JPS6235248B2 - - Google Patents

Info

Publication number
JPS6235248B2
JPS6235248B2 JP55027954A JP2795480A JPS6235248B2 JP S6235248 B2 JPS6235248 B2 JP S6235248B2 JP 55027954 A JP55027954 A JP 55027954A JP 2795480 A JP2795480 A JP 2795480A JP S6235248 B2 JPS6235248 B2 JP S6235248B2
Authority
JP
Japan
Prior art keywords
steel
demagnetization
cycle
current
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55027954A
Other languages
Japanese (ja)
Other versions
JPS56125816A (en
Inventor
Susumu Ito
Kyoshi Katsuta
Tadashi Kanetani
Katsutoshi Sato
Yoshio Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2795480A priority Critical patent/JPS56125816A/en
Publication of JPS56125816A publication Critical patent/JPS56125816A/en
Publication of JPS6235248B2 publication Critical patent/JPS6235248B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/006Methods and devices for demagnetising of magnetic bodies, e.g. workpieces, sheet material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Microwave Tubes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は鋼材の残留磁気を除去する消磁方法に
係わる。一般に鋼管や丸鋼などの鋼材は特に特殊
鋼たとえば高炭素鋼、マンガン鋼、クロムモリブ
デン鋼などになると重要構造物や高圧配管材など
に使用されるため表面傷や内部傷の欠陥を製造工
程で検査しているが、普通一般に用いられる探傷
装置として磁気探傷装置がある。しかし磁気探傷
装置を用いると特殊鋼では残留磁気が残りやすく
加工性、溶接性などで問題となる。 特殊鋼になると残留磁気が残り易い状況を第1
〜第2図を用いて説明する。第1図aは鋼材1が
速度vでx方向に流れている場合の貫通形探傷コ
イルの原理を示したものである。巻数N1の一次
コイルPに直流励磁電流Pを流すと矢印方向に
H1=N1なる起磁力が生じ鋼材1内にΦ=BS=
μH1Sなる磁束が発生する。Φなる磁束が発生す
ると第1図bの如く鋼材1は移動方向の先端側が
N極、反対側がS極に磁化される。今鋼材1内部
に2なる欠陥があつたとすると、貫通形探傷コイ
ルの巻数N2の二次検出コイルSの両端S1,S2
に誘起々電力eが生ずる。即ち鋼材1内の磁束Φ
が鋼材がvなる速度で移動している場合、誘起々
電力eは e=N2dΦ/dt=N2dΦ/dx・dx/dt=N2・v
・dΦ/dx……(1) で与えられる。(1)式のdΦ/dxは磁束の位置変化を
表 わしたもので欠陥がない領域では第1図cに示し
た様にdΦ/dx=0でe=0となるが、欠陥があると dΦ/dx≠0となつて速度vを比例条数とした誘起々 電力が生じ欠陥信号として取出すことができる。
貫通形探傷コイルP、を通過したままで鋼材1を
移送すると第1図dに示したヒステリシス曲線に
従い残留磁気Brが生じる。この残留磁気Brが大
きいため普通はもう一つの貫通形コイルTを設け
て一次励磁電流Pとは逆向にTなるPより小
さな励磁電流を流してH1とは逆向きの起磁力―
H2を生じさせ残留磁気Brを小さくしている。こ
の逆磁界H2を外れた鋼材1は起磁力H=0とな
りΔBrなる残留磁気が残ることになる。 さて貫通形探傷終了後に生ずる残留磁気ΔBr
は一般の普通鋼であれば十分小さな値で問題ない
が、特殊鋼の場合は比較的大きくなり一般にはさ
らにΔBrを微小とするための消磁コイルを第1
図aの3次コイルと同じ原理で一連のラインに設
けている。しかし貫通形の場合、鋼材1の外径が
種々変わる場合、コイル径と鋼材径のギヤツプに
より消磁能力が変わり、ギヤツプが大きいと大き
な消費電力を必要とする。特殊鋼の場合、普通鋼
に比し残留磁気ΔBrが比較的大きいのは次の説
明で明確となる。第2図aは横軸に鋼材内のカー
ボン含有率(%)、縦軸に保持力HCを取り鋼材を
焼鈍した場合と焼き入れした場合をそれぞれブロ
ツトすると曲線V,Uの如くなる。即ち、カーボ
ン含有率が高くなると保持力HCは増加し、焼き
入れ材ではそれが著るしい。この様なカーボン含
有率が高い特殊鋼の場合のヒステリシス曲線は第
2図に示す如く減磁曲線がRSとなり普通鋼の減
磁曲線RNとは大幅に異なるものとなる。即ち普
通鋼では保持力CNを取りさればBrNなる残留磁気
が、特殊鋼では保持力HCSを取りさつてもBrS
る残留磁気残りBrS>BrNとなる。このBrSを小さ
くするため一般には起磁力を小さくして行きなが
ら何回かのヒステリシス曲線をえがき消磁してい
る。しかしながら前述の如く鋼材1と貫通コイル
のギヤツプg(g1<g2<g3……)により動作点が
第2図bに示す如く変化するため、減磁するため
の逆磁界Hg1,Hg29,Hg3……が変化し複雑な
制御をしないと所定の消磁が出来ないことにな
る。 貫通形コイル方式による消磁装置の問題点を整
理すると次の点があげられる。 (1) 種々変化する外径の鋼材に対し何種類もの消
磁コイルを必要とする。 (2) 非接触のため効率が悪く大きな電力が必要。 (3) 複数本同時の消磁が不可能。 (4) 貫通コイルを通るまで消磁が完了せず消磁時
間が長い。 (5) 鋼材を移動させないと消磁が出来ないため消
磁にコイルを励磁するための電力の他に鋼材移
動のための別動力が必要。 (6) 貫通コイルが局部的に鋼材長さに対し存在す
るため移動鋼材にブレーキ力が作用し引抜くた
めの外力を必要とする。 鋼材の残留磁気が特殊鋼になると除去しにくい
点を第2図a,bで説明したが、さらに第3図a
を用いて補足する。一般に鋼材1がすでに内部起
磁力Hdを有している場合に外部から磁界Hex
印加した場合の有効磁界Heffは、鋼材表面に
N,S極が局部的に表われることによつて生ずる
磁性体の反磁界H′が生ずるために Heff=Hex−H′=Hex−H/μJ ……(2) で表わされる。ここでNは反磁場係数、Jは磁化
の強さである。この反磁場係数Nは鋼材の長さと
径の寸法比により変化する。従つて外部磁界によ
つて残留磁気を除去しようとしても反磁界が大き
ければそれに見合つた外部磁界を印加する必要が
ある。残留磁気Brが鋼材端部に生じた場合、外
部からこれを除去するために軸方向に外部磁界を
印加する場合と径方向に印加する場合を比較する
と、印加の難易の点からは軸方向に磁化しやすい
が、もし何らかの方法で径方向に磁化できれば、
BrR>BrAとすることが可能となり径方向に残留
磁気をクローズできそれだけ消磁効果が大きく得
られる。第1図の如き貫通形コイルによる消磁方
式は鋼材の軸方向の消磁しかできず、前述の反磁
場係数の影きようで消磁効果がうすれる欠点があ
る。本発明の目的は、被消磁材料の残留磁来の消
磁時間を短縮した消磁装置の消磁方法を提供する
ことにある。 本発明の消磁方法は、励磁コイルに正方向励磁
電流と正方向励磁電流より電流値の大きい逆方向
励磁電流を流した第1サイクル目と、上記励磁コ
イルに第1サイクル目の極性と逆極性の励磁電流
を第2サイクル目に流すことにある。 以下本発明の具体的実施例を第4図〜第7図を
用いて説明する。第4図に於いて鋼材1のほぼ全
長に渡りヨーク5、磁極6,7、励磁コイル8か
らなるU字形マグネツトを非磁性体9を介して架
台10へ取付ける。複数のU字形マグネツトを設
けるのは第3図で説明した局部的な反磁界が鋼材
の任意点に複数個存在するため、この各々の反磁
界を消磁する必要性のためである。鋼材1は例え
ば1A,1B,1C,1Dを同時に複数本消磁す
る必要性があれば磁極6又は7の長さlPを本数
に応じ決定すればよい。第3図の反磁界はかなら
ずしも鋼材1の長さ方向に外部から印加する消磁
磁界と反対方向とはかぎらずそのベクトルは種々
の方向を持つている。従つてU字形マグネツトは
それぞれ独立した磁路を形成し且つその磁束は同
一方向を鋼材内で有した方が良いため非磁性体9
を介して連結するのがよい。第5図は第4図から
なる消磁装置の励磁コイルの励磁電流のパターン
を示したものである。鋼材1の材質が普通鋼であ
れば第2図bに示したように減磁曲線はRNとな
り+iの正方向励磁電流つまり磁化電流に対し−
iの逆方向励磁電流つまり減磁電流を1サイクル
流せば簡単に消磁できる。普通鋼では減磁電流は
磁化電流の50〜100%で良い。鋼材1が特殊鋼に
なると第2図bに示したように減磁曲線はRS
なるため+iの磁化電流に対し−i′の減磁電流を
1サイクル流せば比較的良好な消磁が行なえる。
第5図で提案した消磁装置は鋼材1と接触もしく
は接触に近い状態にあり空隙が小さいので保持力
は例えば第2図b−Hg1にあるため特殊鋼であ
りながら比較的消磁しやすいことが得られ、−
i′の減磁電流は磁化電流の100〜300%が適当であ
る。特殊鋼でもクロムモリブデン鋼や高マンガン
鋼になると第3図aで説明した反磁界が大きく且
つ複雑な分布となるため第5図の如く極性を反転
して消磁する2サイクル消磁が有効となる。即ち
第4図の各々のU字形マグネツトの鋼材1内の磁
束の方向は最初の1/2サイクルの磁化時には一方
向に向け、次の1/2サイクルの減磁時にも磁化時
と反対方向に一方向を向ける。次の2サイクル目
は先の1サイクルの減磁方向に1/2サイクル磁化
し残り1/2サイクルを先の1サイクルの磁化方向
に減磁する方法が有効となる。この詳細を第6図
を用いて説明する。 まず+iなる磁化電流を流し00→01まで磁化す
る。次にこの電流を切つて01→02に至り−i′なる
減磁電流を流して02→03まで達しこの電流を切つ
て03→04に至り1サイクルを終了する。次に1サ
イクル目とは逆に即ち1サイクル目の減磁方向に
−iなる磁化電流を流して04→05まで磁化しこの
電流を切つて05→06まで達する。次に+i′なる電
流を流して1サイクル目の磁化方向に06→07に減
磁する。この電流を最後に切つて07→00に至り原
点により近づく方法である。くり返えして整理す
れば
The present invention relates to a demagnetization method for removing residual magnetism from steel materials. In general, steel materials such as steel pipes and round steel, especially special steels such as high carbon steel, manganese steel, and chromium molybdenum steel, are used for important structures and high-pressure piping materials, so defects such as surface scratches and internal scratches are removed during the manufacturing process. A commonly used flaw detection device is a magnetic flaw detection device. However, when magnetic flaw detection equipment is used, residual magnetism tends to remain in special steel, causing problems in workability, weldability, etc. When it comes to special steel, the first thing to consider is the situation in which residual magnetism tends to remain.
〜Explained using FIG. 2. FIG. 1a shows the principle of a penetrating flaw detection coil when a steel material 1 is flowing in the x direction at a velocity v. When a DC excitation current P is passed through the primary coil P with the number of turns N 1 , it moves in the direction of the arrow.
A magnetomotive force of H 1 = N 1 is generated in the steel material 1 Φ = BS =
A magnetic flux of μH 1 S is generated. When a magnetic flux Φ is generated, the steel material 1 is magnetized as shown in FIG. 1b, with the tip side in the moving direction being magnetized as a N pole and the opposite side being magnetized as an S pole. If there is a defect number 2 inside the steel material 1, an induced electromotive force e is generated between both ends S 1 and S 2 of the secondary detection coil S having N 2 turns of the penetrating flaw detection coil. That is, the magnetic flux Φ inside the steel material 1
When the steel material is moving at a speed v, the induced electric power e is e=N 2 dΦ/dt=N 2 dΦ/dx・dx/dt=N 2・v
・dΦ/dx……(1) is given. dΦ/dx in equation (1) represents the change in the position of magnetic flux, and in a region without defects, dΦ/dx = 0 and e = 0 as shown in Figure 1c, but if there is a defect, dΦ /dx≠0, and induced electromotive force with the velocity v as a proportional number is generated and can be taken out as a defect signal.
When the steel material 1 is transferred while passing through the penetrating flaw detection coil P, a residual magnetism Br is generated according to the hysteresis curve shown in FIG. 1d. Since this residual magnetism Br is large, normally another through-type coil T is provided and an excitation current smaller than P is passed in the opposite direction to the primary excitation current P to generate a magnetomotive force in the opposite direction to H1 .
It generates H 2 and reduces the residual magnetism Br. The steel material 1 that is removed from this reverse magnetic field H2 has a magnetomotive force H=0, and a residual magnetism of ΔBr remains. Now, the residual magnetism ΔBr generated after penetrating flaw detection is completed.
is a sufficiently small value for ordinary steel, but in the case of special steel, it becomes relatively large, and generally a degaussing coil is used as the first degaussing coil to further reduce ΔBr.
It is installed in a series of lines using the same principle as the tertiary coil in Figure a. However, in the case of a through type, when the outer diameter of the steel material 1 varies, the demagnetizing ability changes depending on the gap between the coil diameter and the steel material diameter, and a large gap requires large power consumption. The following explanation will make clear that special steel has a relatively large residual magnetism ΔBr compared to ordinary steel. In Fig. 2a, the horizontal axis represents the carbon content (%) in the steel material, and the vertical axis represents the holding force H C , and when the steel materials are blotted for annealing and quenching, they become curves V and U. That is, as the carbon content increases, the holding force H C increases, and this is remarkable in hardened materials. The hysteresis curve for such special steel with a high carbon content has a demagnetization curve R S as shown in FIG. 2, which is significantly different from the demagnetization curve R N of ordinary steel. That is, in ordinary steel, when the coercive force CN is removed, there is a residual magnetism Br N , and in special steel, even when the coercive force H CS is removed, there is a residual magnetic residual Br S , which is Br S >Br N. In order to reduce this Br S , the magnetomotive force is generally reduced while demagnetizing the hysteresis curve several times. However, as mentioned above, the operating point changes as shown in Fig. 2b due to the gap g (g 1 < g 2 < g 3 . . .) between the steel material 1 and the through coil, so the reverse magnetic field H g1 , H for demagnetization is g29 , H g3 . . . change, and the desired demagnetization cannot be achieved without complicated control. The problems with degaussing devices using the through-type coil system can be summarized as follows. (1) Several types of degaussing coils are required for steel materials with varying outer diameters. (2) Since it is non-contact, it is inefficient and requires a large amount of electricity. (3) Simultaneous demagnetization of multiple wires is not possible. (4) Demagnetization is not completed until it passes through the through coil, so the demagnetization time is long. (5) Since demagnetization cannot be performed without moving the steel, separate power is required to move the steel in addition to the electricity used to excite the coil for demagnetization. (6) Since the through-coil exists locally in relation to the length of the steel material, a braking force acts on the moving steel material and an external force is required to pull it out. We have explained in Figure 2 a and b that it is difficult to remove the residual magnetism of special steel, but in addition, Figure 3 a
Supplement by using In general, when the steel material 1 already has an internal magnetomotive force H d and a magnetic field H ex is applied from the outside, the effective magnetic field H eff is determined by the local appearance of N and S poles on the surface of the steel material. Since a demagnetizing field H' of the resulting magnetic material is generated, it is expressed as H eff =H ex -H'=H ex -H/μ 0 J (2). Here, N is the demagnetizing field coefficient and J is the magnetization strength. This demagnetizing field coefficient N changes depending on the length and diameter ratio of the steel material. Therefore, even if an attempt is made to remove residual magnetism using an external magnetic field, if the demagnetizing field is large, it is necessary to apply an external magnetic field commensurate with the large demagnetizing field. When residual magnetism Br is generated at the edge of a steel material, comparing the case of applying an external magnetic field in the axial direction and the case of applying it in the radial direction in order to remove it from the outside, it is found that in terms of the difficulty of applying it, it is better to apply an external magnetic field in the axial direction. It is easy to magnetize, but if you can somehow magnetize it in the radial direction,
It is possible to set Br R > Br A , and the residual magnetism can be closed in the radial direction, so that a larger demagnetizing effect can be obtained. The demagnetization method using a through-type coil as shown in FIG. 1 can only demagnetize the steel material in the axial direction, and has the disadvantage that the demagnetization effect is weakened by the influence of the demagnetizing field coefficient mentioned above. An object of the present invention is to provide a demagnetizing method for a demagnetizing device that shortens the demagnetizing time due to residual magnetization of a material to be demagnetized. The demagnetization method of the present invention includes a first cycle in which a forward excitation current and a reverse excitation current having a current value larger than the forward excitation current are passed through the excitation coil, and a polarity opposite to that of the first cycle in the excitation coil. The purpose is to cause an excitation current of 1 to flow in the second cycle. Specific embodiments of the present invention will be described below with reference to FIGS. 4 to 7. In FIG. 4, a U-shaped magnet consisting of a yoke 5, magnetic poles 6 and 7, and an excitation coil 8 is attached to a frame 10 through a non-magnetic material 9 over almost the entire length of the steel material 1. The reason why a plurality of U-shaped magnets are provided is that since a plurality of local demagnetizing fields as explained in FIG. 3 exist at arbitrary points on the steel material, it is necessary to demagnetize each of these demagnetizing fields. If there is a need to demagnetize a plurality of steel materials 1, such as 1A, 1B, 1C, and 1D at the same time, the length l P of the magnetic poles 6 or 7 may be determined according to the number. The demagnetizing field shown in FIG. 3 is not necessarily in the opposite direction to the demagnetizing field applied from the outside in the length direction of the steel material 1, but its vectors have various directions. Therefore, since it is better for each U-shaped magnet to form an independent magnetic path and for the magnetic flux to have the same direction within the steel material, the non-magnetic material 9
It is better to connect via . FIG. 5 shows the pattern of the excitation current of the excitation coil of the degaussing device shown in FIG. If the material of steel material 1 is ordinary steel, the demagnetization curve becomes R N as shown in Figure 2b, and - for a positive excitation current of +i, that is, a magnetizing current.
Demagnetization can be easily achieved by passing one cycle of reverse excitation current, that is, demagnetization current of i. For ordinary steel, the demagnetizing current may be 50 to 100% of the magnetizing current. When steel material 1 becomes special steel, the demagnetization curve becomes R S as shown in Figure 2b, so relatively good demagnetization can be achieved by flowing one cycle of -i' demagnetizing current for +i magnetizing current. Ru.
The demagnetizing device proposed in Fig. 5 is in contact with or close to contact with the steel material 1 and the air gap is small, so the holding force is as shown in Fig. 2b-H g1 , for example, so it is relatively easy to demagnetize even though it is made of special steel. obtained, −
The appropriate demagnetizing current for i' is 100 to 300% of the magnetizing current. Even among special steels, when it comes to chromium-molybdenum steel or high manganese steel, the demagnetizing field explained in FIG. 3a becomes large and has a complicated distribution, so two-cycle demagnetization, in which the polarity is reversed and demagnetized as shown in FIG. 5, is effective. In other words, the direction of the magnetic flux within the steel material 1 of each U-shaped magnet in Fig. 4 is directed in one direction during magnetization in the first 1/2 cycle, and is directed in the opposite direction during demagnetization in the next 1/2 cycle. Turn in one direction. For the next second cycle, an effective method is to magnetize for 1/2 cycle in the demagnetization direction of the previous one cycle and demagnetize the remaining 1/2 cycle in the magnetization direction of the previous one cycle. The details will be explained using FIG. 6. First, a magnetizing current of +i is applied to magnetize from 0 0 to 0 1 . Next, this current is cut off and the flow goes from 0 1 to 0 2 , and a demagnetizing current of -i' is caused to flow until it reaches 0 2 → 0 3. This current is cut off and the flow goes to 0 3 → 0 4 , completing one cycle. Next, a magnetizing current of -i is passed in the opposite direction to the first cycle, that is, in the demagnetizing direction of the first cycle, magnetizing the magnet from 0 4 to 0 5 , and then this current is cut to reach the magnetization from 0 5 to 0 6 . Next, a current of +i' is applied to demagnetize from 0 6 to 0 7 in the first cycle magnetization direction. The method is to cut off this current at the end so that it reaches 0 7 → 0 0 and approaches the origin. If you organize it repeatedly

【表】 なる消磁パターンを設ける消磁方法である。 第7図及び表1は筆者等が種々の特殊鋼を用い
て上記第4〜第6図からなる消磁装置で実験した
結果を示したものである。消磁前に比し1サイク
ル目で約1/2〜1/5に、2サイクルの極性反転消磁
で約1/5〜1/10に減磁していることが分かる。実
験例では1サイクル2秒、2サイクル4秒の従来
にない短時間で消磁が完了できている。
[Table] This is a demagnetization method that creates a demagnetization pattern. FIG. 7 and Table 1 show the results of experiments conducted by the authors using various special steels with the degaussing device shown in FIGS. 4 to 6 above. It can be seen that the demagnetization is approximately 1/2 to 1/5 in the first cycle and approximately 1/5 to 1/10 in the second cycle of polarity reversal demagnetization compared to before demagnetization. In the experimental example, demagnetization was completed in an unprecedentedly short time of 2 seconds for 1 cycle and 4 seconds for 2 cycles.

【表】 以上の如く本案によれば簡単な複数個のマグネ
ツトを構成し正逆切替の消磁1〜2サイクルで複
数本同時の消磁時間を短縮できるので、消磁作業
の能率を著しく向上できる。
[Table] As described above, according to the present invention, it is possible to construct a plurality of simple magnets and shorten the demagnetization time for a plurality of magnets simultaneously by one or two demagnetization cycles of forward/reverse switching, thereby significantly improving the efficiency of demagnetization work.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は磁気探傷と残留磁気を説明する図、第
2図は残留磁気の大きさを説明する図、第3図は
消磁の他の問題点を説明する図、第4図〜第5図
は本発明の実施例を示す図、第6図〜第7図は本
発明の効果を説明する図である。 5…ヨーク、6,7…磁極、8…コイル、1A
〜1D…被消磁材。
Figure 1 is a diagram explaining magnetic flaw detection and residual magnetism, Figure 2 is a diagram explaining the magnitude of residual magnetism, Figure 3 is a diagram explaining other problems with demagnetization, Figures 4 to 5 FIG. 6 is a diagram showing an embodiment of the present invention, and FIGS. 6 and 7 are diagrams explaining the effects of the present invention. 5... Yoke, 6, 7... Magnetic pole, 8... Coil, 1A
~1D...Material to be demagnetized.

Claims (1)

【特許請求の範囲】[Claims] 1 残留磁束を有する被消磁材料と、被消磁材料
を複数個のヨークに対応配置し、各ヨークに励磁
コイルを巻回して磁路を構成し、上記励磁コイル
に流した正方向電流を切替えて逆方向励磁電流
を、流して、被消磁材料の残留磁束を消磁する装
置において、上記励磁コイルに流した正方向励磁
電流を切替えて、正方向励磁電流より電流値の大
きい逆方向励磁電流を流す第1サイクル目と、上
記励磁コイルに第1サイクル目の極性と逆極性の
励磁電流を第2サイクル目に流すことを特徴とす
る消磁装置の消磁方法。
1 A material to be demagnetized having a residual magnetic flux and a material to be demagnetized are arranged in correspondence with a plurality of yokes, an excitation coil is wound around each yoke to form a magnetic path, and the positive direction current flowing through the excitation coil is switched. In a device that demagnetizes the residual magnetic flux of a material to be demagnetized by passing a reverse excitation current, the forward excitation current applied to the excitation coil is switched to allow a reverse excitation current having a larger current value than the forward excitation current to flow. A degaussing method for a degaussing device, characterized in that in a first cycle, and in a second cycle, an excitation current having a polarity opposite to that in the first cycle is caused to flow through the excitation coil.
JP2795480A 1980-03-07 1980-03-07 Demagnetizer Granted JPS56125816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2795480A JPS56125816A (en) 1980-03-07 1980-03-07 Demagnetizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2795480A JPS56125816A (en) 1980-03-07 1980-03-07 Demagnetizer

Publications (2)

Publication Number Publication Date
JPS56125816A JPS56125816A (en) 1981-10-02
JPS6235248B2 true JPS6235248B2 (en) 1987-07-31

Family

ID=12235278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2795480A Granted JPS56125816A (en) 1980-03-07 1980-03-07 Demagnetizer

Country Status (1)

Country Link
JP (1) JPS56125816A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0166065U (en) * 1987-10-20 1989-04-27

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5279422B2 (en) * 2008-09-08 2013-09-04 株式会社ブリヂストン Method of demagnetizing steel cord and tire for automobile

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317758A (en) * 1976-08-02 1978-02-18 Toshiba Corp Constant volume feeder for high viscosity liquid
JPS5333159A (en) * 1976-09-08 1978-03-28 Fujitsu Ltd Recorder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317758A (en) * 1976-08-02 1978-02-18 Toshiba Corp Constant volume feeder for high viscosity liquid
JPS5333159A (en) * 1976-09-08 1978-03-28 Fujitsu Ltd Recorder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0166065U (en) * 1987-10-20 1989-04-27

Also Published As

Publication number Publication date
JPS56125816A (en) 1981-10-02

Similar Documents

Publication Publication Date Title
US3728654A (en) Solenoid operated plunger device
JPH0134326Y2 (en)
EP0744757A4 (en) D.c. reactor
US4263523A (en) Pulse generator using read head with Wiegand wire
JP6908212B1 (en) Leakage magnetic inspection equipment and defect inspection method
JPS6235248B2 (en)
JP2005162379A (en) Wire rope severance sensing device
US3961374A (en) Static magnetic erasing head
RU2335819C2 (en) Method of demagnetisation of large-size soft-magnetic products and device to this effect
JPS60186339A (en) Exciting method for demagnetizing electro permanent magnetic chuck
JPS58135614A (en) Demagnetizing method and demagnetizer
JP2602649B2 (en) Permanent magnet type electromagnetic chuck
JP2688889B2 (en) Magnetic shield room
JPS6086809A (en) Demagnetizing method and device thereof
Mohri et al. Effective domain and grain observation methods and iron losses in coated Si-Fe
JPH04271103A (en) Electromagnetic device equipped with permanent magnet
Andrews Understanding permanent magnets
JPS6038844B2 (en) magnetic attraction device
Nakata et al. Numerical design method for magnetizers
JPS6348090Y2 (en)
RU2217828C2 (en) Method for reversal magnetization of multipole permanent magnets and magnetic systems
JPS5826163B2 (en) Zanriyujikishiyoukiyosouchi
JP3550710B2 (en) Variable residual magnetization electromagnet apparatus and method for varying residual magnetization of electromagnet using the same
JP3750127B2 (en) Voice coil linear motor
JPH0691464A (en) Work demagnetizing method of permanent electromagnetic type chuck