JP S6236368 B2 JPS6236368 B2 JP S6236368B2 JP 18237682 A JP18237682 A JP 18237682A JP 18237682 A JP18237682 A JP 18237682A JP S6236368 B2 JPS6236368 B2 JP S6236368B2
- Authority
- JP
- Japan
- Prior art keywords
- operating coil
- coil
- operating
- rectifier
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000006698 induction Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 15
- 230000004907 flux Effects 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 11
- 238000001179 sorption measurement Methods 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000002123 temporal effect Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 230000005674 electromagnetic induction Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/18—Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
- H01F7/1805—Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current
- H01F7/1816—Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current making use of an energy accumulator
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Relay Circuits (AREA)
Description
【発明の詳細な説明】
この発明は単相交流電源を操作電源とする交流
電磁石装置の鉄心騒音の軽減、消費電力の節約、
投入衝撃の減少等の改善に関するものである。[Detailed Description of the Invention] This invention aims to reduce iron core noise, save power consumption, and
This relates to improvements such as reduction of input shock.
従来の単相交流電源を操作電源とする最も一般
的な交流電磁石装置の概要図を第1図に示す。第
1図において、1は可動鉄心、2は固定鉄心、3
は電磁吸引力の零点を無くす為に装着されている
隈取りコイル(以下クマトリコイル)、4は磁束
を発生させる操作コイル、5はクマトリコイル3
によつて囲まれたクマトリ部、6はクマトリコイ
ル3の外にある非クマトリ部、φ1は非クマトリ
部6の中を通る非クマトリ部磁束、φ2はクマト
リ部5の中を通るクマトリ部磁束、G(t)は可
動鉄心1と固定鉄心2の間の空隙(ギヤツプ)で
ある。なおこの装置の接続を第2図に示す。ま
た、その電圧ベクトル図を第3図に示す。第2図
および第3図において、7は単相交流電源、8は
開閉器(スイツチ)、Vは単相交流電源7の電圧
ベクトル、R1は操作コイル4の内部抵抗、ωは
単相交流電源7の角周波数、L(t)は操作コイ
ル4のインダクタンス、i(t)は操作コイル4
を流れる電流である。 FIG. 1 shows a schematic diagram of the most common AC electromagnet device that uses a conventional single-phase AC power source as an operating power source. In Fig. 1, 1 is a movable core, 2 is a fixed core, and 3 is a movable core.
is a shading coil (hereinafter referred to as Kumatori coil) installed to eliminate the zero point of electromagnetic attraction force, 4 is an operating coil that generates magnetic flux, and 5 is Kumatori coil 3
6 is the non-kumatori part outside the Kumatori coil 3, φ1 is the non-kumatori magnetic flux passing through the non-kumatori part 6, and φ2 is the Kumatori part magnetic flux passing inside the Kumatori part 5. , G(t) is the gap between the movable core 1 and the fixed core 2. The connections of this device are shown in FIG. Moreover, the voltage vector diagram is shown in FIG. In Figures 2 and 3, 7 is a single-phase AC power supply, 8 is a switch, V is the voltage vector of the single-phase AC power supply 7, R1 is the internal resistance of the operating coil 4, and ω is the single-phase AC power supply. The angular frequency of the power source 7, L(t) is the inductance of the operating coil 4, and i(t) is the inductance of the operating coil 4.
is the current flowing through.
第2図において、スイツチ8を閉じると操作コ
イルMC4が励磁されて、可動鉄心1は第1図の
矢印の方向に引張られる。一般に交流電磁石は空
隙G(t)が大きい時、第3図のインダクタンス
L(t)が小さく、励磁コイル4には大きなラツ
シユ電流が流れ、直流電磁石にくらべ、大きな吸
引力を発生させることができる。そして可動鉄心
1と固定鉄心2が吸引完了して閉じると、インダ
クタンスL(t)は大きくなり、励磁コイル4を
流れる電流i(t)は小さくなる。この時クマト
リコイル3によりクマトリ部磁束2と非クマト
リ部磁束1の間に位相差ができ、電磁石の吸引
力は零になることがなくなり、電磁石は吸着状態
を維持する。従来のこの電磁石装置の良否は吸引
力の最小値をいかに大きく設計されているかに掛
つていたと言つても過言ではない。 In FIG. 2, when the switch 8 is closed, the operating coil MC4 is energized and the movable core 1 is pulled in the direction of the arrow in FIG. In general, when the air gap G(t) of an AC electromagnet is large, the inductance L(t) shown in Fig. 3 is small, a large lash current flows through the exciting coil 4, and a large attractive force can be generated compared to a DC electromagnet. . When the movable iron core 1 and the fixed iron core 2 complete attraction and close, the inductance L(t) increases and the current i(t) flowing through the exciting coil 4 decreases. At this time, a phase difference is created between the magnetic flux 2 in the magnetic area 2 and the magnetic flux 1 in the non-magnetic area due to the magnetic flux coil 3, so that the attractive force of the electromagnet does not become zero, and the electromagnet maintains the attracted state. It is no exaggeration to say that the success or failure of this conventional electromagnetic device depended on how large the minimum value of the attractive force was designed to be.
第4図に吸引開始からの励磁コイル4に加わる
端子間電圧vと時間tとの関係図aおよび吸引力
fと時間との関係図bをそれぞれカーブで図示す
る。なお、Pは鉄心閉時点を示す。この電磁石装
置はいかに最適に設計されていたとしても、吸引
力の脈動は避けられず、鉄心の騒音は大きな問題
であつた。そして初期吸引力が比較的大きなこと
から、吸引時間は短かくすることができるが、投
入衝撃が大きく、寿命や他部品、機構部分への悪
影響が大きな問題であつた。更に鉄心内を通る磁
束が交番する為、鉄心内のヒステリシス損及びク
マトリコイル3を流れる電流による損失クマトリ
損は避けられず、吸着状態における消費入力は決
して小さくなかつた。材料、構造の面から言え
ば、ヒステリシス損を小さくする為には高価な珪
素鋼板を積層にした積層鉄心の使用は必然的とな
り、クマトリコイルに就ても軽視できない技術の
高度さを要求された。 FIG. 4 shows a relationship diagram (a) between the inter-terminal voltage v applied to the excitation coil 4 from the start of attraction and time t, and a relationship diagram (b) between attraction force f and time, respectively, as curves. Note that P indicates the time point when the iron core is closed. No matter how optimally designed this electromagnetic device was, pulsations in the attraction force were unavoidable, and noise from the iron core was a major problem. Since the initial suction force is relatively large, the suction time can be shortened, but the injection impact is large, which poses a major problem in terms of lifespan and adverse effects on other parts and mechanical parts. Furthermore, since the magnetic flux passing through the iron core alternates, hysteresis loss within the iron core and loss due to current flowing through the magnetic coil 3 are unavoidable, and the power consumption in the attracted state is by no means small. In terms of materials and structure, in order to reduce hysteresis loss, it was necessary to use a laminated core made of expensive silicon steel plates, and the sophistication of technology that could not be ignored was also required for Kumatori coils.
これ等の問題に対処する為に、従来第5図の様
な直流操作の方法及び第6図の節約抵抗13を用
いた直流操作の方法があつた。 In order to deal with these problems, there have conventionally been methods for direct current operation as shown in FIG. 5 and methods for direct current operation using a saving resistor 13 as shown in FIG.
9は全波整流装置、10は全電圧印加の直流操
作用操作コイル、11は投入時のみ全電圧印加
で、吸着後抵抗で分割された電圧の加わる直流操
作用操作コイル、12は投入時と吸着後と切換え
る為の常閉接点、13は吸着後操作コイル11に
加わる電圧を低くし、消費入力を節約する為の節
約抵抗Rである。第5図においては、交番磁束が
ない為、鉄心内のヒステリシス損もなく、クマト
リコイルも必要なくなる。しかし投入時には大き
な起磁力を必要とする為、第2図と同じ様なラツ
シユ電流を流すと吸着後もこの電流が流れる為、
コイルの銅損が大きすぎ、長時間使用ではコイル
の焼損がおこる。その為、電流を制限して起磁力
を出すために、非常に多くの巻線数が必要とな
り、操作コイル10は大きなコイルとなつてしま
う。そしてコイル自体が大きくなると共に一般に
は吸着後の消費電力は第2図の交流電磁石装置よ
りもかなり大きなものとなる。第6図では、第5
図でコイルの大きくなることを防ぐ為と吸着後の
入力を小さくする為に投入時と吸着後を常閉接点
12で切換えている。しかしこの場合でも節約抵
抗R13で銅損がかなり発生し、吸着後も決して
消費入力は小さいとは言えない。そしてこの銅損
が大きい為、節約抵抗R13は大きな許容入力を
もつ大形の抵抗となることが多い。 9 is a full-wave rectifier, 10 is an operation coil for DC operation that applies full voltage, 11 is an operation coil for DC operation that applies full voltage only when it is turned on, and after adsorption, a voltage divided by a resistor is applied, and 12 is an operation coil that is used when it is turned on. A normally closed contact 13 is used to switch between post-adsorption and post-adsorption, and a saving resistor R is used to lower the voltage applied to the operation coil 11 after adsorption to save input power. In FIG. 5, since there is no alternating magnetic flux, there is no hysteresis loss in the iron core, and no kumatori coil is required. However, since a large magnetomotive force is required at the time of insertion, if a lash current similar to that shown in Figure 2 is applied, this current will continue to flow even after attraction.
Copper loss in the coil is too large, and the coil will burn out if used for a long time. Therefore, in order to limit the current and generate magnetomotive force, a very large number of windings are required, and the operating coil 10 becomes a large coil. As the coil itself becomes larger, the power consumption after attraction generally becomes considerably larger than that of the AC electromagnet device shown in FIG. In Figure 6, the 5th
In the figure, in order to prevent the coil from increasing in size and to reduce the input after suction, a normally closed contact 12 is used to switch between when it is turned on and after suction. However, even in this case, a considerable amount of copper loss occurs in the saving resistor R13, and the consumed input cannot be said to be small even after adsorption. Since this copper loss is large, the saving resistor R13 is often a large resistor with a large allowable input.
第5図、第6図の電磁石装置の操作コイル1
0,11の両端に加わる電圧波形vと吸引力fの
投入時からの時間的変化をそれぞれ第7図a,b
および第8図a,bに示す。なお常閉接点12の
開(オフ)時点を示す。 Operating coil 1 of the electromagnet device shown in Figs. 5 and 6
The voltage waveform v applied to both ends of 0 and 11 and the temporal change from the time of application of the attractive force f are shown in Fig. 7 a and b, respectively.
and shown in FIGS. 8a and 8b. Note that the time point when the normally closed contact 12 is opened (off) is shown.
この発明は上記のような従来のものの課題欠点
を解決除去する為になされたもので、投入時には
半波整流した電圧を第2操作コイルに印加し、鉄
心吸着後あるいは吸着寸前に、常時閉接点を開
(OFF)とすることで交流側に設けた第1操作コ
イルから第2操作コイルへの誘導とフライホイー
ル効果により吸引力の直流分を生み出し、鉄心騒
音がなく消費入力が小さく更に投入衝撃の少なく
原価の安い交流電磁石装置を提供することを目的
とするものである。 This invention was made in order to solve and eliminate the problems and drawbacks of the conventional ones as described above.When the voltage is turned on, a half-wave rectified voltage is applied to the second operating coil, and after or just before the core is attracted, the normally closed contact is By turning it open (OFF), a DC component of the suction force is created by induction from the first operating coil installed on the AC side to the second operating coil and the flywheel effect, resulting in no iron core noise, low power consumption, and even less impact when starting. The purpose of the present invention is to provide an AC electromagnet device that has a low cost and is low in cost.
以下この発明の一実施例を図面によつて詳しく
説明する。 Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.
第9図はこの発明に係る回路の一実施例を示す
回路図で、第10図a,b,cは第9図の回路を
用いた場合の第1、および第2の操作コイルの端
電圧v1,v2とこれに基づく吸引力fをそれぞれ時
間tに対する経過を図示したものである。第9図
において7は交流電源、8は開閉スイツチ、12
は常閉操点、14は第1の整流器、15は第2の
整流器、16は第1の操作コイル、17は第2の
操作コイルである。なお、常閉接点12、第1の
整流器14及び第2の操作コイル17は直列接続
体を構成し、第1の操作コイル16に並列に接続
されている。第2の操作コイル(MC2)17は投
入時には常閉接点12が導通しており、単相半波
電圧が印加されるが、吸着後あるいは吸着寸前に
常閉接点12が開放され、第1の操作コイル16
からの誘導により保持電流を流すのに必要な電圧
を発生する第2の操作コイルである。16は吸着
後交流電圧印加により第2の操作コイル17に誘
導する第1の操作コイルである。なお、第1の操
作コイル16と第2の操作コイル17は同一磁路
内に設けられており、一例として同一コイルのス
プールに2重巻されている。 FIG. 9 is a circuit diagram showing an embodiment of the circuit according to the present invention, and FIGS. 10a, b, and c show the terminal voltages of the first and second operating coils when the circuit of FIG. 9 is used. The graph shows the progress of v 1 , v 2 and the attraction force f based on these values over time t. In Fig. 9, 7 is an AC power supply, 8 is an on/off switch, and 12
is a normally closed operating point, 14 is a first rectifier, 15 is a second rectifier, 16 is a first operating coil, and 17 is a second operating coil. Note that the normally closed contact 12, the first rectifier 14, and the second operating coil 17 constitute a series connection body, and are connected in parallel to the first operating coil 16. When the second operation coil (MC 2 ) 17 is turned on, the normally closed contact 12 is conductive and a single-phase half-wave voltage is applied, but after or just before the attraction, the normally closed contact 12 is opened and the first operating coil 16
This is the second operating coil that generates the voltage necessary to flow the holding current by induction from the coil. Reference numeral 16 denotes a first operating coil that is guided to a second operating coil 17 by applying an AC voltage after attraction. Note that the first operating coil 16 and the second operating coil 17 are provided in the same magnetic path, and are wound twice around the same coil spool, for example.
iは第2の操作コイルMC217と第2の整流器
D215とのループを流れる電流である。投入時
は第2の操作コイルMC217の内部抵抗によつて
ほとんど決定される大きな投入電流が第2の操作
コイルMC217に流れ、投入時に必要な起磁力を
確保する。保持の時点では第1の操作コイルMC1
16から電磁誘導により第2の操作コイルMC21
7に誘起電圧が発生する。そして、第2の整流器
D215と第2の操作コイルMC217とによりフ
ライホイール回路が形成され、第10図のbに示
すフライホイール効果により、第2の操作コイル
MC217にはiの電流が流れ、鉄心を通る磁束は
直流分を主体とした磁束が流れる。そのために同
一磁路内に設けられている第2の操作コイルMC2
17には半波で電流を減少させている為、入力が
小さくなると共に、コイルの大きさを小さくする
ことが可能となる。又鉄心磁束は流分を主体とし
た脈動分波形であるため、鉄心騒音は皆無に近い
状態となる。なお、第1の整流器14と第2の整
流器15の接続方向は、両者が第9図に示す方向
と逆であれば、同じ動作をすることは言う迄もな
い。 i is the second operating coil MC 2 17 and the second rectifier
This is the current flowing through the loop with D 2 15. At the time of closing, a large closing current determined mostly by the internal resistance of the second operating coil MC 2 17 flows through the second operating coil MC 2 17 to ensure the necessary magnetomotive force at the time of closing. At the time of holding, the first operating coil MC 1
16 to the second operating coil MC 2 1 by electromagnetic induction.
An induced voltage is generated at 7. And the second rectifier
A flywheel circuit is formed by D 2 15 and the second operating coil MC 2 17, and due to the flywheel effect shown in FIG.
A current of i flows through the MC 2 17, and the magnetic flux that passes through the iron core is mainly a direct current component. For this purpose, a second operating coil MC 2 is provided in the same magnetic path.
Since the current is reduced by a half wave in No. 17, the input becomes small and the size of the coil can be made small. In addition, since the core magnetic flux has a pulsating waveform mainly composed of flow, core noise is almost non-existent. It goes without saying that if the connection direction of the first rectifier 14 and the second rectifier 15 is opposite to the direction shown in FIG. 9, they will operate in the same way.
以上のようにこの発明によれば、単相交流電源
を一度半波整流しているので投入時の衝撃も大い
に緩和される。また、鉄心磁束は直流分を主体と
した脈動分波形であるため、鉄心騒音は皆無に近
い状態となる。 As described above, according to the present invention, since the single-phase AC power source is once half-wave rectified, the impact when it is turned on is greatly reduced. Furthermore, since the core magnetic flux has a pulsating waveform mainly composed of DC components, core noise is almost non-existent.
そして保持時には第1の操作コイルMC116か
ら第2の操作コイルMC217への電磁誘導により
誘起電圧を発生させフライホイール回路を形成し
ており、かつ第1の操作コイルMC116は定格電
圧で吸引もしくは保持できない程の僅かの巻数を
施すに過ぎないため、励磁電流は非常に小さく、
従つてコイルの消費入力も小さくすることがで
き、かつ整流器とコイルのみで回路を構成してい
るため、安価で信頼性の高い上に高性能な交流電
磁石装置を得られるという効果がある。 During holding, an induced voltage is generated by electromagnetic induction from the first operating coil MC 1 16 to the second operating coil MC 2 17 to form a flywheel circuit, and the first operating coil MC 1 16 is Since the number of turns is so small that it cannot be attracted or held by voltage, the exciting current is very small.
Therefore, the input power consumption of the coil can be reduced, and since the circuit is composed of only the rectifier and the coil, it is possible to obtain an AC electromagnet device that is inexpensive, highly reliable, and has high performance.
この発明は、電磁接触器、電磁継電器、タイマ
ーその他多くの分野の電磁石駆動装置に利用する
ことができる。 INDUSTRIAL APPLICATION This invention can be utilized for the electromagnet drive device of many fields, such as an electromagnetic contactor, an electromagnetic relay, and a timer.
また常に閉接点の両端に、コンデンサや抵抗等
を接続したり、常閉接点を半導体化したり、第9
図の整流器にサイリスタ化する等の応用も容易に
実現できる。 In addition, it is possible to connect a capacitor or a resistor to both ends of a normally closed contact, convert the normally closed contact into a semiconductor, or
Applications such as converting the rectifier shown in the figure into a thyristor can also be easily realized.
第1図は従来の交流電磁石装置の要部を示す概
要図、第2図はその回路図、第3図は回路内の電
圧ベクトル図、第4図は電圧v対時間t及び吸引
力f対時間tの経過を示す特性図aおよびb、第
5図および第6図は第1図の装置の改良の為の従
来の電磁石装置の回路図の例、第7図および第8
図はそれぞれ第5図および第6図に対応する回路
における操作コイルの端子間電圧vと時間tの関
係a及び吸引力fの投入時からの時間tとの時間
的変化の関係bを示す特性図、第9図は本発明に
係る交流電磁石装置の一実施例の回路図、第10
図はこの実施例における第1の操作コイル端子間
電圧v1と投入時からの時間tの時間的変化図a、
第2の操作コイル端子間電圧v2と投入時からの時
間的変化図bおよび吸引力fの時間的変化図cを
示す。
各図において、1は可動鉄心、2は固定鉄心、
3は隈取りコイル、4は操作コイル、5はクマト
リ部、6は非クマトリ部、7は交流電源、8は開
閉器、9は整流装置、10は操作コイル、11は
操作コイル、12は常閉接点、13は節約抵抗、
14は第1の整流器、15は第2の整流器、16
は第1の操作コイル、17は第2の操作コイルで
ある。なお、G(t)は空隙の幅、φ1,φ2は
磁束、MCは操作コイル、Vは電圧ベクトル、R1
はコイルの内部抵抗、i(t)は電流、ωは角周
波数、L(t)はコイルのインダクタンス、vは
コイルの端子間電圧、tは時間、fは吸引力、p
は鉄心閉時点、Qは常閉接点のオフ時点、D1,
D2は第1第2整流器、MC1,MC2はそれぞれ第
1の操作コイル、第2の操作コイル、v1,v2はそ
れぞれ第1、第2の操作コイルの端子間電圧を示
す。なお各図において同一符号は同一又は相当部
分をあらわす。
Figure 1 is a schematic diagram showing the main parts of a conventional AC electromagnet device, Figure 2 is its circuit diagram, Figure 3 is a voltage vector diagram in the circuit, and Figure 4 is voltage v vs. time t and attractive force f vs. Characteristic diagrams a and b showing the passage of time t, FIGS. 5 and 6 are examples of circuit diagrams of a conventional electromagnetic device for improving the device shown in FIG. 1, and FIGS.
The figures show the relationship a between the voltage between the terminals of the operating coil v and time t, and the relationship b with time t from the time when the attraction force f is applied, in the circuits corresponding to FIGS. 5 and 6, respectively. 9 is a circuit diagram of an embodiment of an AC electromagnet device according to the present invention, and FIG.
The figure is a temporal change diagram a of the voltage between the terminals of the first operating coil v 1 and the time t from the time of application in this embodiment,
A diagram b showing a temporal change in the voltage between the terminals of the second operating coil v 2 from the time of application, and a diagram c a diagram c in which the attraction force f changes over time. In each figure, 1 is a movable core, 2 is a fixed core,
3 is a shading coil, 4 is an operating coil, 5 is a closed section, 6 is a non-closed section, 7 is an AC power supply, 8 is a switch, 9 is a rectifier, 10 is an operating coil, 11 is an operating coil, 12 is normally closed Contact point, 13 is a saving resistor,
14 is a first rectifier, 15 is a second rectifier, 16
17 is a first operating coil, and 17 is a second operating coil. In addition, G(t) is the width of the air gap, φ 1 and φ 2 are the magnetic flux, MC is the operating coil, V is the voltage vector, and R 1
is the internal resistance of the coil, i(t) is the current, ω is the angular frequency, L(t) is the inductance of the coil, v is the voltage between the terminals of the coil, t is time, f is the attractive force, p
is when the iron core is closed, Q is when the normally closed contact is turned off, D 1 ,
D 2 is the first and second rectifier, MC 1 and MC 2 are the first operating coil and second operating coil, respectively, and v 1 and v 2 are the voltages between the terminals of the first and second operating coils, respectively. In each figure, the same reference numerals represent the same or equivalent parts.
Claims (1)
置において、上記単相交流電源の両端に接続され
た第1の操作コイルと、この第1の操作コイルに
並列に接続された常閉接点、第1の整流器及び第
2の操作コイルからなる直列接続体と、上記第2
の操作コイルに並列に接続され、かつ上記第1の
整流器とは同極どうしが接続されている第2の整
流器とを備え、上記常閉接点は電磁石装置の可動
鉄心と固定鉄心の吸着後あるいは吸着寸前に開放
されるものであり、上記第1の操作コイル及び上
記第2の操作コイルは電磁石装置の同一磁路内に
設けられ、かつ上記第1の操作コイルは定格電圧
で吸引もしくは保持できない程の巻数であり、上
記第2の操作コイルは上記常閉接点が開路した後
上記第1の操作コイルからの誘導により保持電流
を流すのに必要な電圧を発生するものであること
を特徴とした交流電磁石装置。 2 第1の操作コイルと第2の操作コイルとは同
一コイルのスプールに2重巻されていることを特
徴とした特許請求の範囲第1項に記載の交流電磁
石装置。[Scope of Claims] 1. In an AC electromagnet device using a single-phase AC power source as an operating power source, a first operating coil connected to both ends of the single-phase AC power source, and a first operating coil connected in parallel to the first operating coil. a series connection body consisting of a normally closed contact, a first rectifier and a second operating coil;
A second rectifier is connected in parallel to the operating coil of the electromagnetic device, and the second rectifier is connected with the same polarity as the first rectifier. The first operating coil and the second operating coil are provided in the same magnetic path of the electromagnetic device, and the first operating coil cannot attract or hold at the rated voltage. and the second operating coil generates a voltage necessary to flow a holding current by induction from the first operating coil after the normally closed contact is opened. AC electromagnet device. 2. The AC electromagnet device according to claim 1, wherein the first operating coil and the second operating coil are wound twice on a spool of the same coil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18237682A JPS5972112A (en) | 1982-10-18 | 1982-10-18 | Ac electromagnet device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18237682A JPS5972112A (en) | 1982-10-18 | 1982-10-18 | Ac electromagnet device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5972112A JPS5972112A (en) | 1984-04-24 |
JPS6236368B2 true JPS6236368B2 (en) | 1987-08-06 |
Family
ID=16117221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18237682A Granted JPS5972112A (en) | 1982-10-18 | 1982-10-18 | Ac electromagnet device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5972112A (en) |
-
1982
- 1982-10-18 JP JP18237682A patent/JPS5972112A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5972112A (en) | 1984-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6012769B2 (en) | Electromagnet excitation circuit | |
JPS6236368B2 (en) | ||
US2736843A (en) | Alternating current electromagnets | |
CN114267515B (en) | AC electromagnet using three bridge circuits | |
US2360954A (en) | Antichattering electromagnetic control | |
JPS6229883B2 (en) | ||
JPS59175105A (en) | Electromagnet | |
JPS59175104A (en) | Ac electromagnet | |
US2434601A (en) | Electromagnetic device | |
JPS6256646B2 (en) | ||
JPS5929407A (en) | Electromagnet apparatus | |
KR860000838Y1 (en) | Coil for dc power | |
JPS59175106A (en) | Electromagnet | |
JPH11225432A (en) | Transformer rush current reduction method | |
JP2794387B2 (en) | Single-phase induction motor with control device | |
JP2931950B2 (en) | Electromagnet drive | |
JPS6147091A (en) | High frequency heater | |
JPS5952808A (en) | Ac magnet | |
JPH04271103A (en) | Electromagnetic device equipped with permanent magnet | |
JPS643157Y2 (en) | ||
JPS5929408A (en) | Ac electromagnet apparatus | |
JP2000082374A (en) | Electromagnet device for electromagnetic contactor | |
SU1756951A1 (en) | Device for connection of load to three-phase power supply source | |
CN118737618A (en) | Electromagnet with high power factor and high efficiency and power saving | |
JPH0537387Y2 (en) |