JPS623617A - Optical scale - Google Patents

Optical scale

Info

Publication number
JPS623617A
JPS623617A JP14313085A JP14313085A JPS623617A JP S623617 A JPS623617 A JP S623617A JP 14313085 A JP14313085 A JP 14313085A JP 14313085 A JP14313085 A JP 14313085A JP S623617 A JPS623617 A JP S623617A
Authority
JP
Japan
Prior art keywords
light
scale
optical
optical scale
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14313085A
Other languages
Japanese (ja)
Inventor
Tomohiro Maekawa
前川 友宏
Masahiro Rachi
良知 正浩
Masahiko Igaki
正彦 井垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14313085A priority Critical patent/JPS623617A/en
Priority to GB8615464A priority patent/GB2178529B/en
Priority to US06/878,430 priority patent/US4820918A/en
Priority to FR8609364A priority patent/FR2584182B1/en
Priority to DE19863621564 priority patent/DE3621564A1/en
Publication of JPS623617A publication Critical patent/JPS623617A/en
Priority to GB8909264A priority patent/GB2215457B/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)

Abstract

PURPOSE:To obtain an optical scale which can be attached to an object to be examined with a high precision in an easy assembling process, by forming a mark part, where light-transmissive parts and light-nontransmissive parts are formed alternately on a translucent member, and a junction part into one body. CONSTITUTION:The light from a light source 1 is converted to parallel rays of light by a collimator lens 2 and is made incident on an optical scale 3 from above. The light incident on the flat face of the scale 3 is transmitted through the scale, but the light incident on the slope is reflected totally twice and is not transmitted through the scale 3. Consequently, the light and drakness distribution is moved in the direction of an arrow when the scale 3is rotated in the same direction. For example, a master die having the same shape as a scale shown in the figure is worked, and an inverted die is obtained by Ni electroforming or the like, and this die is used as the molding die to transfer the ruggedness to plastic materials or the like, thereby producing the scale 3. Thus, a flange part 11 which is used to attach the scale to the object to be examined is formed easily with a high precision.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は光学式スケールに関し、特に光学式エンコーダ
等に用いるのに適した光学式スケールに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an optical scale, and particularly to an optical scale suitable for use in an optical encoder or the like.

〔従来技術〕[Prior art]

従来、電子タイプライタ−等の情報機器において、キャ
リッジ等の可動部の位置・速度を検出する為に、光学式
エンコーダが多く用いられてきた。このような光学式エ
ンコーダは、通常可動部に固定され、光学式符号が記録
された光学式スケールに光を投射し、変調された光を光
電変換することKよって前記可動部の位置情報を符号化
された電気信号として取り出すように構成されていた。
Conventionally, optical encoders have been widely used in information devices such as electronic typewriters to detect the position and speed of movable parts such as carriages. Such optical encoders are usually fixed to a movable part, project light onto an optical scale on which an optical code is recorded, and photoelectrically convert the modulated light, thereby encoding the position information of the movable part. It was designed to be extracted as a converted electrical signal.

そして、光学式スケールとしては、(I)金属板にエツ
チングによりスリットを加工したもの ([)ガラス、プラスチック等の透明基板上に銀、銅、
クロム、アルミニウムなどの金属を蒸着し、金属層のみ
をエツチングによってスリット状に削除したもの 等が用いられていた。
Optical scales include (I) a metal plate with slits etched into it ([) silver, copper, etc. on a transparent substrate such as glass or plastic;
The metal layer used was one in which a metal such as chromium or aluminum was vapor-deposited and only the metal layer was removed in the form of a slit by etching.

しかし、これらはエツチング可能なスリット幅が金属の
厚みの2倍以上に制限され、微細な符号を記録すること
が困難であった。また、製作工程が複雑で、しかもエツ
チングに高価な感光性樹脂を用いる為、コスト高になる
といった欠点があった。
However, in these methods, the slit width that can be etched is limited to at least twice the thickness of the metal, making it difficult to record fine symbols. In addition, the manufacturing process is complicated, and expensive photosensitive resin is used for etching, resulting in high costs.

また、従来の光学式スケールは、第5図に示すような方
法で被検物に取り付けられていた。第5図は従来の光学
式スケールを用いて光学式エンコーグを構成した例を示
し、21は光源、22は金属板をエツチングすることに
よって標識部を形成した従来の光学式スケール、30は
コリメータレンズ、23は金属板をエツチングすること
により製作した固定光学格子、24は受光素子、25は
波形整形回路であり、受光素子24からの信号を波形整
形して図のSに示したような信号波形に整形するもので
ある。26はエンコーダにより位置検出をされるべき回
転軸、27は光学式スケール21を軸26に取り付ける
ために軸26に接着されている取付板、28は光学式ス
ケール21を取付板27に固定する際の押え板であり、
29はその際に用いられるネジである。光源21.光学
格子23.受光素子24はプラスチックや金属からなる
ケース(図示せず)に固定され、またケースは回転軸2
6にベアリング等を介して位置決められている。
Furthermore, conventional optical scales have been attached to the test object in a manner as shown in FIG. FIG. 5 shows an example of an optical encoder configured using a conventional optical scale, in which 21 is a light source, 22 is a conventional optical scale in which a marking part is formed by etching a metal plate, and 30 is a collimator lens. , 23 is a fixed optical grating manufactured by etching a metal plate, 24 is a light receiving element, and 25 is a waveform shaping circuit, which shapes the signal from the light receiving element 24 to form a signal waveform as shown in S in the figure. It is to be formatted as follows. 26 is a rotating shaft whose position is to be detected by an encoder; 27 is a mounting plate glued to the shaft 26 in order to attach the optical scale 21 to the shaft 26; and 28 is a mounting plate for fixing the optical scale 21 to the mounting plate 27. It is a holding plate for
29 is a screw used at that time. Light source 21. Optical grating 23. The light receiving element 24 is fixed to a case (not shown) made of plastic or metal, and the case is connected to the rotating shaft 2.
6 via a bearing or the like.

ここで、光学式スケール22と固定光学格子23との隙
間は光学式エンコーダの性能に大きく影響を与えるため
微少であり、かつ、光学式スケール22は隙間を変化さ
せることなく回転しなければならない、このためには、
取付板27等に高い部品精度、接着精度が要求され、ま
た作業工程が複雑であった。
Here, the gap between the optical scale 22 and the fixed optical grating 23 is minute because it greatly affects the performance of the optical encoder, and the optical scale 22 must be rotated without changing the gap. For this purpose,
High component precision and adhesion precision were required for the mounting plate 27, etc., and the work process was complicated.

一方、安価、簡単に作製出来る新規な構造の光学式スケ
ールが、本出願人によって特願昭58−250551号
で提案されている。
On the other hand, an optical scale with a novel structure that can be manufactured easily and inexpensively has been proposed by the present applicant in Japanese Patent Application No. 58-250551.

〔発明の概要〕[Summary of the invention]

本発明は、前述の本出願人による先願の更なる改良であ
り、その目的は、簡単な組立工程で被検物に高精度に取
り付けることが出来る光学式スケールを提供することに
ある。
The present invention is a further improvement of the aforementioned prior application by the present applicant, and its purpose is to provide an optical scale that can be attached to a test object with high precision through a simple assembly process.

本発明の上記目的は、透光性部材に、光透過部と入射す
る光線に対しその入射角が臨界角以上に設定された傾斜
面から成る光非透過部とが交互に形成された標識部及び
該部材を被検物に取り付ける為の接合部を一体に成形し
て成る光学式スケールによって達成される。
The above-mentioned object of the present invention is to provide a sign portion in which a light-transmitting part and a light-non-transmitting part consisting of an inclined surface whose angle of incidence is set to be equal to or greater than a critical angle with respect to an incident light beam are alternately formed in a light-transmitting member. This is achieved by an optical scale formed by integrally molding the joint part for attaching the member to the test object.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明の光学式スケールを用いて光学式エン
コーダを構成した例を示す斜視図である。図において、
lは光源、2はコリメータレンズ、3は本発明に基づい
たロータリー型の光学式スケールで、回転軸7に固定さ
れ、この駆動に伴なって回転する。またこの光学式スケ
ール3には、光透過部と光非透過部とが交互に形成され
た標識部8及びこの光学式スケールを回転軸に接合する
フランジ部11が設けられている。4は透明部材から成
る固定光学格子で、5は前記光学格子4を透過した光を
電気信号に変換する受光素子、6は波形整形回路で、受
光素子5からの信号を波形整形して図の右側にSで示し
たような信号波形に整形するものである。
FIG. 1 is a perspective view showing an example of an optical encoder configured using the optical scale of the present invention. In the figure,
1 is a light source, 2 is a collimator lens, and 3 is a rotary type optical scale based on the present invention, which is fixed to a rotating shaft 7 and rotates in accordance with this drive. Further, this optical scale 3 is provided with a marking part 8 in which light-transmitting parts and non-light-transmitting parts are formed alternately, and a flange part 11 for joining this optical scale to a rotating shaft. 4 is a fixed optical grating made of a transparent member; 5 is a light-receiving element that converts the light transmitted through the optical grating 4 into an electrical signal; 6 is a waveform shaping circuit that shapes the waveform of the signal from the light-receiving element 5 to produce the signal as shown in the figure. The signal waveform is shaped as shown by S on the right side.

第2図は、前記光学式スケール3の構成を示し、(A)
は下面から見た図、(B)は(A)のAxにおける略断
面図である。光学式スケール3はガラス、プラスチック
等の透光性部材を用いて、凸状の標識部8とフランジ部
11とが一体に成形されて成る。またこの標識部8には
、光透過部9と光非透過部10とが交互に規則正しく形
成され、第1図のように照射された光を変調する。
FIG. 2 shows the configuration of the optical scale 3, (A)
is a view seen from the bottom, and (B) is a schematic cross-sectional view at Ax in (A). The optical scale 3 is formed by integrally molding a convex marker portion 8 and a flange portion 11 using a transparent member such as glass or plastic. Further, light transmitting portions 9 and light non-transmitting portions 10 are regularly and alternately formed in this marker portion 8, and the irradiated light is modulated as shown in FIG.

第3図は、第2図(A)におけるBB’の1部所面図で
ある。前述の光透過部9は、入射光り、に対し、その入
射角が臨界角より小さな角度をなす、例えば9aのよう
な平坦面から成る。また、光非透過部10は、入射光L
2に対し、その入射角が臨界角以上の角度となるように
傾斜している傾斜面10a及び10bから成る0例えば
、傾斜面10aと10bのなす角度を90”とし、傾斜
面10aと10bとを合わせた水平方向の幅w1(入射
光の光軸に垂直な面への傾斜面の投影像の幅を示す)と
平坦面9a夫々の@W2とを同一とする。すると、図か
ら明らかなように、傾斜面10aに入射した光は入射角
が45°となるので全反射されて直角に反射され、もう
1つの他の傾斜面10bに45″の角度をなして入射し
、再び全反射されて直角に反射されてもとの入射側に戻
る。又、傾斜部lObに入射した光についても上記と同
様に入射側に戻る。ところが、平坦面9aに入射する光
はそのまま透過してしまう、このことは平坦面のみがス
リットの役割を果たすことを意味する。従って、この光
学式スケール3は丁度スリットと遮光部が同一幅、等ピ
ッチで配列されたものと同じとなる。また、前述の固定
光学格子4にも光学式スケール3と同様の凹凸が形成さ
れている。
FIG. 3 is a partial plan view of BB' in FIG. 2(A). The above-mentioned light transmitting section 9 is made of a flat surface, such as 9a, which has an angle of incidence smaller than the critical angle with respect to the incident light. In addition, the light non-transmissive portion 10 is configured so that the incident light L
For example, if the angle between the inclined surfaces 10a and 10b is 90'', then the inclined surfaces 10a and 10b are Assume that the combined horizontal width w1 (indicating the width of the projected image of the inclined surface on the plane perpendicular to the optical axis of the incident light) and @W2 of each of the flat surfaces 9a are the same. As shown, the light incident on the inclined surface 10a has an incident angle of 45 degrees, so it is totally reflected and reflected at a right angle, and then it enters the other inclined surface 10b at an angle of 45'', where it is totally reflected again. It is reflected at right angles and returns to the original incident side. Furthermore, the light incident on the inclined portion lOb also returns to the incident side in the same manner as above. However, the light incident on the flat surface 9a is transmitted as is, which means that only the flat surface plays the role of a slit. Therefore, this optical scale 3 has exactly the same width as the slits and the light shielding parts arranged at the same pitch. Furthermore, the above-described fixed optical grating 4 is also formed with concavities and convexities similar to those of the optical scale 3.

次に、本発明の光学式スケールを用いた光学式エンコー
ダの動作を第1図及び第4図(A)。
Next, FIGS. 1 and 4 (A) show the operation of an optical encoder using the optical scale of the present invention.

(B)を用いて説明する。第4図は、光学式スケール3
.固定光学格子4及び受光素子5の略断面図で、(A)
が光学式スケール3と固定光学格子4とに形成された標
識の位相が一致した状態、(B)が1/2周期位相がず
れた状態を示す。
This will be explained using (B). Figure 4 shows optical scale 3.
.. (A) is a schematic cross-sectional view of the fixed optical grating 4 and the light receiving element 5;
(B) shows a state in which the phases of the marks formed on the optical scale 3 and the fixed optical grating 4 match, and (B) shows a state in which the phases are shifted by 1/2 period.

第1図において、光源lからの光はコリメータレンズ2
により平行光とされ光学式スケール3の上方から入射す
る。上述のように上方から入射した光はその平坦面で光
学式スケール3を透過する。
In Fig. 1, the light from the light source l is transmitted through the collimator lens 2.
The light is made into parallel light and enters the optical scale 3 from above. As described above, the light incident from above is transmitted through the optical scale 3 through its flat surface.

又その傾斜面では2口金反射されて光学式スケール3を
透過しない。従って、光学式スケール3を透過した光に
より規則的な光の明暗分布を生じる。ここで光学式スケ
ール3はその回転軸7と共に図示矢印方向に回転し、そ
の明暗分布も同方向に移動する。ここで、固定光学格子
4と光学式スケールとに形成された符号は同一、即ち、
固定光学格子4の明暗分布と、入射する光の明暗分布と
は等ピッチとなっているので、双方の凹凸の位相が第4
図(A)の如く一致した時には、光学式スケール3を透
過した光は全て固定光学格子4を透過するので受光素子
5へ入射する光量は最大となる。又、凹凸の位相が第4
図(B)のように1/2周期ズした時には光学格子同士
の傾斜面と平坦面とが夫々対応した位置となるので、光
学式スケール3を透過する光は全て固定光学格子4の傾
斜面で2口金反射されて入射側に戻り、受光素子5へ入
射する光量は最小となる。
Further, the light is reflected from the two caps on the inclined surface and does not pass through the optical scale 3. Therefore, the light transmitted through the optical scale 3 produces a regular brightness/darkness distribution of light. Here, the optical scale 3 rotates in the direction of the arrow shown in the figure together with its rotation axis 7, and its brightness distribution also moves in the same direction. Here, the symbols formed on the fixed optical grating 4 and the optical scale are the same, that is,
Since the brightness distribution of the fixed optical grating 4 and the brightness and darkness distribution of the incident light have the same pitch, the phase of the unevenness of both is 4th.
When they match as shown in Figure (A), all the light that has passed through the optical scale 3 passes through the fixed optical grating 4, so the amount of light that enters the light receiving element 5 becomes maximum. Also, the phase of the unevenness is the fourth
When the period is shifted by 1/2 as shown in Figure (B), the inclined surfaces and flat surfaces of the optical gratings correspond to each other, so all the light that passes through the optical scale 3 is transmitted to the inclined surface of the fixed optical grating 4. The light is reflected from the two caps and returns to the incident side, and the amount of light incident on the light receiving element 5 is minimized.

そして、この光量が最大になるときと最小になるときと
の間には、光学式スケール3の平坦面と固定光学格子4
の平坦面とが部分的に一致し、その一致した部分の面積
の割合に応じた光量を受光素子5は受光する。従って、
受光素子5からの信号は正弦波状となり、この信号は波
形整形回路6により第1図のSのようなパルス状の信号
に整形される。
Between the time when the amount of light is maximum and the time when it is minimum, there is a gap between the flat surface of the optical scale 3 and the fixed optical grating 4.
The light-receiving element 5 receives a light amount corresponding to the proportion of the area of the matched portion. Therefore,
The signal from the light-receiving element 5 has a sinusoidal waveform, and this signal is shaped by the waveform shaping circuit 6 into a pulse-like signal such as S in FIG.

本発明の光学式スケールは、例えば第2図の如きスケー
ルと同一形状のマスク型を加工し、ここからNI?[鋳
等によって反転型をとり、次にこれを成形用金型として
、プラスチック等の材料に凹凸を転写することによって
作製される。従って、被検物(実施例では回転軸7)に
スケールを取り付ける為の接合部たるフランジ部11も
、高精度にしかも簡単に形成される。また、第1図にお
いて、光学式スケール3を回転軸7に取り付ける場合に
は、まず光学式スケール3と固定光学格子4間の受光素
子5に影響を与えない部分に、隙間交に相当する厚さの
スペーサーをはさみ、次に光学↓ 式スケール3を押えて回転させながらフランジ部11と
軸7との間に接着剤を流し込む、そして、接着剤が完′
全に乾燥した後、スペーサーを引きぬ〈、この作業によ
って光学式スケール3と固定光学格子4との隙間は正し
くスペーサーの厚み文に調整され、また回転させながら
接着されるので隙間の変化はほとんどない。ここで、ス
ペーサーとしては、ウレタンシート等を使用すると、光
学式スケールに傷が付きにくく好都合である。また、ス
ペーサーをはさみ込む場所として、光学式スケール3の
標識部8の更に外周に平坦な部分を設け、これに対向す
る固定光学格子4の部分も平坦に形成して、これらの平
坦部を基準にすると、より作業が容易となる。
The optical scale of the present invention is produced by processing a mask mold having the same shape as the scale, for example as shown in FIG. [Produced by making an inverted mold by casting or the like, and then using this as a molding die to transfer the unevenness to a material such as plastic. Therefore, the flange portion 11, which is a joint portion for attaching the scale to the test object (rotary shaft 7 in the embodiment), can also be easily formed with high precision. In addition, in FIG. 1, when attaching the optical scale 3 to the rotating shaft 7, first add a thickness corresponding to the gap intersection to the part between the optical scale 3 and the fixed optical grating 4 that does not affect the light receiving element 5. Sandwich the spacer, then pour the adhesive between the flange part 11 and the shaft 7 while holding down the optical scale 3 and rotating it, until the adhesive is completely applied.
After completely drying, pull out the spacer. By this step, the gap between the optical scale 3 and the fixed optical grating 4 is adjusted to the correct thickness of the spacer, and since it is glued while rotating, there is almost no change in the gap. do not have. Here, it is convenient to use a urethane sheet or the like as the spacer, since the optical scale will not be easily scratched. In addition, a flat part is provided on the outer periphery of the marking part 8 of the optical scale 3 as a place for inserting the spacer, and a part of the fixed optical grating 4 facing this is also formed flat, and these flat parts are used as a reference. This will make the work easier.

本発明は、以上の実施例に限らず、種々の応用が可能で
ある。例えば光学式エンコーダに用いる場合、透過光で
はなく、反射光を検出するようにしてもかまわない。又
、ロータリー型の光学式スケールだけでなく、リニア型
の光学式スケールにも適用出来るのは言うまでもない。
The present invention is not limited to the above embodiments, and can be applied in various ways. For example, when used in an optical encoder, reflected light may be detected instead of transmitted light. Furthermore, it goes without saying that the present invention can be applied not only to rotary type optical scales but also to linear type optical scales.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の光学式スケールは被検物
への接合部を一体に成形したので、被検物への取り付け
を容易にし、しかも、取り付は精度を高める効果を有す
る。
As explained above, since the optical scale of the present invention has a joint part to the test object integrally molded, it can be easily attached to the test object, and the mounting has the effect of increasing the accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光学式スケールを用いて光学式エンコ
ーダを構成した例を示す斜視図、第2図(A)、(B)
は夫々本発明の光学式スケールの一実施例を示す概略図
、第3図は第2図の光学式スケールの部分断面図、第4
図(A)、(B)は夫々第1図の光学式エンコーダの動
作を説明する要部断面図、第5図は従来の光学式スケー
ルを用いた光学式エンコーダの構成例を示す斜視図であ
る。 3−一一一光学式スケール、8−一一一標識部、9−一
一一光透過部、9a−−−一平坦面、10−−−一光非
透過部、 10a、10b−−−一傾斜面、 ti−−−−フランジ部。
FIG. 1 is a perspective view showing an example of an optical encoder configured using the optical scale of the present invention, and FIGS. 2(A) and (B)
3 is a schematic diagram showing an embodiment of the optical scale of the present invention, FIG. 3 is a partial sectional view of the optical scale of FIG. 2, and FIG.
Figures (A) and (B) are sectional views of essential parts explaining the operation of the optical encoder shown in Figure 1, respectively, and Figure 5 is a perspective view showing an example of the configuration of an optical encoder using a conventional optical scale. be. 3-111 optical scale, 8-111 labeled part, 9-111 light transmitting part, 9a---1 flat surface, 10---1 light non-transmitting part, 10a, 10b--- One inclined surface, ti---flange part.

Claims (1)

【特許請求の範囲】[Claims] (1)透光性部材に、光透過部と入射する光線に対しそ
の入射角が臨界角以上に設定された傾斜面から成る光非
透過部とが交互に形成された標識部及び該部材を被検物
に取り付ける為の接合部を一体に成形して成る光学式ス
ケール。
(1) A sign part in which a light-transmitting part and a light-non-transmitting part consisting of an inclined surface whose angle of incidence is set to be greater than a critical angle with respect to an incident light beam are alternately formed on a light-transmitting member, and the member. An optical scale with an integrally molded joint for attaching it to the test object.
JP14313085A 1985-06-28 1985-06-28 Optical scale Pending JPS623617A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP14313085A JPS623617A (en) 1985-06-28 1985-06-28 Optical scale
GB8615464A GB2178529B (en) 1985-06-28 1986-06-25 Optical encoder
US06/878,430 US4820918A (en) 1985-06-28 1986-06-25 Optical encoder including transparent substrates having formed indicators therein
FR8609364A FR2584182B1 (en) 1985-06-28 1986-06-27 OPTICAL ENCODER
DE19863621564 DE3621564A1 (en) 1985-06-28 1986-06-27 OPTICAL CODER
GB8909264A GB2215457B (en) 1985-06-28 1989-04-24 Optical encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14313085A JPS623617A (en) 1985-06-28 1985-06-28 Optical scale

Publications (1)

Publication Number Publication Date
JPS623617A true JPS623617A (en) 1987-01-09

Family

ID=15331610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14313085A Pending JPS623617A (en) 1985-06-28 1985-06-28 Optical scale

Country Status (1)

Country Link
JP (1) JPS623617A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6901682B2 (en) 2001-05-17 2005-06-07 Canon Kabushiki Kaisha Rotation angle detecting apparatus and its rotary disc
US7019281B2 (en) 2002-08-13 2006-03-28 Canon Kabushiki Kaisha Rotation angle detection apparatus and rotary disk for same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4942215U (en) * 1972-07-20 1974-04-13
JPS51864A (en) * 1974-06-20 1976-01-07 Hiroshi Hata Baranno riakutansukairoto antenasoshitono kyoshinoryoshitakogataantena
JPS589022A (en) * 1981-06-15 1983-01-19 イング・チイ・オリベツチ・アンド・チイ・エス・ピ−・ア Optical transducer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4942215U (en) * 1972-07-20 1974-04-13
JPS51864A (en) * 1974-06-20 1976-01-07 Hiroshi Hata Baranno riakutansukairoto antenasoshitono kyoshinoryoshitakogataantena
JPS589022A (en) * 1981-06-15 1983-01-19 イング・チイ・オリベツチ・アンド・チイ・エス・ピ−・ア Optical transducer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6901682B2 (en) 2001-05-17 2005-06-07 Canon Kabushiki Kaisha Rotation angle detecting apparatus and its rotary disc
US7019281B2 (en) 2002-08-13 2006-03-28 Canon Kabushiki Kaisha Rotation angle detection apparatus and rotary disk for same
US7122785B2 (en) 2002-08-13 2006-10-17 Canon Kabushiki Kaisha Rotation angle detection apparatus and resin rotary disk for the same

Similar Documents

Publication Publication Date Title
US4820918A (en) Optical encoder including transparent substrates having formed indicators therein
US7129475B2 (en) Photoelectric encoder and method of manufacturing scales
US4421980A (en) Position encoder with closed-ring diode array
EP0143525B1 (en) Optical position transducer
JP2610705B2 (en) Synthetic resin scale carrier having scale structure
EP3048427B1 (en) Method of manufacturing rotary scale, rotary scale, rotary encoder, driving apparatus, image pickup apparatus and robot apparatus
US20020000515A1 (en) Optical scale, mold therefor, and optical encoder
JP2004077214A (en) Rotation angle detecting device and rotating disk therefor
JPS623617A (en) Optical scale
JP2003279381A (en) Encoder, code disk, method of manufacturing metallic mold used for producing the code disk, and method of manufacturing the code disk
JPS623616A (en) Optical scale
JPS625127A (en) Optical scale
JPS625130A (en) Optical encoder
JPH0584818U (en) Optical scale
JPS63247617A (en) Optical scale
JPS625129A (en) Optical scale
JPS625128A (en) Optical scale
US7011248B2 (en) Encoder arrangement
JPS62135724A (en) Optical scale
JPS625131A (en) Optical scale
JP2704017B2 (en) Optical encoder
JPH0425616Y2 (en)
JPS62163917A (en) Optical type scaler
JP2555068Y2 (en) Encoder
CN114485745A (en) Small-size high reliability blue light reflective encoder