JPS6235277Y2 - - Google Patents

Info

Publication number
JPS6235277Y2
JPS6235277Y2 JP4355081U JP4355081U JPS6235277Y2 JP S6235277 Y2 JPS6235277 Y2 JP S6235277Y2 JP 4355081 U JP4355081 U JP 4355081U JP 4355081 U JP4355081 U JP 4355081U JP S6235277 Y2 JPS6235277 Y2 JP S6235277Y2
Authority
JP
Japan
Prior art keywords
heating element
planar heating
porosity
small holes
flexibility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4355081U
Other languages
Japanese (ja)
Other versions
JPS57155688U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4355081U priority Critical patent/JPS6235277Y2/ja
Publication of JPS57155688U publication Critical patent/JPS57155688U/ja
Application granted granted Critical
Publication of JPS6235277Y2 publication Critical patent/JPS6235277Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は導電性粉末とバインダーとしてポリテ
トラフルオロエチレン粉末(以下PTFEと称す)
を主成分とする導電性塗料を、基布に塗布して成
る可撓性面状発熱素子を用いた面状発熱体の改良
に関するものである。 このような面状発熱体は、例えばフロアマツ
ト、電気毛布等に用いられている。かような用途
に用いられる面状発熱体においては、発熱素子と
熱可塑性プラスチツク絶縁層の間への空気の滞留
による熱伝導効率の低下防止のため、発熱素子と
絶縁層が加熱加圧により接合せしめられる。 この発熱素子と絶縁層の接合は、発熱素子に塗
布された導電性塗料中のPTFEと絶縁層を形成す
る熱可塑性プラスチツクを融着せしめて行なうも
のであるが、PTFEの性質上、両者の接合強度を
大きくすることは困難である。 その結果、面状発熱体の使用開始後、短期間で
発熱素子と絶縁層の部分剥離を生じ、この剥離部
に空気が滞留して、熱伝導効率の低下を引き起す
ことが多かつた。また、両者の間に空気が滞留す
ると、空気の断熱性のため「熱のこもり」現象が
生じ、温度分布が不均一になることもある。 これら問題を解決するため、絶縁層同志を発熱
素子に設けられた小孔を通じて一体化せしめるこ
とにより両者の接合強度を向上させて、発熱素子
と絶縁層の剥離防止を計ることが提案(実公昭49
−13953号公報)された。 しかしながら、この面状発熱体を実用に供して
みると、単に発熱素子に小孔を設けて該素子両面
上の絶縁層同志を接合一体化せしめるのみでは、
可撓性が失なわれたり或いは実用に耐え得るよう
な接合強度が得られないことがある等の問題があ
ることが判つた。 本考案者達は上記問題を解決するため種々検討
の結果、面状発熱素子の可撓性を維持したまま、
発熱素子と絶縁層の接合強度を実用に耐え得るも
のとするためには、該発熱素子の空孔率を所定範
囲内の数値にしなければならないことを見出し、
本考案に至つたものである。 即ち、本考案に係る面状発熱体は、基布に
PTFE粉末と導電性粉末を主成分とする導電性塗
料が塗布され且つ多数の小孔が形成され、その空
孔率が0.01〜70%である可撓性面状発熱素子の両
面に、熱可塑性プラスチツクより成る絶縁薄層が
融着され、該絶縁薄層同志が前記小孔を介して接
合されて成るものである。 本考案における可撓性面状発熱素子としては、
例えば厚さが約0.03〜10mmの織布或いは不織布等
の可撓性基布に、バインダーとしてのPTFE粉末
とカーボン粉末、金属粉末等の導電性粉末を主成
分とする導電性塗料を塗布せしめ、これを所定間
隔毎に穿孔したものが使用できる。 この面状発熱素子における空孔率は、該発熱素
子の可撓性を維持すると共に発熱素子と絶縁薄層
の接合強度向上のために、0.01〜70%好ましくは
0.5〜50%になるように設定される。なお、この
空孔率は下記の式によつて算出された値である。 空孔率(%)=小孔の総面積/発熱素子の面積×100 また、本考案においては面状発熱体の可撓性お
よび発熱素子と絶縁薄層の接合強度を最適範囲で
バランスさせるため、発熱素子に設けられる小孔
の径を0.5〜20mmとし、小孔設置密度を500〜
100000個/m2に設定するのが好適である。 以下、図面により本考案の実例を説明する。第
1図および第2図において、1は可撓性面状発熱
素子であり、所定間隔毎に多数の小孔2が穿設さ
れている。 そしてこの発熱素子1の両面には、ポリエステ
ル、ポリエチレンテレフタレート、ポリ塩化ビニ
ル、フツ素樹脂等の熱可塑性プラスチツクから成
る厚さが通常0.01〜5mmの絶縁薄層3,4が融着
されており、該薄層3,4同志は小孔2を介して
接合されている。なお、5,6は面状発熱素子の
両端に設けられた銅箔等の電極である。なお、図
示されていないが電極5,6には各々リード線の
一端が接続される。 本考案は上記のように構成されており、可撓性
面状発熱素子の空孔率を所定範囲に設定せしめ且
つ絶縁薄層同志を発熱素子に設けられた小孔を介
して接合せしめたので、発熱素子の可撓性を維持
したまま、該発熱素子と絶縁層を強固に接合でき
る効果がある。 以下、本考案を実施例により説明する。 実施例 導電性塗料としてカーボン粉末を含むフツ素樹
脂デイスパージヨン(ヘキスト社製、商品名ホス
タフロン)を用い、これを厚さ0.1mmのガラスク
ロス(日東紡社製、商品名WE−116)に塗布
し、350〜400℃の加熱炉で3分間加熱することに
より、塗料をガラスクロスに焼付ける。 次に、このガラスクロスを500×500mmに切断
し、その両端に幅10mm、厚さ30ミクロンの銅箔電
極を取り付ける。 その後、このガラスクロスに直径5mmの円形小
孔を10mm間隔で穿設せしめて空孔率20%、小孔設
置密度10000個/m2の可撓性面状発熱素子を得
る。 次いで、該発熱素子の両面に厚さ0.3mm、長さ
および幅が各々550mmのポリ塩化ビニルフイルム
を重ね合わせ、プレス機により加熱加圧し、発熱
素子とポリ塩化ビニルを融着せしめると共にポリ
塩化ビニル同志を発熱素子の小孔を介して接合一
体化せしめて、図面と同構造の可撓性を保持した
面状発熱体(試料番号1)を得た。 更に、これとは別に小孔間隔、空孔率および小
孔設置密度を第1表に示すように設定する以外
は、全て試料番号1の場合と同様に作業して2枚
の面状発熱体(試料番号2および3)を得た。 これら面状発熱体の特性を知るため、上島製作
所製VF RUBBING TESTER(もみ試験機)に
より可撓性を、JIS−K−6772により発熱素子と
絶縁層の接合強度(剥離力)を測定して得た結果
を第1表に示す。なお、可撓性試験に際してはチ
ヤツク間隔50mm、荷重400g、もみ回数1000回の
条件で試料をもみ運動させ、運動前後の電気抵抗
を測定し、下記の式により抵抗変化率を算出し
た。 抵抗変化率(%) =(運動後の抵抗)−(運動前の抵抗)/運動前の抵
抗×100 比較のため、小孔を穿設せしめてない面状発熱
素子とポリ塩化ビニルフイルムを試料番号1の場
合と同条件で加熱加圧して得た面状発熱体(試料
番号4)および小孔間隔、空孔率および小孔設置
密度を第1表に示すように設定する以外は、全て
試料番号1の場合と同様に作業して得た面状発熱
体(試料番号5)のデータを同時に示す。
This invention uses polytetrafluoroethylene powder (hereinafter referred to as PTFE) as a conductive powder and a binder.
The present invention relates to an improvement in a planar heating element using a flexible planar heating element formed by coating a base fabric with a conductive paint containing as a main component. Such planar heating elements are used, for example, in floor mats, electric blankets, and the like. In planar heating elements used in such applications, the heating element and the insulating layer are bonded together by heating and pressure in order to prevent a decrease in heat conduction efficiency due to air stagnation between the heating element and the thermoplastic insulation layer. I am forced to do it. The heating element and the insulating layer are bonded by fusing the PTFE in the conductive paint applied to the heating element and the thermoplastic plastic forming the insulating layer. It is difficult to increase the strength. As a result, after the planar heating element starts to be used, partial peeling occurs between the heating element and the insulating layer within a short period of time, and air often remains in this peeled part, causing a decrease in heat conduction efficiency. Furthermore, if air remains between the two, a "heat trap" phenomenon may occur due to the insulating properties of the air, and the temperature distribution may become uneven. In order to solve these problems, it has been proposed to improve the bonding strength between the two insulating layers by integrating them through small holes provided in the heat generating element, thereby preventing the heat generating element and the insulating layer from peeling off (Jikosho). 49
-13953 Publication). However, when this planar heating element is put into practical use, it is difficult to simply form small holes in the heating element and bond and integrate the insulating layers on both sides of the element.
It has been found that there are problems such as a loss of flexibility or an inability to obtain a bonding strength that can withstand practical use. As a result of various studies to solve the above problem, the inventors of the present invention found that while maintaining the flexibility of the planar heating element,
It was discovered that in order to make the bonding strength between the heating element and the insulating layer practical, the porosity of the heating element must be within a predetermined range,
This led to the present invention. That is, the planar heating element according to the present invention has a
A conductive paint mainly composed of PTFE powder and conductive powder is applied, and a large number of small pores are formed, with a porosity of 0.01% to 70%, on both sides of the flexible sheet heating element. Insulating thin layers made of plastic are fused together, and the insulating thin layers are joined together through the small holes. The flexible planar heating element in this invention is as follows:
For example, a conductive paint containing PTFE powder as a binder and conductive powder such as carbon powder or metal powder as the main components is applied to a flexible base fabric such as a woven fabric or non-woven fabric with a thickness of about 0.03 to 10 mm, This can be used with holes drilled at predetermined intervals. The porosity in this planar heating element is preferably 0.01 to 70% in order to maintain the flexibility of the heating element and improve the bonding strength between the heating element and the thin insulating layer.
It is set to be between 0.5% and 50%. Note that this porosity is a value calculated using the following formula. Porosity (%) = total area of small pores/area of heating element x 100 In addition, in this invention, the flexibility of the sheet heating element and the bonding strength between the heating element and the thin insulating layer are balanced in the optimum range. , the diameter of the small holes provided in the heating element is 0.5 to 20 mm, and the small hole installation density is 500 to 20 mm.
It is preferable to set the number to 100,000 pieces/m 2 . Hereinafter, examples of the present invention will be explained with reference to the drawings. In FIGS. 1 and 2, reference numeral 1 denotes a flexible planar heating element, in which a large number of small holes 2 are bored at predetermined intervals. Thin insulating layers 3 and 4 made of thermoplastic such as polyester, polyethylene terephthalate, polyvinyl chloride, and fluororesin and having a thickness of usually 0.01 to 5 mm are fused to both sides of the heating element 1. The thin layers 3 and 4 are joined together through small holes 2. Note that 5 and 6 are electrodes such as copper foil provided at both ends of the planar heating element. Although not shown, one end of a lead wire is connected to each of the electrodes 5 and 6. The present invention is constructed as described above, and the porosity of the flexible planar heating element is set within a predetermined range, and the thin insulating layers are bonded to each other through small holes provided in the heating element. This has the effect that the heat generating element and the insulating layer can be firmly bonded while maintaining the flexibility of the heat generating element. The present invention will be explained below with reference to examples. Example A fluororesin dispersion containing carbon powder (manufactured by Hoechst, trade name: Hostaflon) was used as a conductive paint, and this was applied to a glass cloth with a thickness of 0.1 mm (manufactured by Nittobo, trade name: WE-116). The paint is baked onto the glass cloth by applying it and heating it in a heating oven at 350-400°C for 3 minutes. Next, this glass cloth was cut into 500 x 500 mm pieces, and copper foil electrodes with a width of 10 mm and a thickness of 30 microns were attached to both ends. Thereafter, circular small holes with a diameter of 5 mm were bored in this glass cloth at intervals of 10 mm to obtain a flexible planar heating element with a porosity of 20% and a hole installation density of 10,000 pieces/m 2 . Next, a polyvinyl chloride film with a thickness of 0.3 mm and a length and width of 550 mm is placed on both sides of the heating element, and heated and pressed using a press to fuse the heating element and the polyvinyl chloride, and the polyvinyl chloride is By joining and integrating the same elements through the small holes of the heating element, a planar heating element (sample number 1) having the same structure as the drawing and maintaining flexibility was obtained. Furthermore, apart from this, the two planar heating elements were prepared in the same manner as in the case of sample number 1, except that the small hole spacing, porosity, and small hole installation density were set as shown in Table 1. (Sample numbers 2 and 3) were obtained. In order to understand the characteristics of these planar heating elements, we measured their flexibility using a VF RUBBING TESTER manufactured by Kamishima Seisakusho and the bonding strength (peel force) between the heating element and the insulating layer using JIS-K-6772. The results obtained are shown in Table 1. In the flexibility test, the sample was kneaded under the conditions of chuck spacing of 50 mm, load of 400 g, and number of kneading cycles of 1000 times, the electrical resistance before and after the movement was measured, and the rate of change in resistance was calculated using the following formula. Resistance change rate (%) = (Resistance after exercise) - (Resistance before exercise) / Resistance before exercise x 100 For comparison, a sheet heating element without small holes and a polyvinyl chloride film were sampled. All except for the planar heating element (sample number 4) obtained by heating and pressurizing under the same conditions as No. 1, and the small hole spacing, porosity, and small hole installation density were set as shown in Table 1. Data for a planar heating element (sample number 5) obtained by the same procedure as for sample number 1 is also shown.

【表】 上記第1表から明らかなように、本考案の面状
発熱体はもみ運動による抵抗変化率が小さく可撓
性に優れているばかりでなく、面状発熱素子と絶
縁薄層の接合強度も大きなことが判る。
[Table] As is clear from Table 1 above, the planar heating element of the present invention not only has a small resistance change rate due to kneading motion and is excellent in flexibility, but also has excellent flexibility due to the bond between the planar heating element and the insulating thin layer. It can be seen that the strength is also great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る面状発熱体の実例を示す
一部切欠平面図、第2図は第1図A−B線で切断
し、矢印方向から見た断面図である。 1…可撓性面状発熱素子、2…小孔、3,4…
絶縁薄層。
FIG. 1 is a partially cutaway plan view showing an example of a planar heating element according to the present invention, and FIG. 2 is a sectional view taken along the line AB in FIG. 1 and viewed from the direction of the arrow. 1... Flexible planar heating element, 2... Small hole, 3, 4...
Insulating thin layer.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 基布にポリテトラフルオロエチレン粉末と導電
性粉末を主成分とする導電性塗料が塗布され且つ
多数の小孔が形成され、その空孔率が0.01〜70%
である可撓性面状発熱素子の両面に、熱可塑性プ
ラスチツクより成る絶縁薄層が融着され、該絶縁
薄層同志が前記小孔を介して接合されて成る面状
発熱体。
A conductive paint consisting mainly of polytetrafluoroethylene powder and conductive powder is applied to the base fabric, and a large number of small pores are formed, with a porosity of 0.01 to 70%.
A planar heating element comprising a flexible planar heating element, in which thin insulating layers made of thermoplastic plastic are fused to both sides, and the thin insulating layers are joined together through the small holes.
JP4355081U 1981-03-26 1981-03-26 Expired JPS6235277Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4355081U JPS6235277Y2 (en) 1981-03-26 1981-03-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4355081U JPS6235277Y2 (en) 1981-03-26 1981-03-26

Publications (2)

Publication Number Publication Date
JPS57155688U JPS57155688U (en) 1982-09-30
JPS6235277Y2 true JPS6235277Y2 (en) 1987-09-08

Family

ID=29840519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4355081U Expired JPS6235277Y2 (en) 1981-03-26 1981-03-26

Country Status (1)

Country Link
JP (1) JPS6235277Y2 (en)

Also Published As

Publication number Publication date
JPS57155688U (en) 1982-09-30

Similar Documents

Publication Publication Date Title
US4919744A (en) Method of making a flexible heater comprising a conductive polymer
US2938992A (en) Heaters using conductive woven tapes
US2884509A (en) Heating element containing a conductive mesh
JPH11505060A (en) Heating element, manufacturing method and utilization
US4293763A (en) Electrically insulated resistance heater
EP0455693A1 (en) Flexible heating element
JPS6235277Y2 (en)
JP2008300050A (en) Polymer heating element
US4565728A (en) System and method for application of internal heating to thermally responsive structures
JPWO2015159665A1 (en) Carbon-coated planar heater and method for manufacturing the same
RU2321973C1 (en) Flexible electric heater and method for manufacturing resistive heating element for the heater
JPH06333965A (en) Anisotropic conductive adhesive sheet
CN101578912B (en) PTC resistor
US3691349A (en) Electrical heating sheet with series of eyelets connections
GB2230139A (en) PTC thermistor
CN111556598A (en) Flexible low-voltage infrared electrothermal film and preparation method thereof
KR20070000538U (en) sheet type heating element have a heat insulator
JPH0653134U (en) Composite sheet
JP2007317618A (en) Planar heating element and manufacturing method therefor
JPH10223356A (en) Ptc heater
RU2019065C1 (en) Process of manufacture of flexible resistive heater
JP4747506B2 (en) Planar heating element
JPH01294393A (en) Method for bonding plane warmer
JPS6114156Y2 (en)
JP3222649U (en) Carbon coated surface heater