JPS6235465B2 - - Google Patents

Info

Publication number
JPS6235465B2
JPS6235465B2 JP20053382A JP20053382A JPS6235465B2 JP S6235465 B2 JPS6235465 B2 JP S6235465B2 JP 20053382 A JP20053382 A JP 20053382A JP 20053382 A JP20053382 A JP 20053382A JP S6235465 B2 JPS6235465 B2 JP S6235465B2
Authority
JP
Japan
Prior art keywords
iron plating
plating
steel
iron
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20053382A
Other languages
Japanese (ja)
Other versions
JPS5989791A (en
Inventor
Makoto Himeno
Masatoshi Shinozaki
Minoru Nishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP20053382A priority Critical patent/JPS5989791A/en
Publication of JPS5989791A publication Critical patent/JPS5989791A/en
Publication of JPS6235465B2 publication Critical patent/JPS6235465B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、冷間圧延鋼板(鋼帯を含み、以下
冷延鋼板という)の表面性状改質方法に関する。 冷延鋼板は、自動車や家庭電機製品など広い用
途に用いられる、最も一般的な鋼材の一つである
が、近年自動車用鋼板の分野では車体の軽量化あ
るいは安全性の向上を目的として、高張力を有す
る冷延鋼板の開発が推進され、高強度と高加工性
を兼備する材料を得るための成分設計、製造プロ
セスの検討に多くの勢力が注がれている。また軟
鋼板においても、鋼中の窒素や炭素をAl、Nbな
どの添加元素にて固定することにより、加工性の
一層の向上がはかられている。 しかしこのような冷延鋼板の機械的性質改良を
目的として使用される添加元素の中には、焼鈍時
に鋼板表面に濃化して酸化皮膜を形成し、冷延鋼
板の重要な特性の一つである表面性状、すなわち
りん酸塩化成処理性や塗装性その他外観(テンパ
ーカラー)などを損うものが少なくない。 このような作用は、酸素との親和力の大きい
Al、Si、Mnなど、鋼の機械的性質改良に関して
重要な元素でとくに顕著であるため、機械的性質
改良のための成分設計においてこの表面性状劣化
の問題は、非常に重大なものと言える。 発明者らは、この表面性状劣化の問題を解決す
るため鋭意検討を重ねた結果、冷間圧延終了後、
再結晶焼鈍に先立つて高濃度の酸素を含有する鉄
めつきをあらかじめ鋼板表面に施しておくことに
より、鋼中元素の焼鈍時における表面への拡散濃
化を有効に防止する効果が得られることを知見
し、この発明の完成に至つたものである。 すなわちこの発明は、熱間圧延、脱スケールお
よび冷間圧延を施した鋼板に、再結晶焼鈍の前工
程で、5000ppm以上の酸素を含有する鉄めつき
を厚さ0.01μm以上、2.0μm以下の範囲で施す
ことをもつて冷延鋼板の表面性状改質を有利に達
成したものである。 鋼材に鉄めつきを施したのちに加熱処理を加え
ることにより表面性状の改質を行つた方法として
公知のものに、特公昭54−29976号公報の開示を
見ることができるが、この場合鉄めつきを行なつ
たのちに加熱処理を加えることにより、母材の性
状と無関係に鋼材の表面処理性を一定とすること
を目的とするにすぎず、これに従つて通常の条件
で鉄めつきを施し、もつて再結晶焼鈍時のSi、
Mnなどの表面濃化を化成処理性や表面外観に害
のない程度まで減少させるには、鋼中のSiやMn
の添加量が多い場合において、鉄めつき厚さを2
μm程度またはそれ以上とする必要があつたの
で、コストおよび実施工程を考慮すると工業的に
実施することは極めて困難であつた。 そこで鉄めつきの条件を種々変化させて表面濃
化抑制効果に及ぼす影響について検討したとこ
ろ、鉄めつき中に5000ppm以上の酸素を含有さ
せるような条件で鉄めつきを行なうことにより、
Mn、Siなどの鋼中元素の表面濃化が著しく抑制
されることが判明した。 すなわちこのような条件で鉄めつきを行なつた
場合、鋼中に相当量のMn、Siなどが添加されて
いても0.1〜0.5μm程度に薄い鉄めつき厚さで焼
鈍時の表面濃化を、十分なレベルまで減少させる
ことが可能となる。 高濃度の酸素を含有する鉄めつきにより再結晶
焼鈍時におけるMn、Siなどの鋼中元素の表面濃
化が強く抑制されるのは、鉄めつき中でこれらの
元素が酸素によりトラツプされることによる。す
なわち、表面への濃化が問題とされるMn、Siな
どの元素は、酸素との親和力が強くこのため焼鈍
時において鋼板表面で選択的に酸化されることに
より表面に濃化するわけであるが、高濃度の酸素
を含む鉄めつきが焼鈍の前工程で施された場合、
焼鈍過程においてこの鉄めつき中の酸素がMn、
Siなどと結びついて鉄めつき層中に微細なMnや
Siの酸化物を形成することにより、これらの元素
が表面まで拡散してくるのを有効に防ぐためであ
る。 このような作用を持たせるためには、鉄めつき
中の酸素濃度は高いほど良く、少くとも
5000ppmの含有量が必要である。すなわち鉄め
つき中の酸素含有量が、5000ppm未満では、鋼
中元素の表面拡散防止効果において通常の鉄めつ
きに比し格別な差が認められない。拡散防止効果
が大きく、従つて必要な鉄めつき厚さを小さくで
きる効果を持たせるには5000ppm以上の酸素含
有量が必要であり、この発明の方法における鉄め
つき中の酸素含有量の下限とする。 鉄めつき中にこのような高濃度の酸素を含有さ
せるための条件は、鉄めつき液組成、めつき液温
度などにより異なるが、概して下記のことが言え
る。 一般に鉄めつきは硫酸塩、塩化物、ほうそ弗化
物などを用いた酸性のめつき液中での陰極電解に
より実施されるが、このめつき液中でのFe++
オンは、比較的不安定であり、めつき液のPHが上
昇すると水酸化物として沈澱析出する傾向にあ
る。また鉄めつきにおいては、陰極電流効率は
100%ではなく、陰極では金属Feの電析反応とと
もに、H+イオンの放電も起り、これに伴つて陰
極面(すなわち被めつき面)近傍でのPH上昇が起
る。 通常の鉄めつきでは、この陰極近傍でのPH上昇
により水酸化鉄の沈澱析出が起るのを防ぐため、
電流密度の比較的低い範囲が採用されるが、この
発明では、上述の陰極近傍での水酸化鉄の発生を
積極的に利用して、この水酸化鉄の微細析出物を
めつき層中に取り込むことにより、高酸素濃度の
鉄めつきを得るものである。 このためには、めつきの外観を損ねない範囲で
電流密度をできるだけ高くして鉄めつきを実施す
ればよい。 表面性状の改質に必要な鉄めつき厚さは、鋼中
の添加元素の種類および量、再結晶焼鈍条件、鉄
めつき中の酸素含有量などにより異なるが、鉄め
つき厚さ0.01μm未満では表面性状改質効果は全
く認められないので、これを鉄めつき厚さの下限
とする。 鋼中添加元素量および焼鈍の温度、時間の増大
に伴ない、必要な鉄めつき厚さは増し、また鉄め
つき中の酸素含有量が低いほど厚い鉄めつきを必
要とするが、高張力鋼で、通常使用される数パー
セント以下の合金元素量および850℃程度以下の
焼鈍条件では0.1〜0.5μm程度の鉄めつき厚さで
実用上問題のない表面性状が得られる。 鋼中元素量や焼鈍条件がさらに厳しい場合や、
表面性状に対する要求の厳しい場合には、鉄めつ
き厚さをさらに増してやれば良いが、めつき厚さ
が2.0μmを超えると、めつき時の電着応力によ
ると考えられる鉄めつき層の密着性劣化が起る場
合があるため、鉄めつき厚さの上限は、2.0μm
とする。 この発明における素材鋼板の化学組成、焼鈍条
件などには何ら規制を設ける必要はなく、それぞ
れの条件に応じて上記した規制範囲内で鉄めつき
厚さ、鉄めつき中のの酸素含有量を適宜変化させ
ることにより、良好な表面性状を得ることができ
る。 なおこの発明の鉄めつきは、通常の軟鋼板に対
して実施しても何ら弊害を与えないばかりでな
く、鋼板表面に露出している非金属介在物をおお
い隠すことによる耐錆性の向上という副次的な効
果も得られるものである。 この発明の鉄めつきを実施する工程としては、
連続焼鈍方式においては、入側の脱脂設備の後段
で連続的に実施できるよう電気めつき設備を設け
ることが好ましく、また箱焼鈍方式においても電
解洗浄工程設備で連続的に実施を行うことが好ま
しい。 この発明では鉄めつき中に酸素を含有させるこ
とにより鉄めつきの厚さを薄くできることが特徴
であり、必要な電気めつき設備もコンパクトなも
ので良いので、上述のようなインラインでの処理
が可能となるような設備の設置は比較的容易であ
るが、このような設備が設けられない場合には、
焼鈍前に別工程で鉄めつきを実施する方法をとつ
てもかまわない。 この発明の鉄めつきは、冷間圧延のままの活性
化された鋼板表面に施されるので、脱脂後酸洗工
程を省略して実施することも可能であるが、脱脂
工程における鋼板表面の鉄粉などの除去が不十分
であると鉄めつきの効果が阻害される場合がある
ので、脱脂後に軽い酸洗処理を実施することが望
ましい。 以上述べたように、この発明を実施することに
より、冷延鋼板の表面性状の改質が可能となる
が、以下この発明の実施例について説明する。 実施例 1 表1に示す組成の供試鋼Aを、スラブ加熱温度
1250℃、仕上温度850℃、巻取温度680℃の条件で
3.2mm厚さまで熱間圧延したのち、酸洗工程を経
て、冷間圧延により1.2mm厚さとし、以下に示す
条件で鉄めつきを行つた。
The present invention relates to a method for modifying the surface properties of cold rolled steel sheets (including steel strips, hereinafter referred to as cold rolled steel sheets). Cold-rolled steel sheet is one of the most common steel materials used in a wide range of applications such as automobiles and home appliances.In recent years, however, in the field of automotive steel sheets, high-quality steel sheets have been developed to reduce the weight of car bodies and improve safety. The development of cold-rolled steel sheets with high tensile strength is being promoted, and much effort is being put into studying component design and manufacturing processes to obtain materials that have both high strength and high workability. Further, in the case of mild steel sheets, workability is further improved by fixing nitrogen and carbon in the steel with additive elements such as Al and Nb. However, some of the additive elements used for the purpose of improving the mechanical properties of cold-rolled steel sheets concentrate on the steel sheet surface during annealing and form an oxide film, which is one of the important properties of cold-rolled steel sheets. Many of them impair certain surface properties, such as phosphate chemical conversion properties, paintability, and appearance (temper color). This kind of action is due to its strong affinity with oxygen.
This problem of surface property deterioration can be said to be very serious when designing components for improving mechanical properties, as it is particularly noticeable in important elements such as Al, Si, and Mn, which are important for improving the mechanical properties of steel. As a result of intensive studies to solve this problem of surface quality deterioration, the inventors found that after cold rolling,
By applying iron plating containing a high concentration of oxygen to the steel sheet surface prior to recrystallization annealing, it is possible to effectively prevent elements in the steel from diffusing and concentrating on the surface during annealing. This discovery led to the completion of this invention. That is, this invention applies iron plating containing 5000 ppm or more of oxygen to a hot rolled, descaled, and cold rolled steel sheet in a pre-process of recrystallization annealing to a thickness of 0.01 μm or more and 2.0 μm or less. The surface properties of the cold-rolled steel sheet have been advantageously improved by applying it within a range. Japanese Patent Publication No. 54-29976 discloses a known method of modifying surface properties by applying heat treatment to steel materials, but in this case iron plating is applied. By applying heat treatment after plating, the purpose is simply to make the surface treatment properties of the steel constant regardless of the properties of the base material, and according to this, iron plating under normal conditions. Si during annealing and recrystallization,
In order to reduce surface concentration of Mn, etc. to a level that does not harm chemical conversion treatment properties or surface appearance, Si and Mn in steel must be
When the amount of addition is large, the iron plating thickness is 2
Since it was necessary to make it about μm or more, it was extremely difficult to implement it industrially considering the cost and implementation process. Therefore, we investigated the effect of various iron plating conditions on the surface concentration suppression effect, and found that by performing iron plating under conditions that contain 5000 ppm or more of oxygen during iron plating,
It was found that the surface concentration of elements in steel, such as Mn and Si, was significantly suppressed. In other words, when iron plating is performed under these conditions, even if a considerable amount of Mn, Si, etc. are added to the steel, the iron plating thickness is as thin as 0.1 to 0.5 μm, and the surface concentration during annealing is reduced. can be reduced to a sufficient level. The reason why iron plating containing a high concentration of oxygen strongly suppresses the surface concentration of elements in steel such as Mn and Si during recrystallization annealing is that these elements are trapped by oxygen during iron plating. It depends. In other words, elements such as Mn and Si, whose concentration on the surface is a problem, have a strong affinity for oxygen, so they are selectively oxidized on the surface of the steel sheet during annealing, resulting in concentration on the surface. However, if iron plating containing a high concentration of oxygen is applied in the pre-annealing process,
During the annealing process, oxygen in this iron plating becomes Mn,
Combined with Si, fine Mn and other particles are formed in the iron plating layer.
This is to effectively prevent these elements from diffusing to the surface by forming an oxide of Si. In order to have this effect, the higher the oxygen concentration in iron plating, the better.
A content of 5000ppm is required. That is, when the oxygen content in iron plating is less than 5000 ppm, no particular difference is observed in the effect of preventing surface diffusion of elements in steel compared to normal iron plating. An oxygen content of 5000 ppm or more is required to have a large diffusion prevention effect and therefore to reduce the required iron plating thickness, and the lower limit of the oxygen content in iron plating in the method of this invention is shall be. Conditions for containing such a high concentration of oxygen during iron plating vary depending on the composition of the iron plating solution, the temperature of the plating solution, etc., but generally the following can be said. Generally, iron plating is carried out by cathodic electrolysis in an acidic plating solution using sulfate, chloride, fluoride, etc., but Fe ++ ions in this plating solution are relatively small. It is unstable and tends to precipitate as hydroxide when the pH of the plating solution increases. In addition, in iron plating, the cathode current efficiency is
Although not 100%, at the cathode, along with the electrodeposition reaction of metal Fe, H + ion discharge also occurs, and this causes an increase in pH near the cathode surface (that is, the covered surface). In normal iron plating, in order to prevent precipitation of iron hydroxide from occurring due to the increase in pH near the cathode,
A relatively low range of current density is adopted, but in this invention, the above-mentioned generation of iron hydroxide near the cathode is actively utilized to deposit fine precipitates of iron hydroxide into the plating layer. By incorporating it, iron plating with high oxygen concentration can be obtained. For this purpose, iron plating may be carried out by increasing the current density as high as possible without damaging the appearance of the plating. The iron plating thickness required to improve the surface texture varies depending on the type and amount of added elements in the steel, recrystallization annealing conditions, oxygen content in the iron plating, etc., but the iron plating thickness is 0.01 μm. Since no surface property modification effect is observed below this value, this is the lower limit of the iron plating thickness. The required iron plating thickness increases as the amount of added elements in the steel and the annealing temperature and time increase, and the lower the oxygen content in the iron plating, the thicker the iron plating is required. For tensile steel, under the conditions of alloying elements of several percent or less and annealing conditions of about 850° C. or less, which are commonly used, a surface quality with no practical problems can be obtained with an iron plating thickness of about 0.1 to 0.5 μm. In cases where the amount of elements in the steel and annealing conditions are more severe,
If the requirements for surface quality are strict, the thickness of the iron plating can be further increased, but if the plating thickness exceeds 2.0 μm, the iron plating layer may deteriorate due to electrodeposition stress during plating. The upper limit of the iron plating thickness is 2.0μm as it may cause deterioration of adhesion.
shall be. There is no need to set any restrictions on the chemical composition, annealing conditions, etc. of the raw steel sheet in this invention, and the iron plating thickness and oxygen content in the iron plating should be adjusted within the above-mentioned regulatory range according to each condition. By changing it appropriately, good surface properties can be obtained. The iron plating of this invention not only does not cause any harm when applied to ordinary mild steel plates, but also improves rust resistance by covering up nonmetallic inclusions exposed on the steel plate surface. This also provides a secondary effect. The process of carrying out the iron plating of this invention is as follows:
In the continuous annealing method, it is preferable to provide electroplating equipment after the degreasing equipment on the entry side so that the process can be performed continuously, and in the case of the box annealing method, it is also preferable to perform the process continuously in the electrolytic cleaning process equipment. . A feature of this invention is that the thickness of the iron plating can be reduced by incorporating oxygen into the iron plating, and the required electroplating equipment can be compact, so in-line processing as described above is possible. It is relatively easy to install equipment that makes it possible, but if such equipment is not available,
There is no problem with a method in which iron plating is performed in a separate process before annealing. Since the iron plating of this invention is applied to the activated steel plate surface as it is cold rolled, it is possible to omit the pickling process after degreasing, but the iron plating of the steel plate surface in the degreasing process is Insufficient removal of iron powder, etc. may impede the effect of iron plating, so it is desirable to perform a light pickling treatment after degreasing. As described above, by carrying out the present invention, it is possible to modify the surface properties of cold rolled steel sheets, and examples of the present invention will be described below. Example 1 Test steel A having the composition shown in Table 1 was heated at a slab heating temperature.
Under the conditions of 1250℃, finishing temperature 850℃, and winding temperature 680℃
After hot rolling to a thickness of 3.2 mm, it was subjected to a pickling process, cold rolled to a thickness of 1.2 mm, and iron plated under the conditions shown below.

【表】 このようにして種々の酸素含有量およびめつき
厚さの鉄めつきを行なつたのち、均熱温度850
℃、均熱時間2分の焼鈍をN2+10%H2雰囲気
(露点−40℃)で施し、表面性状(外観および化
成処理性)への影響を調べた。 結果を表2に示す。
[Table] After performing iron plating with various oxygen contents and plating thicknesses in this way, the soaking temperature of 850
Annealing was performed at 10°C for 2 minutes in a N 2 +10% H 2 atmosphere (dew point -40°C), and the effect on surface properties (appearance and chemical conversion treatability) was investigated. The results are shown in Table 2.

【表】 表2より明らかなように、鉄めつき中の酸素量
600および2300ppmでは、表面性状の改質に3μ
mの鉄めつき厚さを必要とするが、鉄めつき中の
酸素量を5000ppm以上とすることにより、必要
な鉄めつき厚さを0.1μmと著しく薄くすること
が可能となる。 実施例 2 表3に示す供試鋼Bを、スラブ加熱温度1150
℃、仕上温度850℃、巻取り温度680℃の条件で厚
さ2.6mmまで熱間圧延し、脱スケールを行つたの
ち、0.7mm厚さに冷間圧延したものに、実施例1
のめつき液aを用いて酸素含有量15200ppm鉄め
つきを種々の厚さで施し、800℃、1分間の焼鈍
を行つて表面性状への影響を調べた。
[Table] As is clear from Table 2, the amount of oxygen in iron plating
At 600 and 2300ppm, 3μ is required to modify the surface texture.
The required iron plating thickness is 0.1 μm, which can be significantly reduced by setting the oxygen content in the iron plating to 5000 ppm or more. Example 2 Test steel B shown in Table 3 was heated to a slab heating temperature of 1150
Example 1
Iron plating with an oxygen content of 15,200 ppm was applied to various thicknesses using plating solution A, and annealing was performed at 800° C. for 1 minute to examine the effect on surface properties.

【表】 結果を表4に示す。【table】 The results are shown in Table 4.

【表】 表4に示す結果より明かなように、鉄めつき厚
さ0.01μm未満では表面性状改質効果は全くめら
れない。 0.01μm以上では外観、化成処理性はいずれも
良好となるが、鉄めつき厚さが2μmを超えて3
μm、5μmの場合には、鉄めつきの密着性不良
が認められた。 以上、実施例1および2に示したとおり、
5000ppm以上の酸素を含有する鉄めつきを0.01μ
m以上、2.0μm以下の範囲で実施することによ
り、冷延鋼板の表面性状改質効果が得られる。 又、鋼板の防錆被覆として最も一般的な溶融亜
鉛めつき法は、再結晶焼鈍工程を同一ライン内で
行なうため生産性が高く、また容易にめつき付着
量を増せるので犠性防食性を大きくしやすいとい
う利点があり、アメリカ、カナダなどの塩害の著
しい地域で自動車用鋼板に多く適用されている。
また、めつき後加熱処理によりめつき層を素地鋼
と合金化させた、いわゆる合金化溶融亜鉛めつき
鋼板は、さらに塗装性、溶接性にすぐれるという
長所があり、自動車用表面処理鋼板の主流となり
つつある。 しかしながら、高張力鋼板に溶融亜鉛めつきを
適用しようとする場合、Mn、Si、Crなど易酸化
性の合金元素を多く含有するとこれらが還元焼鈍
工程で選択的に酸化されることにより鋼板表面に
濃化層を形成して亜鉛めつき密着性を阻害し、ひ
どい場合には不めつき発生の原因ともなる。また
合金化亜鉛めつきでは、素材成分が合金化反応の
挙動に影響を及ぼすことも知られる。 このため、通常の方法で溶融亜鉛めつきを行な
うには、Mn、Siなどの合金元素の添加量が制限
され、成分設計が著しく困難となる。特に昨今、
強度と延性あるいは成形性のバランスの良い材料
が要求され、これに応えるため低温変態相の導入
による強化(複合組織強化)あるいは固溶強化を
主体とした成分系にしようとすると、Mn、Siな
どの添加量を多くすることが必要となり、溶融亜
鉛めつき性を阻害する結果となる。しかし、溶融
亜鉛めつき前の還元焼鈍工程に先立つてこの発明
を適用し、あらかじめ鋼板表面に高濃度の酸素を
含有する鉄めつきを施すことにより、焼鈍時にお
ける鋼中元素の表面への拡散濃化を有効に防止
し、すぐれた亜鉛めつき性が得られることも確認
されている。
[Table] As is clear from the results shown in Table 4, when the iron plating thickness is less than 0.01 μm, no surface property modification effect is observed. If the iron plating thickness exceeds 2 μm, the appearance and chemical conversion treatment properties will be good, but if the iron plating thickness exceeds 2 μm,
In the case of μm and 5 μm, poor adhesion of iron plating was observed. As shown above in Examples 1 and 2,
0.01μ iron plating containing more than 5000ppm oxygen
By carrying out in the range of 2.0 μm or more and 2.0 μm or less, the effect of modifying the surface properties of the cold rolled steel sheet can be obtained. In addition, the hot-dip galvanizing method, which is the most common method for rust-proofing steel sheets, has high productivity because the recrystallization annealing process is carried out on the same line, and it also has sacrificial corrosion protection because the amount of plating can be easily increased. It has the advantage of being easy to increase in size, and is often applied to automotive steel sheets in areas where salt damage is severe, such as the United States and Canada.
In addition, so-called alloyed hot-dip galvanized steel sheets, in which the plated layer is alloyed with the base steel through heat treatment after plating, have the advantage of excellent paintability and weldability, and are used as surface-treated steel sheets for automobiles. It is becoming mainstream. However, when hot-dip galvanizing is applied to high-strength steel sheets, if they contain a large amount of easily oxidizable alloying elements such as Mn, Si, and Cr, these will be selectively oxidized during the reduction annealing process, resulting in the steel sheet surface being damaged. It forms a concentrated layer that impedes galvanizing adhesion and, in severe cases, can cause discoloration. It is also known that in alloyed galvanizing, material components influence the behavior of the alloying reaction. For this reason, when performing hot-dip galvanizing using the usual method, the amount of alloying elements such as Mn and Si added is limited, making composition design extremely difficult. Especially these days,
Materials with a good balance between strength and ductility or formability are required, and in order to meet this demand, if we try to strengthen by introducing a low-temperature transformed phase (composite structure strengthening) or to create a component system mainly based on solid solution strengthening, Mn, Si, etc. It is necessary to increase the amount of addition of , which results in inhibiting hot-dip galvanizing properties. However, by applying the lever invention prior to the reduction annealing process before hot-dip galvanizing and applying iron plating containing high concentration of oxygen to the surface of the steel sheet in advance, the elements in the steel can be diffused to the surface during annealing. It has also been confirmed that thickening can be effectively prevented and excellent zinc plating properties can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 熱間圧延、脱スケールおよび冷間圧延を施し
た鋼板に、再結晶焼鈍の前工程で、5000ppm以
上の酸素を含有する鉄めつきを厚さ0.01μm以
上、2.0μm以下の範囲で施すことを特徴とす
る、冷間圧延鋼板の表面性状改質方法。
1 Iron plating containing 5,000 ppm or more of oxygen to a thickness of 0.01 μm or more and 2.0 μm or less is applied to hot-rolled, descaled, and cold-rolled steel sheets in the pre-process of recrystallization annealing. A method for modifying the surface properties of cold rolled steel sheets, characterized by:
JP20053382A 1982-11-16 1982-11-16 Method for modifying surface characteristic of cold rolled steel sheet Granted JPS5989791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20053382A JPS5989791A (en) 1982-11-16 1982-11-16 Method for modifying surface characteristic of cold rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20053382A JPS5989791A (en) 1982-11-16 1982-11-16 Method for modifying surface characteristic of cold rolled steel sheet

Publications (2)

Publication Number Publication Date
JPS5989791A JPS5989791A (en) 1984-05-24
JPS6235465B2 true JPS6235465B2 (en) 1987-08-01

Family

ID=16425883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20053382A Granted JPS5989791A (en) 1982-11-16 1982-11-16 Method for modifying surface characteristic of cold rolled steel sheet

Country Status (1)

Country Link
JP (1) JPS5989791A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331676A (en) * 1992-05-27 1993-12-14 Sumitomo Metal Mining Co Ltd Iron electroplating liquid
JPH05331677A (en) * 1992-05-27 1993-12-14 Sumitomo Metal Mining Co Ltd Iron electroplating liquid
CN107805830A (en) * 2017-10-11 2018-03-16 武汉钢铁有限公司 Flash iron plating solution and flash method

Also Published As

Publication number Publication date
JPS5989791A (en) 1984-05-24

Similar Documents

Publication Publication Date Title
KR20040089070A (en) Surface treated steel plate and method for production thereof
US5494706A (en) Method for producing zinc coated steel sheet
KR101528010B1 (en) High manganese hot dip galvanized steel sheet with superior weldability and method for manufacturing the same
JP3468004B2 (en) High strength hot-dip galvanized steel sheet
EP0613961A1 (en) Alloyed hot dip galvanized steel sheet
JP2704045B2 (en) Surface-treated steel sheet with few plating defects and method for producing the same
JPS6235465B2 (en)
KR100205190B1 (en) Steel sheet for electrogalvanizing excellent in grained flow resistance trogalvanized steel sheet and their production
JP7247946B2 (en) Hot-dip galvanized steel sheet and its manufacturing method
JP3020846B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet
JP5625442B2 (en) High-strength steel sheet with a tensile strength of 1180 MPa or more with excellent delayed fracture resistance
JP2940289B2 (en) Electrogalvanized steel sheet with two plating layers and excellent blackening resistance
JP3126623B2 (en) Rustproof steel plate for fuel tank
JPH10158784A (en) High strength hot rolled steel sheet
JP3078456B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet
JP3602263B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet with excellent deep drawability
JPH0232326B2 (en) TOSOYAKITSUKEKOKASEIOJUSURUTOSOKOHANNOSEIZOHOHO
JPH05132740A (en) Production of hot-dip galvanized steel sheet for deep drawing excellent in pitting corrosion resistance
KR102010077B1 (en) High strength galvanized steel sheet having excellent surface property and coating adhesion and method for manufacturing the same
KR100627477B1 (en) High strength hot dip zinc plated steel sheet with excellent coating adhesion and method for manufacturing the same
JPH0971851A (en) Production of zinc-tin alloy plated steel sheet
JP3946338B2 (en) Manufacturing method of steel strip for coating with excellent bending workability
JP3440079B2 (en) Surface-treated steel sheet for deep drawing with excellent perforation resistance
JP2755677B2 (en) Method for producing alloyed hot-dip galvanized steel sheet for processing with excellent surface properties
WO2024053544A1 (en) High-strength hot-dip-galvanized steel sheet and production method for same