JPS6235225A - Direct heat type flow rate sensor - Google Patents

Direct heat type flow rate sensor

Info

Publication number
JPS6235225A
JPS6235225A JP60174341A JP17434185A JPS6235225A JP S6235225 A JPS6235225 A JP S6235225A JP 60174341 A JP60174341 A JP 60174341A JP 17434185 A JP17434185 A JP 17434185A JP S6235225 A JPS6235225 A JP S6235225A
Authority
JP
Japan
Prior art keywords
temperature
heat insulating
resistor
heat
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60174341A
Other languages
Japanese (ja)
Other versions
JPH0441930B2 (en
Inventor
Minoru Oota
実 太田
Masatoshi Onoda
真稔 小野田
Kazuhiko Miura
和彦 三浦
Seiji Fujino
藤野 誠二
Tadashi Hattori
正 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP60174341A priority Critical patent/JPS6235225A/en
Priority to US06/894,895 priority patent/US4756190A/en
Publication of JPS6235225A publication Critical patent/JPS6235225A/en
Publication of JPH0441930B2 publication Critical patent/JPH0441930B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To provide a heat insulating effect which is uniform with respect to temp. by using members having such characteristic that the changes of the heat conductivity with temp. are positive and negative to constitute the heat insulating member. CONSTITUTION:The heat insulating member 12 is constituted of the respective layers including an Au-Si eutectic (adhesive) layer 121, a mullite material 122, a heat resistant adhesive agent 123, a polyimide material 124 and solder 125. The mullite material 122 exhibits the negative characteristic in the change of the heat conductivity with temp. and the polyimide material 124 exhibits the positive characteristic. The positive and negative characteristics are offset and the change of the heat conductivity with temp. is decreased as a whole if the thickness is adequately selected. The heat conductivity is thus made uniform (constant) and the output change of the direct heat type flow rate sensor is decreased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は膜式抵抗を有する直熱型流量センサ、たとえば
内燃機関の吸入空気量を検出するための空気流量センサ
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a directly heated flow rate sensor having a membrane resistor, for example, an air flow rate sensor for detecting the intake air amount of an internal combustion engine.

〔従来の技術〕[Conventional technology]

一般に、電子制御式内燃機関においては、基本燃料噴射
量、基本点火時期等の制御のために機関の吸入空気量は
重要な運転状態パラメータの1つである。従来、このよ
うな吸入空気量を検出するための空気流量センサ(エア
フローメータとも言う)はベーン式のものが主流であっ
たが、最近、小型、応答性が良い等の利点を有する温度
依存抵抗を用いた熱式のものが実用化されている。
Generally, in an electronically controlled internal combustion engine, the intake air amount of the engine is one of the important operating state parameters for controlling the basic fuel injection amount, basic ignition timing, and the like. Conventionally, vane-type air flow sensors (also called air flow meters) for detecting the amount of intake air have been mainstream, but recently temperature-dependent resistance sensors, which have the advantages of small size and good response, have been introduced. A thermal type using

さらに、温度依存抵抗を有する空気流量センサとしては
、傍熱型と直熱型とがある。たとえば、傍熱型の空気流
量センサは、機関の吸気通路に設けられた発熱抵抗、お
よびその上流、下流側に設けられた2つの温度依存抵抗
を備えている。この場合、上流側の温度依存抵抗は発熱
抵抗による加熱前の空気流の温度を検出するものであり
、つまり、外気温度補償用であり、また、下流側の温度
依存抵抗は加熱抵抗によって加熱された空気流の温度を
検出する。これにより、下流側の温度依存抵抗と上流側
の温度依存抵抗との温度差が一定になるように発熱抵抗
の電流値をフィードバック制御し、発熱抵抗に印加され
る電圧により空気流量(質量)を検出するものである。
Furthermore, there are two types of air flow rate sensors having temperature-dependent resistance: indirect heating type and direct heating type. For example, an indirectly heated air flow sensor includes a heat generating resistor provided in an intake passage of an engine, and two temperature dependent resistors provided upstream and downstream thereof. In this case, the temperature-dependent resistance on the upstream side detects the temperature of the air flow before being heated by the heating resistor, that is, it is for outdoor temperature compensation, and the temperature-dependent resistance on the downstream side is used to detect the temperature of the air flow before being heated by the heating resistor. Detects the temperature of the airflow. As a result, the current value of the heating resistor is feedback-controlled so that the temperature difference between the temperature-dependent resistance on the downstream side and the temperature-dependent resistance on the upstream side is constant, and the air flow rate (mass) is controlled by the voltage applied to the heating resistor. It is something to detect.

なお、上流側の外気温度補償周温・度依存抵抗を削除し
、下流側の温度依存抵抗の温度が一定になるように発熱
抵抗を制御すると、体積容量としての空気流量が検出で
きる(参照:特公昭54−9662号公報)。他方、傍
熱型に比べて応答速度が早い直熱型の空気流量センサは
、機関の吸気通路に設けられた温度検出兼用の発熱抵抗
、およびその上流側に設けられた温度依存抵抗を備えて
いる。この場合、傍熱型と同様に、上流側の温度依存抵
抗は発熱抵抗による加熱前の空気流の温度を検出するも
のであり、つまり、外気温度補償用である。これにより
、発熱抵抗とその上流側の温度依存抵抗との温度差が一
定になるように発熱抵抗の電流値をフィードバック制御
し、発熱抵抗に印加される電圧により空気流量(質量)
を検出するものである。なお、この場合にも、外気温度
補償用温度依存抵抗を削除し、発熱抵抗の温度が一定に
なるように発熱抵抗を制御すると、体積容量としての空
気流量が検出できる。
Note that if you delete the ambient temperature/degree dependent resistance on the upstream side and control the heating resistor so that the temperature of the temperature dependent resistance on the downstream side is constant, the air flow rate as a volumetric capacity can be detected (see: Special Publication No. 54-9662). On the other hand, a directly heated type air flow sensor, which has a faster response speed than an indirectly heated type, is equipped with a heating resistor that also serves as temperature detection, installed in the engine's intake passage, and a temperature-dependent resistor installed upstream of the heating resistor. There is. In this case, similarly to the indirect heating type, the upstream temperature-dependent resistance detects the temperature of the air flow before being heated by the heating resistor, that is, it is used to compensate for the outside air temperature. As a result, the current value of the heating resistor is feedback-controlled so that the temperature difference between the heating resistor and the temperature-dependent resistance upstream thereof is constant, and the air flow rate (mass) is controlled by the voltage applied to the heating resistor.
This is to detect. In this case as well, if the temperature-dependent resistance for compensating the outside air temperature is deleted and the heating resistor is controlled so that the temperature of the heating resistor is constant, the air flow rate as a volumetric capacity can be detected.

通常、発熱抵抗(腹式抵抗)の発熱温度と吸入空気温度
との差を一定値にするあるいは腹式抵抗の発熱温度を一
定にする空気流量センサの応答性、ダイナミックレンジ
は腹式抵抗を含む発熱部兼温度検知部の熱容量(ヒート
マス)と断熱効果の程度で決定される。すなわち、最も
応答性がよく、且つダイナミックレンジを最も大きくす
るためには、腹式抵抗を含む発熱部兼温度検知部の質量
をできる限り小さくし、また、その部分を理想的には完
全に空気流中に浮かんだ状態にすることである(参照:
特願昭60−25232号)。
Normally, the responsiveness and dynamic range of an air flow sensor that keeps the difference between the heat generation temperature of the heat generating resistor (belly type resistor) and the intake air temperature constant, or the heat generating temperature of the belly type resistor, includes the belly type resistance. It is determined by the heat capacity (heat mass) of the heat generating part and temperature sensing part and the degree of insulation effect. In other words, in order to have the best response and the largest dynamic range, the mass of the heat generating part and temperature sensing part including the abdominal resistor should be as small as possible, and ideally that part should be completely surrounded by air. It is to be in a state of floating in the flow (see:
(Japanese Patent Application No. 60-25232).

〔発明が解決しようとする1問題点〕 しかしながら、通常、断熱部材は温度に対する熱伝導率
の変化が正特性もしくは負特性を有しており、従って、
空気流の温度により断熱部材の断熱効果が変化し、この
結果、センサの出力特性が変化するという問題点がある
[One problem to be solved by the invention] However, normally, a heat insulating member has a positive characteristic or a negative characteristic in the change in thermal conductivity with respect to temperature, and therefore,
There is a problem in that the heat insulating effect of the heat insulating member changes depending on the temperature of the air flow, and as a result, the output characteristics of the sensor change.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の目的は、空気流の温度に対して出力特性が変化
しない直熱式流量センサを提供することにあり、その手
段は、断熱部材を、温度に対する熱伝導率の変化が正特
性の部材と負特性の部材とにより構成したことである。
An object of the present invention is to provide a directly heated flow rate sensor whose output characteristics do not change with respect to the temperature of the air flow. and a member having negative characteristics.

〔作 用〕[For production]

上述の手段によれば、断熱部材の温度に対する熱伝導率
を一様(一定)にならしめたことができ、これにより、
断熱部材の断熱効果は温度に対して一様となる。
According to the above-mentioned means, it is possible to make the thermal conductivity of the heat insulating member uniform (constant) with respect to the temperature, and thereby,
The heat insulating effect of the heat insulating member becomes uniform with respect to temperature.

〔実施例〕〔Example〕

以下、図面により本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail with reference to the drawings.

第3図は本発明に係る腹式抵抗を有する直熱型空気流量
センサが適用された内燃機関を示す全体概要図である。
FIG. 3 is an overall schematic diagram showing an internal combustion engine to which a directly heated air flow sensor having an abdominal resistance according to the present invention is applied.

第3図において、内燃機関1の吸気通路2にはエアクリ
ーナ3および整流格子4を介して空気が吸入される。こ
の空気通路2内に保持部材(たとえばアルミニウム)5
が設けられ、そこに空気流量を計測するための発熱ヒー
タ兼用温度依存抵抗(腹式抵抗)6が設けられている。
In FIG. 3, air is taken into an intake passage 2 of an internal combustion engine 1 via an air cleaner 3 and a rectifying grid 4. As shown in FIG. A holding member (for example, aluminum) 5 is provided in this air passage 2.
A temperature dependent resistor (abdominal resistor) 6 which also serves as a heat generating heater is provided therein for measuring the air flow rate.

腹式抵抗6はフレキシブル配線7によって、外気温度補
償を行う温度依存抵抗8と共に、ハイブリッド基板に形
成されたセンサ回路9に接続されている。
The abdominal type resistor 6 is connected by a flexible wiring 7 to a sensor circuit 9 formed on a hybrid board, together with a temperature-dependent resistor 8 that compensates for the outside temperature.

センサ回路9は外気温度に対して腹式抵抗6の温度が一
定になるように該抵抗6の発熱量をフィードバック制御
し、そのセンサ出力V、を制御回路10に供給する。制
御回路10はたとえばマイクロコンピュータによって構
成され、燃料噴射弁11の制御等を行うものである。
The sensor circuit 9 feedback-controls the amount of heat generated by the resistor 6 so that the temperature of the abdominal resistor 6 is constant with respect to the outside air temperature, and supplies the sensor output V to the control circuit 10. The control circuit 10 is composed of, for example, a microcomputer, and controls the fuel injection valve 11 and the like.

センサ回路9は、第4図に示すごとく、腹式抵抗6、温
度依存抵抗8とブリフジ回路を構成する抵抗91 、9
2、比較器93、比較器93の出力によって制御される
トランジスタ94、電圧ハソファ95により構成される
、つまり、空気流量が増加して腹式抵抗6(この場合、
サーミスタ)の温度が低下し、この結果、腹式抵抗6の
抵抗値が下降して■1 ≦vRとなると、比較器93の
出力によってトランジスタ94の導電率が増加する。従
って、腹式抵抗6の発熱量が増加し、同時に、トランジ
スタ94のコレクタ電位すなわち電圧バッファ95の出
力電圧v0は上昇する。逆に空気流量が減少して腹式抵
抗6の温度が上昇すると、腹式抵抗6の抵抗値が増加し
てV、>VRとなり、比較器93の出力によってトラン
ジスタ94の導電率が減少する。従って、腹式抵抗60
発熱量が減少し、同時に、電圧バッファ95の出力電圧
VQは低下する。このようにして腹式抵抗6の温度は外
気温度によって定まる値になるようにフィードパンク制
御され、出力電圧V0は空気流量を示すことになる。
As shown in FIG. 4, the sensor circuit 9 includes an abdominal resistor 6, a temperature-dependent resistor 8, and resistors 91 and 9 forming a bridge circuit.
2. It is composed of a comparator 93, a transistor 94 controlled by the output of the comparator 93, and a voltage filter 95, that is, the air flow rate increases and the abdominal resistor 6 (in this case,
When the temperature of the thermistor (thermistor) decreases, and as a result, the resistance value of the belly-type resistor 6 decreases so that 1≦vR, the conductivity of the transistor 94 increases due to the output of the comparator 93. Therefore, the amount of heat generated by the abdominal resistor 6 increases, and at the same time, the collector potential of the transistor 94, that is, the output voltage v0 of the voltage buffer 95 increases. Conversely, when the air flow rate decreases and the temperature of the abdominal resistor 6 increases, the resistance value of the abdominal resistor 6 increases to V,>VR, and the conductivity of the transistor 94 decreases due to the output of the comparator 93. Therefore, abdominal resistance 60
The amount of heat generated decreases, and at the same time, the output voltage VQ of voltage buffer 95 decreases. In this way, the temperature of the abdominal resistor 6 is subjected to feed puncture control so that it becomes a value determined by the outside air temperature, and the output voltage V0 indicates the air flow rate.

第5回は第3図の腹式抵抗6の近傍の拡大図、第6図は
第5図のVl−VI線断面図である。第5図、第6図に
示すように、腹式抵抗6においては、その一端のみが断
熱部材12を介して保持部材5に支持されている。なお
、腹式抵抗6を両持保持により保持部材6に固定すると
、腹式抵抗6が歪ゲージの作用し、従って、腹式抵抗6
の歪みによりその出力変化を招くという欠点が生ずる。
The fifth time is an enlarged view of the vicinity of the abdominal resistor 6 in FIG. 3, and FIG. 6 is a sectional view taken along the line Vl-VI in FIG. As shown in FIGS. 5 and 6, only one end of the abdominal resistor 6 is supported by the holding member 5 via the heat insulating member 12. As shown in FIGS. Note that when the abdominal resistor 6 is fixed to the holding member 6 by holding both sides, the abdominal resistor 6 acts as a strain gauge, and therefore the abdominal resistor 6 acts as a strain gauge.
The disadvantage is that the distortion causes a change in the output.

上述の腹式抵抗6の片持保持はこのような歪ゲージ作用
を防止するものである。
The above-mentioned cantilever holding of the abdominal resistor 6 prevents such a strain gauge effect.

第7図は第5図のフレキシブル配線7の拡大図、第8図
は第7図の■−■線断面図である。第7図、第8図に示
すように、フレキシブル配線7は、フレキシブルな絶縁
樹脂フィルム701、ハターン形成された導体(たとえ
ばCu ) 702a 、 702b、およびフレキシ
ブルな絶縁樹脂フィルム703により構成されている。
FIG. 7 is an enlarged view of the flexible wiring 7 shown in FIG. 5, and FIG. 8 is a sectional view taken along the line ■--■ in FIG. As shown in FIGS. 7 and 8, the flexible wiring 7 is composed of a flexible insulating resin film 701, patterned conductors (for example, Cu) 702a, 702b, and a flexible insulating resin film 703.

そして、接合部A、Bは腹式抵抗6のAuバット部にた
とえばAu−3nの共晶によって接合される。このよう
に、導体702a 、 702bはフレキシブルな絶縁
樹脂により覆われているので、ボンディングワイヤに比
較して、腐食、断線等に強い構造をなしている。
The joint parts A and B are joined to the Au butt part of the abdominal resistor 6 by, for example, eutectic Au-3n. In this way, since the conductors 702a and 702b are covered with flexible insulating resin, they have a structure that is more resistant to corrosion, disconnection, etc. than bonding wires.

第1図は第6図の断熱部材12の詳細な構造を示す断面
図である。第1図に示すように、断熱部材12は、接着
剤(たとえばAu  Si共晶層)121、ムライト断
熱材122、接着剤(たとえば耐熱樹脂接着剤)123
、ポリイミド断熱材124、および接着剤(たとえばハ
ンダ)125の各層からなる。ここで、第2図に示すよ
うに、ムライト断熱材122は温度に対する熱伝導率の
変化が負特性を示し、ポリイミド断熱材124は温度に
対する熱伝導率の変化が正特性を示す。従って、ムライ
ト断熱材122の厚さおよびポリイミド断熱材124の
厚さを適切に設定すると、上記圧、負特性が相殺されて
断熱部材12全体として温度に対する熱伝導率の変化を
減少できることは明らかである。
FIG. 1 is a sectional view showing the detailed structure of the heat insulating member 12 of FIG. 6. FIG. As shown in FIG. 1, the heat insulating member 12 includes an adhesive (for example, an Au Si eutectic layer) 121, a mullite heat insulating material 122, and an adhesive (for example, a heat-resistant resin adhesive) 123.
, polyimide insulation material 124 , and adhesive (eg, solder) 125 . Here, as shown in FIG. 2, the mullite heat insulating material 122 exhibits a negative change in thermal conductivity with respect to temperature, and the polyimide heat insulating material 124 exhibits a positive characteristic in a change in thermal conductivity with respect to temperature. Therefore, it is clear that if the thickness of the mullite insulation material 122 and the thickness of the polyimide insulation material 124 are appropriately set, the above-mentioned pressure and negative characteristics can be offset and the change in thermal conductivity with respect to temperature of the insulation member 12 as a whole can be reduced. be.

このようにして、断熱部材12の温度に対する熱伝導率
の変化を減少させ、理想的には、断熱部材12の温度に
対する熱伝導率を一様(一定)にすることができる。
In this way, changes in the thermal conductivity of the heat insulating member 12 with respect to temperature can be reduced, and ideally, the thermal conductivity of the heat insulating member 12 with respect to temperature can be made uniform (constant).

なお、温度に対する熱伝導率の変化が負特性を示す断熱
材としては、ムライトの代りに、セラミック系、ガラス
系の材料を用いることもでき、また、温度に対する熱伝
導率の変化が正特性を示す断熱材としては、ポリイミド
の代りに、樹脂系材料を用いることもできる。さらに、
第1図においては、温度に対する熱伝導率の変化が正特
性および負特性の各材料を層状に結合せしめたが、これ
らの材料を混合せしめることも可能である。
Note that ceramic or glass-based materials can be used instead of mullite as heat insulating materials that exhibit negative characteristics in terms of thermal conductivity changes with respect to temperature; As the heat insulating material shown, a resin material can also be used instead of polyimide. moreover,
In FIG. 1, materials whose thermal conductivity changes with respect to temperature have positive and negative characteristics are combined in a layered manner, but it is also possible to mix these materials.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、断熱部材の温度に
対する熱伝導率の変化を少なくでき、言い換えると、断
熱部材の温度に対する熱伝導率を一様(一定)にするこ
とができ、これにより、温度変化が起きても腹式抵抗か
ら断熱部材を通って保持部材へ逃げる熱の損失割合の変
化を少なくできる。従って、温度変化に対するセンサ出
力変化を小さくすることができる。
As explained above, according to the present invention, it is possible to reduce the change in thermal conductivity with respect to temperature of the heat insulating member, or in other words, it is possible to make the thermal conductivity of the heat insulating member with respect to temperature uniform (constant). Even if a temperature change occurs, it is possible to reduce the change in the loss rate of heat escaping from the abdominal resistor through the heat insulating member to the holding member. Therefore, changes in sensor output due to temperature changes can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る直熱型流量センサの断熱部材を示
す断面図、 第2図は第1図の断熱部材に用いられる断熱材の温度に
対する熱伝導率特性を示すグラフ、第3図は本発明に係
る模式抵抗を有する直熱型空気流量センサが適用された
内燃機関を示す全体概要図、 第4図は第3図のセンサ回路の回路図、第5図は第3図
の腹式抵抗の近傍の拡大図、第6図は第5図のvr−v
r線断面図、第7図は第5図のフレキシブル配線7の拡
大図、第8図は第7図の■−■線断面図である。 5:保持部材、 6:腹式抵抗、 7:フレキシブル配線、 12:断熱部材、 121:接着剤、 122:ムライト断熱材、 123:接着剤、 124:ポリイミド断熱材、 125:接着剤。 5・・・ 保持部材 6・・・ 腹式抵抗 12・・・ 断熱部材 125・・・ 接着剤 第2図 1・・・内燃機関 7・・・ フレキシブル配線 9・・・センサ回路 第4図 635.模式抵抗 8・・・温度依存抵抗 第7図 701.703・・・ フレキシブルな樹脂702a、
702b・・・導体
FIG. 1 is a cross-sectional view showing the heat insulating member of the direct heating type flow sensor according to the present invention, FIG. 2 is a graph showing the thermal conductivity characteristics with respect to temperature of the heat insulating material used in the heat insulating member of FIG. 1, and FIG. is an overall schematic diagram showing an internal combustion engine to which a directly heated air flow sensor having a schematic resistance according to the present invention is applied, FIG. 4 is a circuit diagram of the sensor circuit in FIG. 3, and FIG. An enlarged view of the vicinity of the formula resistor, Figure 6 is vr-v in Figure 5.
7 is an enlarged view of the flexible wiring 7 shown in FIG. 5, and FIG. 8 is a sectional view taken along the line ■-■ in FIG. 7. 5: Holding member, 6: Abdominal resistance, 7: Flexible wiring, 12: Heat insulating member, 121: Adhesive, 122: Mullite heat insulating material, 123: Adhesive, 124: Polyimide heat insulating material, 125: Adhesive. 5... Holding member 6... Abdominal resistor 12... Heat insulating member 125... Adhesive Fig. 2 1... Internal combustion engine 7... Flexible wiring 9... Sensor circuit Fig. 4 635 .. Schematic resistance 8... Temperature dependent resistance Figure 7 701.703... Flexible resin 702a,
702b...Conductor

Claims (1)

【特許請求の範囲】 1、膜式抵抗が形成された基板を断熱部材を介して保持
部材に支持することにより収容した直熱型流量センサに
おいて、前記断熱部材を、温度に対する熱伝導率の変化
が正特性の部材と負特性の部材とにより構成し、前記断
熱部材の温度に対する熱伝導率を一様にならしめたこと
を特徴とする直熱型流量センサ。 2、前記正特性の部材と前記負特性の部材とを層状にせ
しめた特許請求の範囲第1項に記載の直熱型流量センサ
。 3、前記正特性の部材と前記負特性の部材とを混合せし
めた特許請求の範囲第1項に記載の直熱型流量センサ。
[Scope of Claims] 1. In a directly heated flow sensor in which a substrate on which a membrane resistor is formed is supported by a holding member through a heat insulating member, the heat insulating member 1. A directly heated flow rate sensor comprising a member having a positive characteristic and a member having a negative characteristic, wherein the thermal conductivity of the heat insulating member with respect to temperature is made uniform. 2. The direct heating type flow sensor according to claim 1, wherein the member with positive characteristics and the member with negative characteristics are layered. 3. The direct heating type flow sensor according to claim 1, wherein the member having the positive characteristic and the member having the negative characteristic are mixed.
JP60174341A 1985-08-09 1985-08-09 Direct heat type flow rate sensor Granted JPS6235225A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60174341A JPS6235225A (en) 1985-08-09 1985-08-09 Direct heat type flow rate sensor
US06/894,895 US4756190A (en) 1985-08-09 1986-08-08 Direct-heated flow measuring apparatus having uniform characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60174341A JPS6235225A (en) 1985-08-09 1985-08-09 Direct heat type flow rate sensor

Publications (2)

Publication Number Publication Date
JPS6235225A true JPS6235225A (en) 1987-02-16
JPH0441930B2 JPH0441930B2 (en) 1992-07-09

Family

ID=15976943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60174341A Granted JPS6235225A (en) 1985-08-09 1985-08-09 Direct heat type flow rate sensor

Country Status (1)

Country Link
JP (1) JPS6235225A (en)

Also Published As

Publication number Publication date
JPH0441930B2 (en) 1992-07-09

Similar Documents

Publication Publication Date Title
US4912975A (en) Direct-heated flow measuring apparatus having improved response characteristics
US4783996A (en) Direct-heated flow measuring apparatus
US7270000B2 (en) Fluid flow sensor and fluid flow measurement device
US4833912A (en) Flow measuring apparatus
US4785662A (en) Direct-heated gas-flow measuring apparatus
US4843882A (en) Direct-heated flow measuring apparatus having improved sensitivity response speed
JP3718198B2 (en) Flow sensor
US7775104B2 (en) Thermal flowmeter in which relationship among length of heat resistor, heating temperature for the heat resistor, and power supplied to the heat resistor is prescribed
US4735099A (en) Direct-heated gas-flow measuring apparatus
US5423210A (en) Air flow rate meter and air flow rate detection
JPS6140924B2 (en)
JPS61194317A (en) Direct-heating type flow-rate sensor
JP2001311637A (en) Flow rate-measuring device, physical detecting device, and engine system
US4761995A (en) Direct-heated flow measuring apparatus having improved sensitivity and response speed
JPS6235225A (en) Direct heat type flow rate sensor
JPH11118566A (en) Flow sensor
US4393702A (en) Gas flow measuring device
US4756190A (en) Direct-heated flow measuring apparatus having uniform characteristics
JPS6236521A (en) Direct-heating type flow-rate sensor
JPS61186819A (en) Directly heated flow rate sensor
JPH0441932B2 (en)
JPS6239722A (en) Membrane type resistor for flow sensor
JPH04147016A (en) Thermal-type flow sensor
JPH0476413B2 (en)
JP3174234B2 (en) Thermal air flow detector