JPS6235624B2 - - Google Patents

Info

Publication number
JPS6235624B2
JPS6235624B2 JP5629680A JP5629680A JPS6235624B2 JP S6235624 B2 JPS6235624 B2 JP S6235624B2 JP 5629680 A JP5629680 A JP 5629680A JP 5629680 A JP5629680 A JP 5629680A JP S6235624 B2 JPS6235624 B2 JP S6235624B2
Authority
JP
Japan
Prior art keywords
water
valve
supply tank
measurement
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5629680A
Other languages
Japanese (ja)
Other versions
JPS56153245A (en
Inventor
Akishiro Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP5629680A priority Critical patent/JPS56153245A/en
Publication of JPS56153245A publication Critical patent/JPS56153245A/en
Publication of JPS6235624B2 publication Critical patent/JPS6235624B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physical Water Treatments (AREA)

Description

【発明の詳細な説明】 この発明は低濁度水の水質測定装置、特にメン
ブランフイルタを使用して目詰まり率または目詰
まり速度を間欠的に測定するようにした水質測定
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water quality measuring device for low turbidity water, and particularly to a water quality measuring device that uses a membrane filter to intermittently measure clogging rate or clogging rate.

最近、水中の極微量(1ppm以下)の浮遊物や
コロイド状物質の含有量、あるいはこれらの濾過
膜などへの付着傾向を示す水質指標として、均一
微細な孔径を有するメンブランフイルタを用い
て、一定量または一定時間試料水を濾過し、メン
ブランフイルタの目詰り率または目詰り速度から
計算するSI(Silting Index)、FI(Fouling
Index)、PI(Plugging Index)などの測定法が
提案され、実用化されてきた。これらの水質指標
は、逆浸透法や電気透析法などによる脱塩プロセ
スの膜汚染の防止や、超純水中の付着性コロイド
状物の検出に非常に有効な測定手段として実証さ
れているが、その測定は常時連続測定する必要は
なく、一定時間毎に測定チエツクする方法が一般
的である。
Recently, a membrane filter with a uniform fine pore size has been used as a water quality indicator to indicate the content of extremely small amounts (1 ppm or less) of suspended matter or colloidal substances in water, or the tendency of these substances to adhere to filter membranes. SI (Silting Index), FI (Fouling
Measuring methods such as PI (Index) and PI (Plugging Index) have been proposed and put into practical use. These water quality indicators have been proven to be very effective measurement tools for preventing membrane contamination during desalination processes such as reverse osmosis and electrodialysis, and for detecting adherent colloids in ultrapure water. However, the measurement does not need to be carried out continuously at all times, and it is common to check the measurement at regular intervals.

このような間欠測定法が使用される場合、試料
水がたとえ少量でも微生物で汚染されていると、
装置の通水部に付着残存する可能性があり、これ
が次回の測定時までの間に給水タンク内壁や配管
内部の湿潤状態のところにおいて大量に増殖し、
次回の測定値に大きな誤差をあたえることが考え
られる。したがつて、従来はこのような誤差を防
ぐため、測定にあたつて毎回大量の試料水で装置
の通水部を洗浄しなければならず、超純水の測定
のような場合、貴重な試料水が無駄に廃棄されて
いた。
When such intermittent measurement methods are used, if the sample water is contaminated with microorganisms, even in small quantities,
There is a possibility that it may remain attached to the water passage part of the device, and it may grow in large quantities on the inner wall of the water tank or in the moist areas inside the piping until the next measurement.
It is possible that a large error will be given to the next measurement value. Therefore, in the past, in order to prevent such errors, it was necessary to wash the water passage part of the device with a large amount of sample water each time a measurement was taken, which wasted valuable water when measuring ultrapure water. Sample water was wasted.

この発明は、このような従来装置の欠点を改善
するものであり、給水タンクに紫外線照射灯を設
けることにより、測定の都度その最終段階におい
て直接給水タンク内を殺菌するとともに、発生し
たオゾンを装置の通水部に流せるようにように
し、これによつて装置を殺菌浄化して測定誤差を
なくすことのできる低濁度水の水質測定装置を提
供することを目的としている。
This invention improves the shortcomings of the conventional equipment, and by installing an ultraviolet irradiation lamp in the water supply tank, the inside of the water supply tank is directly sterilized at the final stage of each measurement, and the generated ozone is removed from the equipment. It is an object of the present invention to provide a water quality measuring device for low turbidity water, which can be made to flow through a water passage section of the device, thereby sterilizing and purifying the device and eliminating measurement errors.

この発明は検水給水タンクと濾過部と濾過水タ
ンクから構成され、給水タンクからの低濁度の検
水を濾過部のメンブランフイルタに通過させて測
〓〓〓〓
定する低濁度水の水質測定装置において、給水タ
ンク内に紫外線照射灯を設けたことを特徴とする
低濁度水の水質測定装置である。
This invention consists of a test water supply tank, a filtration section, and a filtered water tank.
This water quality measuring device for low turbidity water is characterized in that an ultraviolet irradiation lamp is provided in the water supply tank.

以下、図面の実施例について説明する。図面は
実施例の系統図であり、1は給水タンク、2は濾
過部、3は濾過水タンクである。給水タンク1は
密閉式の加圧タンクからなり、下部に弁V1をも
つ給水管C1、中間よりやや上部に弁V2をもつ
オーバーフロー管C2、頂部に弁V3および減圧
弁RV1をもつ加圧管C3、また下部に弁V4を
もつ連絡管C4、底部に弁V5をもつ排水管C5
が連絡しており、上部空間に紫外線照射灯4が設
けられている。紫外線照射灯4は殺菌およびオゾ
ンの発生に有効な波長の紫外線を照射するものが
望ましく、一般的には水銀封入圧が0.1mmHgの低
圧水銀灯で、殺菌線と呼ばれる253.7nmおよび
184.9nmの紫外線を発光するものが使用できる。
Examples of the drawings will be described below. The drawing is a system diagram of the embodiment, where 1 is a water supply tank, 2 is a filtration section, and 3 is a filtered water tank. The water supply tank 1 consists of a closed pressurized tank, which includes a water supply pipe C1 having a valve V1 at the bottom, an overflow pipe C2 having a valve V2 slightly above the middle, a pressurizing pipe C3 having a valve V3 and a pressure reducing valve RV1 at the top, Also, a connecting pipe C4 has a valve V4 at the bottom, and a drain pipe C5 has a valve V5 at the bottom.
is in communication, and an ultraviolet irradiation lamp 4 is provided in the upper space. The ultraviolet irradiation lamp 4 is preferably one that irradiates ultraviolet rays with a wavelength effective for sterilization and ozone generation, and is generally a low-pressure mercury lamp with a mercury filling pressure of 0.1 mmHg, and a 253.7 nm and sterilizing line.
A device that emits ultraviolet light of 184.9 nm can be used.

濾過部2はロール(図示せず)から送り出され
るメンブランフイルタ5をはさんで、気密状態に
接合または分離できるように、上下に対向して設
けられた一対の濾過盤6A,6Bを有しており、
この濾過盤の対向面にはそれぞれ濾過室7A,7
Bが設けられている。下側の濾過室7Bの上面に
は通水性のフイルタ支持板8が設けられるととも
に、前記連絡管C4および弁V6をもつ排気管C
6が連絡している。また上側の濾過室7Aには弁
V7Aをもつ連絡管C7Aおよび弁V7Bをもつ
分岐管C7Bが連絡している。弁V7AおよびV
7Bは一方が開のときは他方が閉となるように連
動している。上側の濾過盤6Aの上部にはエアシ
リンダ9が設けられており、弁V8および減圧弁
RV2をもつ加圧管C8が連絡している。なお加
圧管C3およびC8はコンプレツサ10に連絡し
ている。
The filtration section 2 has a pair of filtration disks 6A and 6B that are vertically opposed to each other so that the membrane filter 5 fed from a roll (not shown) can be joined or separated in an airtight manner. Ori,
Filtration chambers 7A and 7 are provided on the opposing surfaces of this filter plate, respectively.
B is provided. A water-permeable filter support plate 8 is provided on the upper surface of the lower filtration chamber 7B, and an exhaust pipe C having the communication pipe C4 and the valve V6 is provided.
6 is in contact. Further, a communication pipe C7A having a valve V7A and a branch pipe C7B having a valve V7B communicate with the upper filtration chamber 7A. Valve V7A and V
7B are interlocked so that when one is open, the other is closed. An air cylinder 9 is provided above the upper filter disk 6A, and a valve V8 and a pressure reducing valve
Pressure pipe C8 with RV2 is in communication. Note that the pressurizing pipes C3 and C8 are connected to the compressor 10.

濾過水タンク3は内部にレベルスイツチ11が
設けられて計量可能となつており、上部に前記連
絡管C7A、底部に弁V9をもつ排水管C9が連
絡している。排水管C5,C9、オーバーフロー
管C2、排気管C6および分岐管C7Bはそれぞ
れ排水管12に連絡している。
The filtered water tank 3 is provided with a level switch 11 inside to enable measurement, and is connected to the communication pipe C7A at the top and the drain pipe C9 having a valve V9 at the bottom. Drain pipes C5 and C9, overflow pipe C2, exhaust pipe C6, and branch pipe C7B each communicate with drain pipe 12.

以上のように構成された低濁度水の水質測定装
置による水質の測定法は試験項目により異なる
が、いずれもメンブランフイルタ5を利用する濾
過試験である。以下FIの自動測定の場合につい
て試験方法を説明する。
The method of measuring water quality using the water quality measuring device for low turbidity water configured as described above differs depending on the test item, but all of them are filtration tests using the membrane filter 5. The test method for automatic FI measurement will be explained below.

FIの自動測定のためには、まず弁V1を開き
給水管C1から試料水を給水タンク1に導入し、
弁V2を開いて一定時間オーバフローさせ、給水
タンク1内の試料水の均一化をはかるとともに液
面を一定にする。次いで弁V1,V2を閉じ弁V
3を開いてコンプレツサ10から圧縮空気を導入
して給水タンク1を加圧する。
For automatic FI measurement, first open valve V1 and introduce sample water from water supply pipe C1 into water supply tank 1.
The valve V2 is opened to allow overflow for a certain period of time to equalize the sample water in the water supply tank 1 and to keep the liquid level constant. Then, close valves V1 and V2 and open valve V.
3 is opened and compressed air is introduced from the compressor 10 to pressurize the water tank 1.

一方濾過部2では弁V8を開き、コンプレツサ
10から圧縮空気を送つてエアシリンダ9を駆動
し、濾過盤6Aを下げてセツトする。この状態で
はメンブランフイルタ5はフイルタ支持板8上に
支持されて濾過盤6A,6B間にはさまれ、濾過
室7A,7Bに気密に保たれる。この状態で弁V
4,V6を開いて給水タンク1から加圧水を導入
し、濾過室7B内の空気抜きを行う。
On the other hand, in the filter section 2, the valve V8 is opened, compressed air is sent from the compressor 10 to drive the air cylinder 9, and the filter disk 6A is lowered and set. In this state, the membrane filter 5 is supported on the filter support plate 8, sandwiched between the filter disks 6A and 6B, and kept airtight in the filter chambers 7A and 7B. In this state, valve V
4. Open V6 to introduce pressurized water from the water supply tank 1, and vent the air in the filtration chamber 7B.

次に弁V6を閉じ弁V7Aを開いてT0の測定
に入る。T0は試験開始時点における一定量濾過
に要する時間の測定であり、メンブランフイルタ
5を通過した濾過水が一定量濾過水タンク3に入
つたときにレベルスイツチ11でチエツクし時間
を測定する。続いて弁V7Aを閉じるとともに、
弁V7Bを開いて分岐管C7Bから濾過水を一定
時間排出して濾過を行い、さらに前記T0と同様
に一定時間後の一定量濾過時間T1を測定する。
その後弁V5,V6,V9を開いて装置全体から
水抜きを行い、1回の試験が終る。この間濾過水
タンク3への濾過水の供給を中止するには弁V7
Aを閉じてV7Bを開く。
Next, valve V6 is closed and valve V7A is opened to begin measuring T0 . T0 is a measurement of the time required to filtrate a certain amount at the start of the test, and when a certain amount of filtrated water that has passed through the membrane filter 5 enters the filtrated water tank 3, the level switch 11 is checked and the time is measured. Then close valve V7A and
Filtration is performed by opening the valve V7B and discharging the filtered water from the branch pipe C7B for a certain period of time, and then measuring a certain amount of filtration time T 1 after a certain period of time in the same manner as T 0 above.
Thereafter, valves V5, V6, and V9 are opened to drain water from the entire apparatus, and one test is completed. To stop the supply of filtered water to the filtered water tank 3 during this time, use the valve V7.
Close A and open V7B.

これらの測定操作は一定時間ごとに間欠的に行
う。休止時間中は、装置内の試料水は排出され、
装置は一応空になつているが、給水タンク1の内
壁や配管内面および濾過部2の内壁やフイルタ支
持板8、濾過水タンク3、電磁弁内部等には若干
の付着水が残留する。ここでもし試料水中に微量
なりとも細菌などの微生物およびこれに資化され
る有機物が存在すると、有機物は試料水との接触
壁面に濃縮吸着されることになるので、細菌など
の微生物は、この休止時間中に増殖蓄積されてい
くことが予想され、以後の測定に誤差となつてあ
らわれる可能性をあたえる。
These measurement operations are performed intermittently at regular intervals. During downtime, the sample water in the device is drained and
Although the apparatus is empty for the time being, some adhering water remains on the inner wall of the water supply tank 1, the inner surface of the piping, the inner wall of the filter section 2, the filter support plate 8, the filtered water tank 3, the inside of the electromagnetic valve, etc. If microorganisms such as bacteria and organic matter assimilated by them are present in the sample water, even in trace amounts, the organic matter will be concentrated and adsorbed on the wall surface that comes into contact with the sample water. It is expected that the cells will proliferate and accumulate during the rest period, giving rise to the possibility that errors will appear in subsequent measurements.

したがつてこのような問題を解決するために
は、測定の都度その最終段階に装置内の通水部を
殺菌すればよいことになるが、薬剤の注入は次回
〓〓〓〓
測定時の汚染を引起こすことになり好ましい方法
ではない。
Therefore, in order to solve this problem, it is sufficient to sterilize the water flow part inside the device at the final stage of each measurement, but the injection of chemicals should be done the next time.
This is not a preferable method because it causes contamination during measurement.

本発明では、このような系内の殺菌を行うにあ
たつて、汚染の必配のない紫外照射およびこれよ
り発生するオゾンを使用するものである。すなわ
ち、前記の自動測定のシーケンスの後に、給水タ
ンク1内に設置した紫外線照射灯4を点灯し、こ
れの直接の照射によつて給水タンク内を殺菌する
とともに、V2以降の全部の弁を開にしてコンプ
レツサ10から少量の空気を流し、紫外線照射に
よつて発生したオゾンを全通水部に流すシーケン
スを追加して、系内の殺菌を行い、続いて弁V
3,V8を閉じて加圧を停止し、メンブランフイ
ルタ5を送り出して測定を完了する。
The present invention uses ultraviolet irradiation, which does not necessarily cause contamination, and the ozone generated from the ultraviolet irradiation to sterilize the system. That is, after the automatic measurement sequence described above, the ultraviolet light irradiation lamp 4 installed inside the water supply tank 1 is turned on, and the inside of the water supply tank is sterilized by direct irradiation from this lamp, and all valves from V2 onwards are opened. The system is sterilized by adding a sequence in which a small amount of air is flowed from the compressor 10 and ozone generated by ultraviolet irradiation is flowed through all water passages, and then the valve V
3. Close V8 to stop pressurization, send out the membrane filter 5, and complete the measurement.

紫外線照射と発生オゾンの併用による殺菌は非
常に強力であり、少量のオゾン、たとえば0.3〜
1mg−O3/−airの空気を数分間流入させるこ
とによつて給水タンクは有効に殺菌される。また
配管内、濾過部、電磁弁内などの殺菌消毒は、紫
外線照射はないが、前記オゾン濃度の空気を数分
間通過させることによつて十分に殺菌効果を発揮
する。
Sterilization by the combination of ultraviolet irradiation and generated ozone is very strong, and even a small amount of ozone, e.g.
The water tank is effectively sterilized by flowing air at 1 mg-O 3 /-air for several minutes. In addition, when sterilizing the inside of piping, the filter section, the electromagnetic valve, etc., although no ultraviolet irradiation is used, a sufficient sterilizing effect can be achieved by passing air at the ozone concentration for several minutes.

なお以上の装置においては給水加圧手段として
圧縮空気を用いたが、ポンプその他の加圧手段で
あつてもよく、また紫外線ランプ4の設置位置も
上部空間に限らず、他の位置であつてもよい。濾
過部2の構造も実施例のものに限らず、メンブラ
ンフイルタを通して濾過試験を行えるものであれ
ば他の構造のものでもよい。また濾過水タンク3
における計量手段も実施例のものに限らず、他の
形式のものでもよく、さらに計量手段を設けない
ものであつてもよい。またこの発明はFI測定の
みに限らず、PI、SIなど、他の指標による目詰ま
り率、目詰まり速度等を測定する低濁度水の水質
測定装置にも適用可能である。
In the above apparatus, compressed air is used as the water supply pressurizing means, but a pump or other pressurizing means may be used, and the installation position of the ultraviolet lamp 4 is not limited to the upper space, but may be at another position. Good too. The structure of the filtration section 2 is not limited to that of the embodiment, but may be of any other structure as long as it can perform a filtration test through a membrane filter. Also, filtered water tank 3
The measuring means in is not limited to the one in the embodiment, but may be of another type, or may not be provided with a measuring means. Further, the present invention is not limited to FI measurement, but can also be applied to a water quality measuring device for low turbidity water that measures clogging rate, clogging speed, etc. using other indicators such as PI and SI.

以上の通り、本発明によれば次のような効果が
認められる。
As described above, according to the present invention, the following effects are recognized.

装置の通水系内を休止時間中無菌状態に保て
るため、系内における微生物の増殖による以後
の測定の誤差を防止できる。
Since the inside of the water flow system of the device can be kept sterile during the downtime, it is possible to prevent errors in subsequent measurements due to the growth of microorganisms within the system.

上記誤差をできるだけ小さくするため、従来
法では測定の前に相当長時間試料水を流し、系
内を洗浄していたが、この水量は節約できる。
In order to minimize the above-mentioned error, in the conventional method, sample water was run for a considerable period of time to clean the system before measurement, but this amount of water can be saved.

従来法においては、測定に使用した水は、系
内からの汚染の可能性があるので廃棄していた
が、これの活用が可能となる。
In the conventional method, the water used for measurement was discarded because there was a possibility of contamination from within the system, but now it is possible to use this water.

とくに超純水測定時には、上記、の効果
が、自動モニタリングのコスト低下に大きく寄
与する。
Especially when measuring ultrapure water, the above effects greatly contribute to lowering the cost of automatic monitoring.

間欠的に無菌水が製造されるので、無菌水を
器具の洗浄等にも使用できる。
Since sterile water is produced intermittently, sterile water can also be used for cleaning instruments, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は実施例の系統図であり、1は給水タン
ク、2は濾過部、3は濾過水タンク、4は紫外線
照射灯、5はメンブランフイルタ、6A,6Bは
濾過盤、9はエアシリンダ、10はコンプレツサ
を示す。 〓〓〓〓
The drawing is a system diagram of the embodiment, and 1 is a water supply tank, 2 is a filtration unit, 3 is a filtered water tank, 4 is an ultraviolet irradiation lamp, 5 is a membrane filter, 6A and 6B are filter plates, 9 is an air cylinder, and 10 indicates a compressor. 〓〓〓〓

Claims (1)

【特許請求の範囲】 1 検水給水タンクと濾過部と濾過水タンクから
構成され、給水タンクからの低濁度の検水を濾過
部のメンブランフイルタに通過させて測定する低
濁度水の水質測定装置において、給水タンク内に
紫外線照射灯を設けたことを特徴とする低濁度水
の水質測定装置。 2 紫外線照射灯を給水タンクの上部空間に設け
た特許請求の範囲第1項記載の低濁度水の水質測
定装置。 3 紫外線照射灯は殺菌に有効な紫外線と、オゾ
ン発生に有効な紫外線を照射するものである特許
請求の範囲第1項または第2項記載の低濁度水の
水質測定装置。
[Scope of Claims] 1. Water quality of low turbidity water that is composed of a test water supply tank, a filtration section, and a filtered water tank, and is measured by passing low turbidity test water from the water supply tank through a membrane filter in the filtration section. A water quality measuring device for low turbidity water, characterized in that the measuring device includes an ultraviolet irradiation lamp installed in a water supply tank. 2. The water quality measuring device for low turbidity water according to claim 1, wherein an ultraviolet irradiation lamp is provided in the upper space of the water supply tank. 3. The water quality measuring device for low turbidity water according to claim 1 or 2, wherein the ultraviolet irradiation lamp irradiates ultraviolet rays effective for sterilization and ultraviolet rays effective for ozone generation.
JP5629680A 1980-04-30 1980-04-30 Measuring device for water quality of low turbidity Granted JPS56153245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5629680A JPS56153245A (en) 1980-04-30 1980-04-30 Measuring device for water quality of low turbidity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5629680A JPS56153245A (en) 1980-04-30 1980-04-30 Measuring device for water quality of low turbidity

Publications (2)

Publication Number Publication Date
JPS56153245A JPS56153245A (en) 1981-11-27
JPS6235624B2 true JPS6235624B2 (en) 1987-08-03

Family

ID=13023143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5629680A Granted JPS56153245A (en) 1980-04-30 1980-04-30 Measuring device for water quality of low turbidity

Country Status (1)

Country Link
JP (1) JPS56153245A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184660U (en) * 1982-05-31 1983-12-08 三菱電機株式会社 Water sampling device
JPH01154448U (en) * 1988-04-15 1989-10-24
JPH04136761A (en) * 1990-09-28 1992-05-11 Haimo Kk Method for quantifying concentration of dissolved substance in bioreactor
JP4517615B2 (en) * 2003-09-30 2010-08-04 栗田工業株式会社 Evaluation method and apparatus for reverse osmosis membrane feed water and operation management method for water treatment apparatus

Also Published As

Publication number Publication date
JPS56153245A (en) 1981-11-27

Similar Documents

Publication Publication Date Title
CA2257151C (en) Method and installation for in situ testing of filtering membrane integrity
US6324898B1 (en) Method and apparatus for testing the integrity of filtering membranes
Kimura et al. Irreversible membrane fouling during ultrafiltration of surface water
KR101462565B1 (en) Monitoring method real-time fouling potential in Reverse Osmosis Process for Seawater Desalination and Desalination equipment having such monitoring function
JPS63154181A (en) Blood dialytic apparatus and method with bacteria removing apparatus
Adham et al. Monitoring the integrity of reverse osmosis membranes
US6017459A (en) Apparatus and method for the monitoring of membrane deposition
TWI483771B (en) System and method for purifying water, with automatic purge
US10046988B2 (en) RO installation for flushing solutions
KR101612231B1 (en) A assembly and method for cleaning diagnosis in reverse osmosis membrane vessel
JP5595956B2 (en) Evaluation method of fouling of separation membrane and operation method of membrane separation equipment
JPS6235624B2 (en)
JPH08252440A (en) Method for detecting breakage of membrane and device therefor
KR101560524B1 (en) A assembly and method of real-time fouling monitoring in forward osmosis membrane vessel
US20050061741A1 (en) Method for treating reverse osmosis membranes with chlorine dioxide
Hill Jr et al. Recovery of poliovirus from turbid estuarine water on microporous filters by the use of celite
US10307715B2 (en) Control of an RO installation for flushing solutions
IT9084969A1 (en) AUTOMATIC MICROFILTRATION SYSTEM OF LIQUIDS, IN PARTICULAR OF WINES
JPH049117B2 (en)
KR101766457B1 (en) Measuring apparatus for membrane fouling index
Hong et al. Assessing pathogen removal efficiency of microfiltration by monitoring membrane integrity
Johnson et al. Issues of operational integrity in membrane drinking water plants
Johnson Automatic monitoring of membrane integrity in microfiltration systems
JPS62163707A (en) Method for preventing contamination of membrane module
JPH0975690A (en) Method and device for detecting damage of water treatment filter and water treatment apparatus equipped with the same