JPS623587A - Color solid-state image pickup device - Google Patents

Color solid-state image pickup device

Info

Publication number
JPS623587A
JPS623587A JP60142271A JP14227185A JPS623587A JP S623587 A JPS623587 A JP S623587A JP 60142271 A JP60142271 A JP 60142271A JP 14227185 A JP14227185 A JP 14227185A JP S623587 A JPS623587 A JP S623587A
Authority
JP
Japan
Prior art keywords
signal
color
solid
component
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60142271A
Other languages
Japanese (ja)
Other versions
JP2521899B2 (en
Inventor
Yoshikuni Tanaka
田中 敬訓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60142271A priority Critical patent/JP2521899B2/en
Publication of JPS623587A publication Critical patent/JPS623587A/en
Application granted granted Critical
Publication of JP2521899B2 publication Critical patent/JP2521899B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Color Television Image Signal Generators (AREA)

Abstract

PURPOSE:To reduce the occurrence of a false chrominance component and to simplify the constitution of a demodulation circuit for a modulated component by applying a polarity inversion on an output signal by every color filter synchronizing with the repeating period of a color filter array arrangement and next, by separating the modulated component by passing the polarity-inverted output signal through a low-pass filter. CONSTITUTION:The output signal of a solid-state image pickup element 13 is supplied to a demodulation circuit 14 for the separation of the modulated component. The demodulation circuit 14 consists of a polarity inversion circuit 15 which inverts the polarity of the output signal of the solid-state image pickup element 13 synchronizing with the repeating period of a color filter array, a driving circuit 16 and a lowp-pass filter 17. A sum signal of blue and red, B+R signal, and a difference signal of them, B-R signal, the high frequency components of which are eliminated by the low-pass filter 17 obtained by every scanning line from the demodulation circuit 14 in line sequentially, are delayed at a 1H delay line 18 and are added and subtracted with an original signal which are not delayed. A B signal is obtained separately with erasing an R component that is an antiphase component with each other in the B+R signal and the B-R signal, and in the same manner, and R signal is obtained by subtraction.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、固体撮像素子を用いたカラー撮像装置に係シ
、特に色分離用の帯域フィルタを不要にし、偽色信号の
発生を少なく抑えた色信号復調回路を備えたカラー固体
撮像装置に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a color imaging device using a solid-state imaging device, and in particular eliminates the need for a bandpass filter for color separation and suppresses the generation of false color signals. The present invention relates to a color solid-state imaging device equipped with a color signal demodulation circuit.

(従来の技術) 電荷結合素子(以下CODと略記する。)などの固体撮
像素子を1個用いてカラーテレビジョン信号を得る単板
カラー固体撮像装置は、固体撮像素子の出力信号から輝
度情報を表わす信号と色情報を表わす複数の信号を得る
ように構成されている。その−例として垂直相関周波数
分離方式が周知である。第6図にこの方式の単板カラー
固体撮像装置の一構成を示す。固体撮像素子1には透明
と黄、透明とシアンよう成る2種の色フィルタを重ね合
わせて構成された色フィルタアレイが被写体の実像を結
ぶ位置に置かれている。この色フィルタアレイによって
赤色光と青色光が空間変調され、空間変調の周波数で決
まる搬送波成分(以下変調成分と略記する。)として低
域の輝度信号成分と周波数多重イヒして撮像素子1から
出力される。
(Prior Art) A single-chip color solid-state imaging device that obtains a color television signal using a single solid-state imaging device such as a charge-coupled device (hereinafter abbreviated as COD) extracts luminance information from the output signal of the solid-state imaging device. and a plurality of signals representing color information. As an example, the vertical correlation frequency separation method is well known. FIG. 6 shows the configuration of this type of single-chip color solid-state imaging device. In the solid-state image sensor 1, a color filter array, which is constructed by overlapping two types of color filters, transparent and yellow, and transparent and cyan, is placed at a position where a real image of a subject is formed. Red light and blue light are spatially modulated by this color filter array, frequency-multiplexed with a low-frequency luminance signal component as a carrier wave component (hereinafter abbreviated as modulation component) determined by the frequency of spatial modulation, and output from the image sensor 1. be done.

この撮像素子1の出力信号を低域フィルタ2と帯域フィ
ルタ3で低域成分と変調成分とに分離し、分離した変調
成分と、これを1水平走査期間(以下IHと略記する。
The output signal of the image sensor 1 is separated into a low-pass component and a modulation component by a low-pass filter 2 and a bandpass filter 3, and the separated modulation component and this are divided into one horizontal scanning period (hereinafter abbreviated as IH).

)の遅延線4で遅延した成分との加算信号及び減算信号
を形成し、この加算及び減算信号を復調器5と6で復調
し、次に低域フィルタ7.8を通して赤及び青信号を取
り出している。この2つの原色信号と前記低域成分とを
用い通常のプロセス回路9.10.11及びカラーエン
コーダ12によってカラーテレビジョン信号を形成して
いる。
) with the delayed component in the delay line 4, and the added and subtracted signals are demodulated in demodulators 5 and 6, and then passed through a low-pass filter 7.8 to extract the red and blue signals. There is. Using these two primary color signals and the low frequency component, a color television signal is formed by a conventional processing circuit 9, 10, 11 and a color encoder 12.

(発明が解決しようとする問題点) 前記第6図に示した従来技術に於て、固体撮像素子1は
周知の通シナイキスト周波数付近でのM T F (M
odujation Tranafer F’unct
ion )が高く、被写体の水平方向の輪郭部に於て固
体撮像素子の水平方向に隣り合った2画素間で非常に大
きな振幅変化を持って出力信号が得られる。この大きな
振幅変化によって、変調成分を分離する帯域フィルタ3
でリンギングが生じ、これが偽色信号となって画質を劣
化させる。
(Problems to be Solved by the Invention) In the prior art shown in FIG.
odujation Tranafer F'unct
ion ) is high, and an output signal is obtained with a very large amplitude change between two horizontally adjacent pixels of the solid-state image sensor at the horizontal contour of the subject. Due to this large amplitude change, the bandpass filter 3 separates the modulated components.
Ringing occurs, which becomes a false color signal and degrades image quality.

さらに、固体撮像素子1の出力信号は固体撮像素子1を
駆動するクロックパルスに同期して得られるパルス振幅
変調信号(以下PAM信号と略記する。)であシ、映像
信号成分の他にクロックノイズ成分を含んでいる。そこ
で、変調成分を分離する帯域フィルタ3は、とのPAM
信号からクロックノイズ成分を十分除去できるように通
過帯域外減衰量が大きなものとしなければならない。従
って、第6図の従来方式では帯域フィルタの構成が複雑
になる。また、通過帯域外減衰量が不十分な場合には、
前記のPAM信号を一旦クロックノイズ成分を除去する
低域フィルタに加えた後に帯域フィルタで変調成分を分
離するような構成や、あるいはPAM信号を一旦サンプ
ルホールドして映像信号成分のみを分離した後に帯域フ
ィルタで変調成分を分離するような構成にするなど、ク
ロックノイズ成分を除去する手段が必要で、構成が複雑
になる。このように、第6図の方式の従来のカラー固体
撮像装置には、変調成分を分離する帯域フィルタ3に起
因して偽色信号が発生し、また変調成分の復調回路が複
雑であるという問題点があった。
Furthermore, the output signal of the solid-state image sensor 1 is a pulse amplitude modulation signal (hereinafter abbreviated as a PAM signal) obtained in synchronization with the clock pulse that drives the solid-state image sensor 1, and in addition to the video signal component, there is clock noise. Contains ingredients. Therefore, the bandpass filter 3 that separates the modulation components is a PAM with
The amount of attenuation outside the passband must be large enough to sufficiently remove clock noise components from the signal. Therefore, in the conventional method shown in FIG. 6, the configuration of the bandpass filter becomes complicated. Also, if the attenuation outside the passband is insufficient,
The above-mentioned PAM signal is first added to a low-pass filter that removes the clock noise component, and then the modulation component is separated by a bandpass filter, or the PAM signal is sampled and held, only the video signal component is separated, and then the bandpass filter is applied. This requires a means to remove the clock noise component, such as a configuration that separates the modulation component with a filter, making the configuration complicated. As described above, the conventional color solid-state imaging device of the type shown in FIG. 6 has the problem that a false color signal is generated due to the bandpass filter 3 that separates the modulation component, and the demodulation circuit for the modulation component is complicated. There was a point.

そこで、本発明の目的は、前記の欠点を除去し、偽色信
号の発生が少く、変調成分の復調回路の構成が簡単なカ
ラー固体撮像装置の提供にある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a color solid-state imaging device that eliminates the above-mentioned drawbacks, generates fewer false color signals, and has a simple configuration of a modulation component demodulation circuit.

(問題点を解決するための手段) 前述の問題点を解決するために本発明が提供する手段は
、色フィルタが水平と垂直方向に所定の繰返し周期で配
列されてなる色フィルタアレイが組み合わされ、輝度情
報を表わす信号に色情報を表わす複数の信号が前記色フ
ィルタアレイの水平方向の繰返し周期を周期とする変調
成分として周波数多重化されて得られるように構成され
た固体撮像素子を備えるカラー固体撮像装置であって、
前記固体撮像素子の出力信号の極性を前記色フィルタア
レイの水平方向の繰返し周期に同期し−で画素ごとに交
互に反転させ、前記極性反転された信号の平均値として
前記色情報を表わす複数の変調成分を分離復調して得る
ことを特徴とする。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a means in which a color filter array in which color filters are arranged horizontally and vertically at a predetermined repetition period is combined. , a color sensor comprising a solid-state image sensor configured to frequency-multiplex a signal representing luminance information with a plurality of signals representing color information as a modulation component having a period equal to the repetition period in the horizontal direction of the color filter array. A solid-state imaging device,
The polarity of the output signal of the solid-state image sensor is alternately inverted for each pixel in synchronization with the horizontal repetition period of the color filter array, and the color information is expressed as the average value of the polarity-inverted signals. It is characterized in that it is obtained by separating and demodulating modulated components.

(作用) 本発明は上述した従来の問題点を解決するために変調成
分の分離を帯域フィルタを用いずに行なうもので、固体
撮像素子からクロックパルスに同期して得られる出力信
号は色フィルタアレイの配列に従い時系列的に各色フィ
ルタに対応した出力となるからこの色フィルタアレイ配
列の繰返し周期に同期して出力信号を色フィルタごとに
極性反転させ、次にこの極性反転された出力信号を低域
フィルタを通すことによって変調成分を分離するように
構成したものである。前述の手段によれば、異なる色フ
ィルタごとの極性反転により、各色フィルタの互いに共
通して透過し得る色光成分に対応する出力信号成分が互
rに打消し合って消去され、出力信号の互いに異なる成
分すなわち変調成分のみを分離して得ることができる。
(Function) In order to solve the above-mentioned conventional problems, the present invention separates the modulation components without using a bandpass filter. Since the output corresponds to each color filter in time series according to the array of It is configured to separate modulation components by passing them through a bandpass filter. According to the above-mentioned means, by reversing the polarity of each different color filter, the output signal components corresponding to the color light components that can commonly pass through each color filter are canceled out and eliminated, and the output signal components that are different from each other are eliminated. It is possible to separate and obtain only the modulation component.

従って、従来変調成分の分離に用いられていた帯域フィ
ルタが不要になり、前述した従来の欠点が解決される。
Therefore, the bandpass filter conventionally used to separate modulation components is no longer necessary, and the above-mentioned conventional drawbacks are solved.

(実施例1) 第1図は本発明の第1の実施例を示す構成図である。図
に於て固体撮像素子13には第2図に一例として示す配
列の色フィルタアレイが組合わされている。第2図の色
フィルタアレイはフレーム蓄積方式の配列であり、図の
通シ垂直方向4画素、水平方向2画素を単位とする繰返
し配列となっており、Aフィールドでは奇数番目の列、
Bフィールドでは偶数番目の列をそれぞれ読み出してイ
ンターレースするようになされている。各色フィルタは
第n番目の走査線に透明−緑(W−G)、第n+1番目
の走査線にシアン−黄(CY−Ya)が配列されており
、この色フィルタアレイの例では赤色光が透過可能なW
及びYeフィルタが走査線ごとに逆位相となった市松配
置とし、青色光が透過可能なW及びCYフィルタが走査
線ごとに同位相となった縦配置としているから、各走査
線の出力信号に含まれる変調成分は第n番目の走査線で
は青と赤の和信号(B+R)、第n+1番目の走査線で
は差信号(B−R)となっている。
(Embodiment 1) FIG. 1 is a block diagram showing a first embodiment of the present invention. In the figure, the solid-state image sensing device 13 is combined with a color filter array arranged as shown in FIG. 2 as an example. The color filter array shown in Fig. 2 is a frame storage type arrangement, and is a repeating arrangement in units of 4 pixels in the vertical direction and 2 pixels in the horizontal direction, and in the A field, the odd-numbered columns,
In the B field, each even numbered column is read out and interlaced. In each color filter, transparent-green (W-G) is arranged on the nth scanning line, and cyan-yellow (CY-Ya) is arranged on the n+1th scanning line. In this example of the color filter array, red light is arranged. Transparent W
The and Ye filters are arranged in a checkered pattern with opposite phases for each scanning line, and the W and CY filters that can transmit blue light are arranged vertically with the same phase for each scanning line, so the output signal of each scanning line The included modulation components are a blue and red sum signal (B+R) on the n-th scanning line, and a difference signal (B-R) on the n+1-th scanning line.

第1図の構成図に於て前記色フィルタアレイを組合わさ
れた固体撮像素子13の出力信号は変調成分を分離する
ための復調回路14に供給される。
In the configuration diagram of FIG. 1, the output signal of the solid-state image pickup device 13 combined with the color filter array is supplied to a demodulation circuit 14 for separating modulation components.

復調回路14は固体撮像素子13の出力信号の極性を前
記色フイルタプレイの繰返し周期、すなわち変調成分の
繰返し周期と同期して反転させる極性反転回路15、駆
動回路16及び低域フィルタ17で構成されている。第
2図の色フィルタアレイの例に於ては水平方向に2画素
を単位とする繰返しで色フィルタが配列されているから
変調成分の繰返し周期は固体撮像素子13を駆動する水
平クロックパルス周期の2倍となっている。駆動回路1
6は固体撮像素子13を駆動すると共に水平クロックパ
ルスの2倍の周期を持つクロックパルスを極性反転回路
15に供給する。
The demodulation circuit 14 includes a polarity inversion circuit 15 that inverts the polarity of the output signal of the solid-state image sensor 13 in synchronization with the repetition period of the color filter play, that is, the repetition period of the modulation component, a drive circuit 16, and a low-pass filter 17. ing. In the example of the color filter array shown in FIG. 2, the color filters are arranged horizontally in units of two pixels, so the repetition period of the modulation component is equal to the horizontal clock pulse period that drives the solid-state image sensor 13. It has doubled. Drive circuit 1
6 drives the solid-state image sensor 13 and supplies the polarity inversion circuit 15 with a clock pulse having a period twice that of the horizontal clock pulse.

第3図(a)〜(d)は復調回路14の動作を説明する
波形図である。同図(a)は固体撮像素子13の出力信
号を示す。図は固体撮像素子13がCCDである場合の
波形を示す。図(a)に於て、周知の通り期間T1はリ
セット期間、T1はフィードスルー期間、T、は出力期
間である。またで4は水平クロックパルス周期でT4の
周期ごとに各画素の信号が出力される。図(a)に示す
出力信号は前記第2図の第n番目の走査線の場合を示し
、1画素ごとにWフィルタに対応するW信号とGフィル
タに対応するG信号の繰返しとなっている。
FIGS. 3(a) to 3(d) are waveform diagrams illustrating the operation of the demodulation circuit 14. FIG. 2A shows an output signal of the solid-state image sensor 13. The figure shows waveforms when the solid-state image sensor 13 is a CCD. In Figure (a), as is well known, period T1 is a reset period, T1 is a feed-through period, and T is an output period. 4 is a horizontal clock pulse period, and the signal of each pixel is outputted every period of T4. The output signal shown in Figure (a) shows the case of the n-th scanning line in Figure 2, and is a repetition of the W signal corresponding to the W filter and the G signal corresponding to the G filter for each pixel. .

次に同図(b)は、駆動回路16から極性反転回路15
に供給されるクロックパルスを示す。前記の通シその周
期T、は水平クロックパルス周期T4の2倍となってい
る。極性反転回路15はこのクロックパルスに従って固
体撮像素子13の出力信号を1画素ごとにW信号だけそ
の極性を反転させ、同図(C)に示す出力信号を得る。
Next, in FIG. 2(b), the polarity inversion circuit 15
shows the clock pulses supplied to the The above-mentioned period T is twice the horizontal clock pulse period T4. The polarity inversion circuit 15 inverts the polarity of the output signal of the solid-state image sensor 13 by W signal for each pixel in accordance with this clock pulse, thereby obtaining the output signal shown in FIG.

この出力信号は図のようにW信号が正極性、G信号が負
極性となっている。その結果W信号に含まれているR、
  G。
As shown in the figure, this output signal has a W signal of positive polarity and a G signal of negative polarity. As a result, R included in the W signal,
G.

Bの3原色光全てに対応する信号成分の内Gに対応する
信号成分が前記負極性のG信号と互いに打消し合い、図
(C)で示される出力信号の平均値はW−Gで示される
値となる。この平均値は前記した変調成分B−1−Hに
等しい。従って、極性反転回路15の出力信号を低域フ
ィルタ17に供給し、高周波成分を除去すれば同図(d
)に示されるような復調された変調成分B十R信号が得
られる。
Among the signal components corresponding to all three primary color lights of B, the signal components corresponding to G cancel each other out with the negative polarity G signal, and the average value of the output signal shown in Figure (C) is shown by W-G. will be the value. This average value is equal to the modulation component B-1-H described above. Therefore, if the output signal of the polarity inversion circuit 15 is supplied to the low-pass filter 17 and the high frequency components are removed,
) is obtained as a demodulated modulation component B+R signal.

次に第n+1番目の走査線からは全く同様にして変調成
分B−R信号を復調して得ることができる。
Next, the modulated component BR signal can be demodulated and obtained from the (n+1)th scanning line in exactly the same manner.

復調回路14から走査線ごとに線順次に得られるB−1
−R信号とB−R信号は次にIH遅延線18で遅延され
る。遅延された信号は次に遅延しない元の信号と加算及
び減算される。この加算によって、B+R信号とB−R
信号の互いに逆相成分のR成分が消去されて、B信号が
分離して得られ、同様に減算によって互いに同相成分の
B成分が消去されて、R信号が分離して得られる。なお
、IH遅延線18U低域の信号を遅延可能な遅延線を用
いる必要がある。
B-1 obtained line-sequentially for each scanning line from the demodulation circuit 14
The -R and BR signals are then delayed by IH delay line 18. The delayed signal is then added to and subtracted from the original, undelayed signal. By this addition, the B+R signal and the B-R
The R components of the signals that are out of phase with each other are eliminated to obtain a separated B signal, and similarly, the B components that are in phase with each other are eliminated by subtraction to obtain a separated R signal. Note that it is necessary to use a delay line that can delay the low frequency signal of the IH delay line 18U.

加算及び減算によって分離されたR及びB信号は固体撮
像素子13の出力信号を低域フィルタ2を通すことによ
って得られる輝度信号と共に用いてカラーテレビジョン
信号を形成する。なお第1図の符号2と9〜工2で示す
構成要素は前記第6図の従来例で述べた構成要素と同じ
く低域フィルタ、プロセス回路、カラーエンコーダであ
るので同一符号を付して説明を省略する。
The R and B signals separated by addition and subtraction are used together with the luminance signal obtained by passing the output signal of the solid-state image sensor 13 through the low-pass filter 2 to form a color television signal. It should be noted that the components indicated by reference numerals 2 and 9 to 2 in FIG. 1 are the same as the components described in the conventional example shown in FIG. 6, such as a low-pass filter, a process circuit, and a color encoder. omitted.

(実施例2) 第4図は本発明の第2の実施例を示す構成図である。本
実施例は、固体撮像素子から得られる変調成分が互いに
異なる2種類の色差信号となるような色フィルタアレイ
を用いるものである。この方式には、例えば首根らによ
りテレビジョン学会技術報告昭和58年3月VUL 6
. A4517)23頁〜28頁に「フィールド読出し
方式CODのカラー画像評価」と題して発表された論文
に於て、2R−G及び2B−Gで表わされる2つの色差
信号を走査線ごとに線順次に取り出し、これらをIH遅
延させて同時化する方式のカラー撮像装置が示されてい
る。
(Embodiment 2) FIG. 4 is a configuration diagram showing a second embodiment of the present invention. This embodiment uses a color filter array in which the modulation components obtained from the solid-state image sensor become two different types of color difference signals. This method includes, for example, Kune et al., Technical Report of the Television Society, March 1981, VUL 6.
.. A4517) In a paper published on pages 23 to 28 entitled "Color image evaluation of field readout method COD," two color difference signals represented by 2R-G and 2B-G are line-sequentially processed for each scanning line. A color imaging device is shown in which the images are taken out, delayed by IH, and then synchronized.

第5図はこの方式の色フィルタアレイの配列を示すもの
である。この色フィルタアレイは、フィールド蓄積方式
の配列で、図に示される通り奇数番目の列にはY、とC
Yフィルタを水平方向に1画素ごとに交互に配列し、偶
数番目の列にはマゼ/り(My)とGフィルタを水平方
向には1画素ごとに交互で、かつ2列目と4列目で互い
KMJIとGを180°入れ替えて配列している。
FIG. 5 shows the arrangement of the color filter array of this method. This color filter array is a field accumulation type arrangement, and as shown in the figure, the odd-numbered columns are Y and C.
Y filters are arranged horizontally alternately for each pixel, and maze/re(My) and G filters are arranged horizontally alternately for each pixel in the even-numbered columns, and in the second and fourth columns. KMJI and G are arranged 180 degrees interchanged.

第4図の構成図に於て、第5図の色フィルタアレイを組
み合わされた固体撮像素子19は垂直方向の2画素の信
号を固体撮像素子内部で加え合わせて出力する。すなわ
ち、Aフィールドの第n番目の走査線ではYe+M、→
C!十G−+Ys + MIF→・・・・・・の順序で
各色フィルタに対応する信号が加え合わされて出力され
、第n+1番目の走査線では同様にY6十〇+C丁+M
9→Ye+G→・・・・・・の順序で各色フィルタに対
応する信号が加え合わされた出力信号が得られる。Bフ
ィールドに於てもAフィールドと同じ組み合わせの順序
で出力信号が得られる。前記の各走査線の出力信号には
水平方向に2画素単位の繰返し周期の変調成分が含まれ
、この変調成分は第n番目の走査線では(Yθ十Mg)
 −(C,−1−G )= 2 R−G、、第n+1番
目の走査線では(Yθ+G)−(Cy+My)=()−
2Bとなっている。
In the configuration diagram of FIG. 4, the solid-state image sensor 19 combined with the color filter array of FIG. 5 outputs the signals of two vertical pixels added together inside the solid-state image sensor. That is, in the nth scanning line of the A field, Ye+M,→
C! The signals corresponding to each color filter are added and output in the order of 10G-+Ys + MIF→..., and in the same way, on the n+1st scanning line, Y6+Ys+MIF→...
An output signal is obtained in which signals corresponding to each color filter are added in the order of 9→Ye+G→.... In the B field, output signals are obtained in the same combination order as in the A field. The output signal of each of the above-mentioned scanning lines includes a modulation component with a repetition period of 2 pixels in the horizontal direction, and this modulation component is (Yθ + Mg) in the n-th scanning line.
-(C,-1-G) = 2 RG,, at the n+1st scanning line, (Yθ+G)-(Cy+My)=()-
It is 2B.

固体撮像索子19から得られる出力信号は復調回路20
に供給され、第1の実施例の場合と同様に極性反転回路
21で駆動回路22から供給される変調成分と等しい繰
返し周期を持ったクロックパルスに従って、1画素ごと
に極性が反転され、次いで低域フィルタ23で高周波成
分を除去されて、前記の2R−GとG−2Bで表わされ
る2つの色差信号が走査線ごとに線順次に復調されて得
られる。
The output signal obtained from the solid-state imaging probe 19 is sent to the demodulation circuit 20.
As in the case of the first embodiment, the polarity is inverted for each pixel in accordance with a clock pulse having a repetition period equal to the modulation component supplied from the drive circuit 22 in the polarity inversion circuit 21, and then the polarity is inverted for each pixel. High frequency components are removed by a pass filter 23, and the two color difference signals represented by 2R-G and G-2B are obtained by line-sequentially demodulating each scanning line.

得られた色差信号は、白バランス回路24で、固体撮像
素子19の出力信号を低域フィルタ25に通して得られ
る低域輝度信号と所定量加減算され、無彩色被写体を撮
像したとき色差信号が零となるように白バランスが調整
される。白バランス調整をされた色差信号は、次KIH
遅延線と切り換えスイッチで構成される同時化回路26
で、走査線ごとに得られる線順次信号から同時に2つの
色差信号が得られるように同時化される。
The obtained color difference signal is added or subtracted by a predetermined amount from the low-band luminance signal obtained by passing the output signal of the solid-state image sensor 19 through the low-pass filter 25 in the white balance circuit 24, so that when an achromatic object is imaged, the color difference signal is The white balance is adjusted so that it becomes zero. The color difference signal after white balance adjustment is sent to the next KIH
Synchronization circuit 26 consisting of a delay line and a changeover switch
Then, two color difference signals are simultaneously obtained from the line sequential signals obtained for each scanning line.

得られた2つの色差信号と低域フィルタ2及びプロセス
回路11によって得た輝度信号とを用い、カラーエンコ
ーダ27でカラーテレビジョン(を号を形成する。なお
、低域フィルタ2とプロセス回路11け前記第6図の従
来例の構成要素と同一である。
Using the obtained two color difference signals and the luminance signal obtained by the low-pass filter 2 and the process circuit 11, a color encoder 27 forms a color television. The components are the same as those of the conventional example shown in FIG.

(発明の効果) 以上本発明を2つの実施例によって説明したが、説明に
よって明らかにしたように、本発明は固体撮像素子の出
力信号に含まれる変調成分を分離復調する際に変調成分
の繰返し周期と同期して1画素ごとに交互に出力信号の
極性を反転し、水平方向に隣シ合った2画素の互いに共
通して含まれる信号成分を打ち消して変調成分を得るも
のである。
(Effects of the Invention) The present invention has been described above with reference to two embodiments, but as clarified by the explanation, the present invention is capable of repeating a modulation component when separating and demodulating a modulation component included in an output signal of a solid-state image sensor. The polarity of the output signal is alternately inverted pixel by pixel in synchronization with the cycle, and the signal components commonly included in two horizontally adjacent pixels are canceled to obtain a modulation component.

そこで、本発明によれば、従来変調成分を分離するため
に必要であった帯域フィルタを無くすことができるから
、クロックノイズ成分を除去する必要性から構成が複雑
であった従来例に比較し、構成を非常に簡略化でき、な
おかつ帯域フィルタに起因する偽色信号の発生が除去さ
れた鮮明なカラー画像が得られるカラー固体撮像装置が
実現できる。
Therefore, according to the present invention, it is possible to eliminate the bandpass filter that was conventionally required to separate modulation components, compared to the conventional example whose configuration was complicated due to the need to remove the clock noise component. It is possible to realize a color solid-state imaging device whose configuration can be greatly simplified and which can obtain clear color images in which the generation of false color signals caused by bandpass filters has been eliminated.

なお、実施例の説明では変調成分の繰返し周期は2画素
率位であったが、これは4画素、6画素あるいはそれ以
上を繰返し単位としても同様である。
In the description of the embodiment, the repetition period of the modulation component was about 2 pixels, but the same holds true even if the repetition unit is 4 pixels, 6 pixels, or more.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す構成図、第2図は
その実施例で用いる色フィルタアレイの配列を示す模式
図、第3図(a)〜(d)は第1図実施例の動作を説明
する波形図、第4図は本発明の第2の実施例を示す構成
図、第5図はその第2の実施例で用いる色フィルタアレ
イの配列を示す模式図、第6図は従来のカラー固4木撮
像装置を示す構成図である。 図に於て、1. 131 19は固体撮像素子、2は低
域フィルタ、3は帯域フィルタ、4はIH遅延線、5,
6は復調器、7,8は低域フィルタ、9.10.11は
プロセス回路、12はカラーエンコーダ、14e20は
復調回路、15.21は極性反転回路、16.22は駆
動回路、17.23は低域フィルタ、18.IH遅延線
、24は白バランス回路、25は低域フィルタ、26は
同時化回路、27はカラーエンコーダである。 代理人  弁理士  本 庄 伸 介 第2図 第5図 Bフ4−ルト TIT2T3       T4 ンO J4+Isめに3a4− 俣茅1ωバ勤
FIG. 1 is a block diagram showing a first embodiment of the present invention, FIG. 2 is a schematic diagram showing the arrangement of a color filter array used in that embodiment, and FIGS. 4 is a configuration diagram showing a second embodiment of the present invention; FIG. 5 is a schematic diagram showing the arrangement of a color filter array used in the second embodiment; FIG. FIG. 6 is a configuration diagram showing a conventional color solid-four-wood imaging device. In the figure, 1. 131 19 is a solid-state image sensor, 2 is a low-pass filter, 3 is a bandpass filter, 4 is an IH delay line, 5,
6 is a demodulator, 7 and 8 are low-pass filters, 9.10.11 is a process circuit, 12 is a color encoder, 14e20 is a demodulation circuit, 15.21 is a polarity inversion circuit, 16.22 is a drive circuit, 17.23 is a low-pass filter, 18. 24 is a white balance circuit, 25 is a low-pass filter, 26 is a synchronization circuit, and 27 is a color encoder. Agent Patent Attorney Shinsuke Honjo Figure 2 Figure 5 B 4-Fult TIT2T3 T4 N O J4+Is Meni 3a4- Mataya 1ω BA Duty

Claims (1)

【特許請求の範囲】[Claims] 色フィルタが水平と垂直方向に所定の繰返し周期で配列
されてなる色フィルタアレイが組み合わされ、輝度情報
を表わす信号に色情報を表わす複数の信号が前記色フィ
ルタアレイの水平方向の繰返し周期を周期とする変調成
分として周波数多重化されて得られるように構成された
固体撮像素子を備えるカラー固体撮像装置に於て、前記
固体撮像素子の出力信号の極性を前記色フィルタアレイ
の水平方向の繰返し周期に同期して画素ごとに交互に反
転させ、前記極性反転された信号の平均値として前記色
情報を表わす複数の変調成分を分離復調して得ることを
特徴とするカラー固体撮像装置。
A color filter array in which color filters are arranged at a predetermined repetition period in the horizontal and vertical directions is combined, and a signal representing luminance information and a plurality of signals representing color information are arranged at a repetition period in the horizontal direction of the color filter array. In a color solid-state imaging device including a solid-state imaging device configured to be obtained by frequency multiplexing as a modulation component, the polarity of the output signal of the solid-state imaging device is determined by the horizontal repetition period of the color filter array. 1. A color solid-state imaging device characterized in that a plurality of modulation components representing the color information are obtained by separating and demodulating a plurality of modulation components representing the color information as an average value of the polarity-inverted signals.
JP60142271A 1985-06-28 1985-06-28 Color solid-state imaging device Expired - Lifetime JP2521899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60142271A JP2521899B2 (en) 1985-06-28 1985-06-28 Color solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60142271A JP2521899B2 (en) 1985-06-28 1985-06-28 Color solid-state imaging device

Publications (2)

Publication Number Publication Date
JPS623587A true JPS623587A (en) 1987-01-09
JP2521899B2 JP2521899B2 (en) 1996-08-07

Family

ID=15311469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60142271A Expired - Lifetime JP2521899B2 (en) 1985-06-28 1985-06-28 Color solid-state imaging device

Country Status (1)

Country Link
JP (1) JP2521899B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031384A (en) * 1983-07-29 1985-02-18 Matsushita Electric Ind Co Ltd Single board color camera

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031384A (en) * 1983-07-29 1985-02-18 Matsushita Electric Ind Co Ltd Single board color camera

Also Published As

Publication number Publication date
JP2521899B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
US4246601A (en) Solid-state color imaging device
JPS6247038B2 (en)
JPS6118912B2 (en)
JPS6129197B2 (en)
JPS6118913B2 (en)
JPS63233693A (en) Signal processing device for solid-state color camera
JPH048992B2 (en)
JP2521899B2 (en) Color solid-state imaging device
JP2617293B2 (en) Imaging device
JPS6124872B2 (en)
JP2623084B2 (en) Imaging device
JP2623083B2 (en) Imaging device
JPS5918909B2 (en) color imaging device
JP2655436B2 (en) Color solid-state imaging device
JP2797752B2 (en) Color solid-state imaging device
JPS6068788A (en) Solid-state color image pickup device
JPS6243398B2 (en)
JPS6120192B2 (en)
JPS6238390Y2 (en)
JPH0139273B2 (en)
JPS631277A (en) Color solid-state image pickup device
JPS60217784A (en) Solid-state image pickup device
JPH0712217B2 (en) Color solid-state imaging device
JPS6238910B2 (en)
JPS6243288A (en) Color solid-state image pickup device