JPS59175104A - Ac electromagnet - Google Patents

Ac electromagnet

Info

Publication number
JPS59175104A
JPS59175104A JP4919183A JP4919183A JPS59175104A JP S59175104 A JPS59175104 A JP S59175104A JP 4919183 A JP4919183 A JP 4919183A JP 4919183 A JP4919183 A JP 4919183A JP S59175104 A JPS59175104 A JP S59175104A
Authority
JP
Japan
Prior art keywords
coil
attraction
electromagnet
small
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4919183A
Other languages
Japanese (ja)
Inventor
Sadajiro Mori
貞次郎 森
Shigeharu Otsuka
大塚 重治
Shizutaka Nishisako
西迫 静隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4919183A priority Critical patent/JPS59175104A/en
Publication of JPS59175104A publication Critical patent/JPS59175104A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electromagnets (AREA)

Abstract

PURPOSE:To obtain an AC electromagnet with no core noise, small input consumption and small closing impact by a method wherein a rectified voltage of the full voltage is applied to the coil when the electromagnet is closed and after the attraction a reactor is inserted before a rectifier by opening a normally closed type contact. CONSTITUTION:When a switch 8 is closed, an operating coil 4 is excited and a movable core 1 is attracted by a fixed core 2. After the attraction, the inductance becomes large and the current applied to the operating coil 4 becomes small and at the same time the phase difference between flux phi1 and flux phi2 is produced by a shading coil 3 and the attraction is maintained. However, as the shading coil is necessary, AC is rectified to drive the magnet. The large magnetomotive force at the time of closing and the maintaining current after the attraction can not be balanced by the rectification only. Therefore, a normally closed type contact 12 is opened after the attraction to keep the maintaining current small by a reactor 14.

Description

【発明の詳細な説明】 この発明は単相交流電源を操作電源とする交流電磁石装
置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of an AC electromagnet device using a single-phase AC power source as an operating power source.

従来の単相交流電源を操作電源とする交流電磁石装置と
して、最も一般的である直接単相交流電圧を操作コイル
に印加するものを第1図に示す。
FIG. 1 shows the most common type of AC electromagnet device using a conventional single-phase AC power source as an operating power source, in which a single-phase AC voltage is directly applied to an operating coil.

第1図において、(11は可動鉄心、(2)は固定鉄心
In Fig. 1, (11 is a movable core, and (2) is a fixed core.

(31は電磁吸引力の零点を無くす為に上記固定鉄心(
2)に装着されているくま取りコイル、(4)は磁束を
発生させる操作コイル、(5)はくま取りコイル(3)
によって囲まれたく才取り部、(6)はくま取りコイル
(31の外にある非くま取り部、φ1は非くま取り部(
6)中を通る非くま取り部磁束、φ2はくま取り部(5
)中を通るく抜取り部磁束、Gは可動鉄心(11と固定
鉄心(2)の間の空隙である。
(31 is the above fixed iron core (
2) is the shade removal coil attached to , (4) is the operation coil that generates magnetic flux, and (5) is the shade removal coil (3).
(6) is the non-shading part outside the shade coil (31), φ1 is the non-shading part (
6) Magnetic flux passing through the non-shaded part, φ2 is the shaded part (5
), G is the air gap between the movable core (11) and the fixed core (2).

この装置の接続を第2図に、又、電圧ベクトル図を第3
図に示す。
The connection of this device is shown in Figure 2, and the voltage vector diagram is shown in Figure 3.
As shown in the figure.

この第2図及び第3図において、(7)は単相交流電源
、(8)はスイッチ、■は単相交流電源(7)の電圧。
In FIGS. 2 and 3, (7) is the single-phase AC power supply, (8) is the switch, and ■ is the voltage of the single-phase AC power supply (7).

R1は操作コイル(4)の内部抵抗、ωは単相交流電源
(7)の角周波数、L(t)は操作コイル(4)のイン
ダクタンス1(t)は操作コイル(4)を流れる電流で
ある。
R1 is the internal resistance of the operating coil (4), ω is the angular frequency of the single-phase AC power supply (7), L(t) is the inductance of the operating coil (4), and 1(t) is the current flowing through the operating coil (4). be.

第1図、第2図に示す従来の電磁石装置において、スイ
ッチ(8)ヲ閉じると操作コイル(4)が励磁されて、
可動鉄心(1)は固定鉄心(2)に吸引される。
In the conventional electromagnetic device shown in FIGS. 1 and 2, when the switch (8) is closed, the operating coil (4) is energized.
The movable core (1) is attracted to the fixed core (2).

一般に、交流電磁石は空隙Gが大きい時、第3図のイン
ダクタンスL (t)が小さく、操作コイル(4)には
大きなラッシュ電流が流れ、直流電磁石にくらべ大きな
吸引力を発生させる事ができる5そして可動鉄心(11
と固定鉄心(2)が吸引完了して閉じると、インダクタ
ンスL (tlは大きくなり、操作コイル(4)電流れ
る電流1(t)は小さくなる。この時、くま取りコイル
(3)により、くま取り部磁束φ2と。
In general, when the air gap G in an AC electromagnet is large, the inductance L (t) in Fig. 3 is small, a large rush current flows through the operating coil (4), and a large attraction force can be generated compared to a DC electromagnet. And the movable iron core (11
When the fixed core (2) completes suction and closes, the inductance L (tl) increases, and the current 1 (t) flowing through the operating coil (4) decreases.At this time, the darkening coil (3) Take part magnetic flux φ2.

非くま取り部磁束φ1の間に位相差ができ、電磁石の吸
引力は零になる事がなくなり、電磁石は吸着状態を維持
する。従来のこの電磁石装置の良否は吸引力の最小値を
いかに大きく設計されるかにかかつていたと言っても過
言ではない。
A phase difference is created between the magnetic fluxes φ1 of the non-shaded portions, the attractive force of the electromagnet never becomes zero, and the electromagnet maintains the attracted state. It is no exaggeration to say that the success or failure of this conventional electromagnetic device depends on how large the minimum value of the attractive force is designed to be.

第4図(a)に吸引開始からの操作コイル(4)に加わ
る端子電圧波形図を、又、(b)に吸引力の変化曲線図
を示す。この電磁石装置はいかに最適に設計されたとし
ても、吸引力の脈動は避けられず、鉄心の騒音は大きな
問題であった。そして、初期吸引力が比較的大きな事よ
り吸引時間は短くすること(3) ができるが、投入衝撃が大きく、寿命や他部品1機構部
分への悪影響が大きな問題であった。更に。
FIG. 4(a) shows a waveform of the terminal voltage applied to the operating coil (4) from the start of suction, and FIG. 4(b) shows a change curve of the suction force. No matter how optimally this electromagnetic device was designed, pulsations in the attraction force could not be avoided, and noise from the iron core was a major problem. Since the initial suction force is relatively large, the suction time can be shortened (3), but the injection impact is large, which poses a major problem in terms of lifespan and adverse effects on other mechanical parts. Furthermore.

鉄心内を通る磁束が交番する為、鉄心内のヒステリシス
損及びくま取りコイル(31ヲ流れる電流による損失、
<才取り損は避けられず、吸着状態の消費入力は決して
小さくなかった。又、材料、構造の面から言えば、ヒス
テリシス損を小さくする為に高価なケイ素鋼板を積層し
た積層鉄心に必然的になり、<才取りコイル装置の製作
にも大変な技術を要した。
Because the magnetic flux passing through the iron core alternates, hysteresis loss within the iron core and loss due to the current flowing in the shade coil (31) are generated.
<The loss of talent was unavoidable, and the consumption input in the adsorption state was by no means small. In addition, in terms of materials and structure, it was necessary to use a laminated core made of expensive silicon steel plates in order to reduce hysteresis loss, and the production of the cut-out coil device also required a great deal of technology.

これらの問題に対処する為に、第5図の様な直流操作の
装置及び第6図の節約抵抗を用いた直流操作の装置が提
案されている。
To address these problems, a DC operated device as shown in FIG. 5 and a DC operated device using a saving resistor as shown in FIG. 6 have been proposed.

次にこの第5図、第6図の装置について説明する。即ち
、第5図、第6図において、(9)は全波整流装置、α
〔は全電圧印加の直流操作用操作コイル。
Next, the apparatus shown in FIGS. 5 and 6 will be explained. That is, in FIGS. 5 and 6, (9) is a full-wave rectifier, α
[is an operation coil for direct current operation with full voltage applied.

aηは投入時のみ全電圧印加で、吸着後抵抗で分割され
た電圧の加わる直流操作用操作コイル、02は投入時と
吸着後で切換る為の常時閉接点、αjは吸着後操作コイ
ル(11)に加わる電圧を低くシ、消費人(4) 力を節約する為の節約抵抗である。
aη is the operating coil for direct current operation where full voltage is applied only when turning on, and voltage divided by the resistance is applied after adsorption, 02 is a normally closed contact for switching between when turning on and after adsorption, and αj is the operating coil after adsorption (11 ) It is a saving resistor to reduce the voltage applied to the consumer (4) and save power.

第5図の従来装置においては、交番磁束がない為、鉄心
内のヒステリシス損も無く、くま取りコイルも必要なく
なる。しかし、投入時には大きな起磁力が必要であり、
第1図及び第2図に示すものと同じ様なラッシュ電流を
流すと、吸着後もこの電流が流れる為、コイルの銅損が
大きすぎて長時間使用ではコイルが焼損してしすう。そ
の為電流を制限して起磁力を出す為に、非常に多くの巻
数が必要になり、操作コイルα〔は大きなコイルとなっ
てしまう。そして、コイル自体が大きくなると共に、一
般には吸着後の消費入力は、第2図の交流電磁石装置よ
りかなり大きなものとなる。
In the conventional device shown in FIG. 5, since there is no alternating magnetic flux, there is no hysteresis loss in the iron core, and there is no need for a shade removal coil. However, a large magnetomotive force is required at the time of injection,
If a rush current similar to that shown in FIGS. 1 and 2 is applied, this current will continue to flow even after adsorption, and the copper loss in the coil will be too large, causing the coil to burn out if used for a long time. Therefore, in order to limit the current and generate magnetomotive force, a very large number of turns is required, and the operation coil α becomes a large coil. As the coil itself becomes larger, the input power consumed after attraction generally becomes considerably larger than that of the AC electromagnet device shown in FIG.

又、第6図は第5図の装置でコイルが大きくなる事を防
ぐ為と、吸着後の入力を小さくする為に投入時と吸着後
を常時閉接点Q3で切換えている。
Moreover, in FIG. 6, in order to prevent the coil from becoming large in the apparatus shown in FIG. 5, and to reduce the input after suction, the normally closed contact Q3 is used to switch between the time of application and the time after suction.

しかし、この場合でも節約抵抗0渇でジュール熱がかな
り発生し、吸着後も決して消費入力は小さいとは言えな
い。そして節約抵抗OJでのジュール発熱が大きい為1
節約抵抗α3は大きな許容入力をもつ大形の抵抗となる
欠点がある。
However, even in this case, a considerable amount of Joule heat is generated when the saving resistance is zero, and even after adsorption, the consumed input cannot be said to be small. And because the Joule heat generation in the saving resistor OJ is large, 1
The saving resistor α3 has the disadvantage of being a large resistor with a large allowable input.

第5図、第6図の電磁石装置の操作コイル(1010B
の両端に加わる電圧波形と、吸引力の投入時よりの時間
的変化を第1図、第8図に示す。
The operating coil of the electromagnet device shown in Figures 5 and 6 (1010B
Figures 1 and 8 show the voltage waveforms applied to both ends of the cap and the temporal changes from when the attraction force is applied.

この発明は上記のような従来のものの欠点を解決する為
になされたもので、投入時にはコイルに直接全電圧を整
流した電圧を印加し、吸着後あるいは吸着寸前に常時閉
接点を開放することにより。
This invention was made in order to solve the above-mentioned drawbacks of the conventional products.When the coil is turned on, a rectified voltage is applied directly to the coil, and the normally closed contact is opened after or just before the adsorption. .

リアクトルが整流装置の前に直列に接続され、このリア
クトルによる電圧降下を利用することにより、鉄心騒音
の無い、消費入力の小さい、そして投入衝撃が小さくて
安価な交流電磁石装置を提供する事を目的とするもので
ある。
A reactor is connected in series in front of the rectifier, and by utilizing the voltage drop caused by this reactor, the purpose is to provide an inexpensive AC electromagnet device that has no iron core noise, low power consumption, and small input shock. That is.

以下、この発明の一実施例を図について説明する。An embodiment of the present invention will be described below with reference to the drawings.

第9図はこの発明の一実施例を示す図で、第10図はそ
のベクトル図である。即ち、第9図において、 (14
1はりアクドルで、そのインダクタンスはLである。a
9は操作コイルで、この操作コイルθ9は投入時には常
時閉接点a2が導通しており、全電圧が印加されるが、
吸着後あるいは吸着寸前には常時閉接点0zが開放され
、リアクトル0くにより分圧された電圧が印加されるも
のである。又、第10図において、■は単相交流電源電
圧、  Ri  は操作コイル0[有]の内部抵抗、1
1  は投入時リアクトル0ぐが常時閉接点0混こよっ
て短絡されている時に流れる投入電流、12 は常時閉
接点02が開放され、リアクトルIと操作コイル0!1
9による回路を流れる保持電流である。
FIG. 9 is a diagram showing an embodiment of the present invention, and FIG. 10 is a vector diagram thereof. That is, in Figure 9, (14
1 beam axle, its inductance is L. a
9 is an operating coil, and when the operating coil θ9 is turned on, the normally closed contact a2 is conductive, and the full voltage is applied.
After adsorption or just before adsorption, the normally closed contact 0z is opened and a voltage divided by the reactor 0z is applied. In addition, in Fig. 10, ■ is the single-phase AC power supply voltage, Ri is the internal resistance of the operating coil 0 [with], and 1
1 is the closing current that flows when the reactor 0g is short-circuited due to the normally closed contact 0 being crossed, and 12 is the closing current that flows when the normally closed contact 02 is opened and the reactor I and the operating coil 0!1
9 is the holding current flowing through the circuit according to 9.

この実施例装置によれは第10図に示す様に。The deviation of this embodiment device is as shown in FIG.

投入時は操作コイルθ9の内部抵抗R1によってのみ決
まる大きな投入電流11 が流れ、投入時に必要な起磁
力を確保する。又、保持時はりアクドルIと内部抵抗R
1によって決する小さな保持電流12 が流れ鉄心を保
持する。この時鉄心を流れる磁束はあくまで交番せず、
また整流装置(9)がフライホイール回路を形成する為
、鉄心の騒音は皆無と言える5その為、鉄心は積層する
必要もなく。
At the time of closing, a large closing current 11 determined only by the internal resistance R1 of the operating coil θ9 flows, ensuring the necessary magnetomotive force at the time of closing. Also, when holding, the beam acdle I and the internal resistance R
A small holding current 12 determined by 1 flows to hold the core. At this time, the magnetic flux flowing through the iron core does not alternate;
In addition, since the rectifier (9) forms a flywheel circuit, there is no noise from the iron core.5Therefore, there is no need to stack the iron cores.

安価な鉄板、鋳鋼、成形鋼などを使用する事ができ、く
ま取りコイルも不要となり、ヒステリシス(7) 損、くま取りコイル損も無くなる。そして、リアクトル
0→により電圧降下させている為、操作コイル(151
で消費される入力は非常に小さなものですみ。
Inexpensive iron plates, cast steel, formed steel, etc. can be used, and there is no need for a shade coil, and hysteresis (7) loss and shade coil loss are also eliminated. Since the voltage is dropped by reactor 0→, the operating coil (151
The input consumed by is very small.

また、リアクトルa4)の消費入力はわずかであるので
、保持時の全体の消費入力は非常に小さなものとなる。
Furthermore, since the input consumption of the reactor a4) is small, the total input consumption during holding is extremely small.

なお、上記においては、くま取りコイル形電磁石装置に
適用した場合について説明したが、この発明はその他の
電磁接触器、電磁継電器、タイマーなど多くの分野の交
流電磁石装置に利用できる。
In addition, although the case where it was applied to a shaded coil type electromagnet device was described above, the present invention can be applied to AC electromagnet devices in many fields such as other electromagnetic contactors, electromagnetic relays, and timers.

又上記においては、固定鉄心と可動鉄心の吸着後あるい
は吸着寸前に常時閉接点を開放しており。
In the above case, the normally closed contact is opened after or just before the fixed core and movable core are attracted.

固定鉄心と可動鉄心間に生じるチャタリング現象が確実
に防止出来、騒音の防止が出来る利点がある。
This has the advantage of being able to reliably prevent the chattering phenomenon that occurs between the fixed iron core and the movable iron core, and also to prevent noise.

以上の様にこの発明によれは、単相交流電源を一度全波
整流しているので、投入時の衝撃も緩和され、鉄心騒音
も皆無となる。又、保持時の電圧降下、入力低減の為に
、リアクトルを使用している為、消費入力は激減され、
鉄心も、安い鉄心材(8) 料を使用でき、<才取りコイルも不要であり、ヒステリ
シス損、<才取りコイル損が無くなり、安価で高性能な
交流X磁石装置を得られる効果がある。
As described above, according to the present invention, since the single-phase AC power supply is once full-wave rectified, the impact upon turning on is alleviated, and iron core noise is completely eliminated. In addition, since a reactor is used to reduce voltage drop and input during holding, input consumption is drastically reduced.
Cheap iron core materials (8) can also be used for the iron core, there is no need for a rounded coil, hysteresis loss and rounded coil loss are eliminated, and an inexpensive and high-performance AC X magnet device can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の単相交流電磁石装置を示す図。 第2図はその回路図、第3図は第1図、第2図に示す装
置の電圧ベクトル図、第4図は第1図、第2図に示す装
置の操作コイル端子電圧と、吸引力の投入時からの時間
的変化を示す図、第5図、第6図は夫々他の従来装置の
回路図、第7図、第8図は夫々第5図、第6図に示す装
置の操作コイル端子電圧と、吸引力の投入時からの時間
的変化を示す図、第9図はこの発明の実施例を示す回路
図。 第10図は第9図に示す装置の電圧ベクトル図である。 図中filは可動゛鉄心、(2)は固定鉄心、(3)は
くま取りコイル、 +41.θl、 (Ill、α9は
操作コイル、(7)は単相交流電源、(9)は全波整流
装置、a2は常時閉接点。 06まりアクドルである。 なお1図中同一または相当部分には同一符号を付しであ
る。 代理人 葛 野 信 − (10) 第1図 第2図 第7図    第8図 第9図 第10図 り ゴ1
FIG. 1 is a diagram showing a conventional single-phase AC electromagnet device. Figure 2 is its circuit diagram, Figure 3 is a voltage vector diagram of the device shown in Figures 1 and 2, and Figure 4 is the operating coil terminal voltage and attraction force of the device shown in Figures 1 and 2. Figures 5 and 6 are circuit diagrams of other conventional devices, respectively, and Figures 7 and 8 are operation diagrams of the devices shown in Figures 5 and 6, respectively. FIG. 9 is a diagram showing the coil terminal voltage and the temporal change from the time when the attraction force is applied. FIG. 9 is a circuit diagram showing an embodiment of the present invention. FIG. 10 is a voltage vector diagram of the device shown in FIG. 9. In the figure, fil is a movable iron core, (2) is a fixed iron core, (3) is a shaded coil, +41. θl, (Ill, α9 is the operating coil, (7) is the single-phase AC power supply, (9) is the full-wave rectifier, and a2 is the normally closed contact. 06 is the accelerator. Note that the same or equivalent parts in Figure 1 The same reference numerals are given. Agent Shin Kuzuno - (10) Figure 1 Figure 2 Figure 7 Figure 8 Figure 9 Figure 10 Figure 1

Claims (1)

【特許請求の範囲】 (11IJアクドルと常時閉状態で電磁石装置の可動鉄
心吸引後に開状態になる接点との並列接続体を介して単
相交流電源に接続される単相全波整流装置及び上記単相
全波整流装置の直流側に接続される電磁石装置の操作コ
イルを具備してなる交流電磁石装置。 (2)電磁石装置としてくま取りコイル形電磁石装置を
用いたこさを特徴とする特許請求の範囲第(11項記載
の交流電磁石装置。 (3)リアクトルは電線を固定鉄心に巻いたものを用い
たことを特徴とする特許請求の範囲第(11項または第
(2)項記載の交流電磁石装置。
[Scope of Claims] (Single-phase full-wave rectifier connected to a single-phase AC power supply through a parallel connection between the 11IJ axle and a contact that is normally closed and becomes open after attracting the movable core of the electromagnet device; An AC electromagnet device comprising an operating coil of an electromagnet device connected to the DC side of a single-phase full-wave rectifier. (2) A patent claim characterized in that a shaded coil type electromagnet device is used as the electromagnet device. (3) The AC electromagnet according to claim 11 or (2), characterized in that the reactor uses an electric wire wound around a fixed iron core. Device.
JP4919183A 1983-03-24 1983-03-24 Ac electromagnet Pending JPS59175104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4919183A JPS59175104A (en) 1983-03-24 1983-03-24 Ac electromagnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4919183A JPS59175104A (en) 1983-03-24 1983-03-24 Ac electromagnet

Publications (1)

Publication Number Publication Date
JPS59175104A true JPS59175104A (en) 1984-10-03

Family

ID=12824122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4919183A Pending JPS59175104A (en) 1983-03-24 1983-03-24 Ac electromagnet

Country Status (1)

Country Link
JP (1) JPS59175104A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0651492A1 (en) * 1993-10-27 1995-05-03 CIAR S.r.l. Power supply system particularly for linear actuators for beds or couches with variable-angle headboard and/or footboard

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0651492A1 (en) * 1993-10-27 1995-05-03 CIAR S.r.l. Power supply system particularly for linear actuators for beds or couches with variable-angle headboard and/or footboard

Similar Documents

Publication Publication Date Title
JP2010092746A (en) Driving circuit for solenoid operation mechanism
JPS61114430A (en) 3-status type electromagnet
JPS59175104A (en) Ac electromagnet
US2360954A (en) Antichattering electromagnetic control
US2040405A (en) Switch structure with means to prevent arcing upon circuit closure
JPS59175105A (en) Electromagnet
KR860000838Y1 (en) Coil for dc power
JPS6236368B2 (en)
JPH11225432A (en) Transformer rush current reduction method
JPS6256646B2 (en)
JPS59175106A (en) Electromagnet
JPS5929408A (en) Ac electromagnet apparatus
JPH0112364Y2 (en)
JPS57146970A (en) Gas flux control method by electromagnetic valve
JPS643157Y2 (en)
JPH0537387Y2 (en)
JPS61256608A (en) Direct current electric magnet device
JP2000082374A (en) Electromagnet device for electromagnetic contactor
JPH04271103A (en) Electromagnetic device equipped with permanent magnet
JPS6229883B2 (en)
SU1756951A1 (en) Device for connection of load to three-phase power supply source
JPS6324580Y2 (en)
JPS6051764B2 (en) AC relay device
JP2931950B2 (en) Electromagnet drive
JPH05205593A (en) Driving circuit of polar electromagnetic solenoid for direct current