JPS6235001B2 - - Google Patents

Info

Publication number
JPS6235001B2
JPS6235001B2 JP4027879A JP4027879A JPS6235001B2 JP S6235001 B2 JPS6235001 B2 JP S6235001B2 JP 4027879 A JP4027879 A JP 4027879A JP 4027879 A JP4027879 A JP 4027879A JP S6235001 B2 JPS6235001 B2 JP S6235001B2
Authority
JP
Japan
Prior art keywords
load
flow rate
spray flow
spray
rate conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4027879A
Other languages
Japanese (ja)
Other versions
JPS55134208A (en
Inventor
Noboru Yanai
Hiroshi Egi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP4027879A priority Critical patent/JPS55134208A/en
Publication of JPS55134208A publication Critical patent/JPS55134208A/en
Publication of JPS6235001B2 publication Critical patent/JPS6235001B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【発明の詳細な説明】 本発明はボイラ蒸気温度制御装置に係り、特に
スプレイ流量にて温度制御するボイラのスプレイ
流量制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a boiler steam temperature control device, and more particularly to a boiler spray flow rate control device that controls temperature by spray flow rate.

第1図に示すように一般にタービン10に供給
される過熱蒸気は、給水ポンプ11で吐出された
流体を加熱状態の蒸気部12および加熱部13に
順々に供給して、この加熱部13から得る。そし
て過熱蒸気の温度は、タービン10に供給される
過熱蒸気量を検出する流量検出器14の出力を入
力する蒸気温度調節計15の出力およびタービン
の負荷量を検出する負荷量検出器16から出力さ
れる信号を入力する負荷―スプレイ流量変換演算
回路17をもとにスプレイ流量目標値を演算回路
18で求め、このスプレイ流量目標値にスプレイ
流量検出器19の出力を一致させるための操作量
を調節演算回路20で算出しこれにて操作端21
が加熱部の入口に供給される冷却水の量を操作し
て、所定の値に維持するような温度制御が行なわ
れている。
As shown in FIG. 1, superheated steam is generally supplied to the turbine 10 by sequentially supplying the fluid discharged by the water supply pump 11 to a heated steam section 12 and a heating section 13. obtain. The temperature of the superheated steam is determined by the output of a steam temperature controller 15 that receives the output of a flow rate detector 14 that detects the amount of superheated steam supplied to the turbine 10, and the output of a load amount detector 16 that detects the amount of load on the turbine. A spray flow rate target value is determined by the calculation circuit 18 based on the load-spray flow rate conversion calculation circuit 17 which receives the signal inputted, and a manipulated variable for making the output of the spray flow rate detector 19 coincide with this spray flow rate target value is determined. Calculated by the adjustment calculation circuit 20, the operating end 21
Temperature control is performed by controlling the amount of cooling water supplied to the inlet of the heating section to maintain it at a predetermined value.

ところでこのようなスプレイ温度制御系を採用
する理由として、ボイラの過熱器13から出力さ
れる蒸気温度の応答が非常に遅く、通常のフイー
ドバツク制御のみでは外乱に対して良好に制御を
行なうことはできないのでこのフイードバツク制
御系に先行する負荷から求めたスプレイ流量を目
標値とするスプレイ流量制御を取り入れている。
スプレイ流量制御のみでは、主蒸気温度に定常偏
差が現われる。したがつて予じめ求めたスプレイ
流量目標値を、蒸気温度調節計により補正するこ
とにより定常偏差をとりのぞき、主蒸気温度を所
定の目標値に保つようにしているがこれでも次の
2点により負荷―スプレイ流量変換演算式を正確
に設定することは困難である。先ず第1に、ボイ
ラの経年変化、効率変化、外乱等により変換演算
式が変化する。第2に、ボイラ試運転により正確
に変換演算式を求めることは困難である。
By the way, the reason why such a spray temperature control system is adopted is that the response of the steam temperature output from the boiler superheater 13 is very slow, and it is not possible to perform good control against disturbances using normal feedback control alone. Therefore, this feedback control system incorporates spray flow rate control in which the target value is the spray flow rate determined from the preceding load.
If only spray flow rate control is used, a steady-state deviation will appear in the main steam temperature. Therefore, the spray flow rate target value determined in advance is corrected using a steam temperature controller to remove the steady-state deviation and maintain the main steam temperature at a predetermined target value, but this still causes the following two points. Therefore, it is difficult to accurately set the load-spray flow rate conversion equation. First of all, the conversion equation changes due to aging of the boiler, changes in efficiency, disturbances, etc. Second, it is difficult to accurately determine the conversion equation through a test run of the boiler.

このように変換演算式が最適でないため先行し
て求めたスプレイ量が過剰(不足)となり、主蒸
気温度が低(高)になりすぎ、温度フイードバツ
ク制御が大きな補正を要する様になる。
As described above, since the conversion equation is not optimal, the amount of spray determined in advance becomes excessive (insufficient), the main steam temperature becomes too low (high), and the temperature feedback control requires a large correction.

本発明の目的は負荷変化に対して過熱蒸気温度
をほぼ所定値に維持できるボイラのスプレイ流量
制御装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a spray flow rate control device for a boiler that can maintain superheated steam temperature at approximately a predetermined value despite load changes.

この目的を達成するための概要は、負荷量検出
器の出力および過熱蒸気温度信号を入力する負荷
―スプレイ流量変換演算補正回路で負荷における
スプレイ流量補正量を求め、これにて負荷―スプ
レイ流量変換演算回路のパラメータを変更して特
性を修正し、これにてスプレイ流量を調節するよ
うに構成する。負荷―スプレイ流量変換演算回路
から補正されたスプレイ流量信号がスプレイ流量
調節演算回路に与えられるため負荷の変化に対し
て最適なスプレイ流量が求められ、この流量値で
過熱器の入力側に冷却水を供給する。これによつ
て負荷変化に対して過熱蒸気温度をほぼ所定値に
維持できる。
The outline of how to achieve this purpose is to calculate the spray flow rate correction amount at the load using a load-spray flow rate conversion calculation correction circuit that inputs the output of the load amount detector and the superheated steam temperature signal, and then converts the load-spray flow rate. The configuration is such that the characteristics are modified by changing the parameters of the arithmetic circuit, and the spray flow rate is adjusted accordingly. The corrected spray flow rate signal from the load-spray flow rate conversion calculation circuit is given to the spray flow rate adjustment calculation circuit, so the optimum spray flow rate is determined for changes in load, and this flow rate value is used to supply cooling water to the input side of the superheater. supply. As a result, the superheated steam temperature can be maintained at approximately a predetermined value even when the load changes.

以下本発明の一実施例を図面を参照しながら説
明する。第1図の回路と同一機能をもつ回路に同
一番号を付し、この説明を省略して説明する。第
2図において第1図の回路構成と相違する箇所は
負荷―スプレイ流量変換演算回路17の変換特性
が自由に変更できるような負荷―スプレイ流量変
換演算回路22を用い、そして負荷―スプレイ流
量変換演算補正回路23を付加するところであ
る。前記負荷―スプレイ流量変換演算補正回路2
3は、負荷量検出器16の出力および蒸気温度検
出器14の出力を入力し、これより負荷―スプレ
イ流量変換補正演算式をとき△Fなる負荷―スプ
レイ流量補正信号を出力する。前記負荷―スプレ
イ流量変換演算回路22は、負荷量検出器16の
出力および負荷―スプレイ流量変換演算補正回路
の出力△Fを入力し、かつ初期時に第3図の
L1,F1,L2,F2,L3,F3,L4,F4およびL5,F5
の点を通る負荷―スプレイ流量変換特性が予じめ
設定され、負荷量検出器16の出力により負荷―
スプレイ流量変換特性から求まるスプレイ流量値
に負荷―スプレイ流量変換演算補正回路23の出
力△Fを加えた値がそのときの負荷におけるスプ
レイ流量となるように特性が修正されるようにな
つている。例えば、負荷Lが負荷L2と負荷L3
の間でしかも負荷L2の近くで、そして△Fが負
荷―スプレイ流量変換演算補正回路23から出力
された場合について第4図、第5図を参照しなが
ら説明する。負荷安定時において現状負荷Lが両
側のブレーク点L2,F2,L3,F3のどちらかに近
いかを判別する。現状負荷Lが負荷L2に近いと
仮定するとL3・F3とL・F+△Fを結ぶ直線が
負荷L2を通る点L2,F2を求め、そしてL2・F2
代りにL2・F2′の点が変換関数特性に含め、L1
F1,L2・F2,L3,F3′,L4・F4,L5・F5を負荷―
スプレイ流量変換関数特性に修正する。また現状
負荷LがL3に近いと仮定するとL2・F2,L・F
+△Fを結ぶ直線がL3を通る点L3・F3′を求め、
そしてL3・F3の代りにL3・F3′の点が変換関数特
性に含めL1・F1,L2・F2,L3・F3′,L4・F4
L5・F5を負荷―スプレイ流量変換関数となるよ
うに変換関数特性に修正する。このような修正動
作が常に現状負荷Lの位置するブレーク点間にお
いて行なわれ負荷量に対応した修正されたスプレ
イ流量信号を出力する。このような修正動作によ
り常に最適な変換関数特性が負荷―スプレイ流量
変換演算回路22にセツト可能となる。
An embodiment of the present invention will be described below with reference to the drawings. Circuits having the same functions as those of the circuit shown in FIG. 1 are given the same numbers, and the description thereof will be omitted. The difference in the circuit configuration in FIG. 2 from the circuit configuration in FIG. 1 is that a load-spray flow rate conversion calculation circuit 22 is used in which the conversion characteristics of the load-spray flow rate conversion calculation circuit 17 can be freely changed, and a load-spray flow rate conversion calculation circuit 22 is used. This is where an arithmetic correction circuit 23 is added. The load-spray flow rate conversion calculation correction circuit 2
3 inputs the output of the load amount detector 16 and the output of the steam temperature detector 14, and outputs a load-spray flow rate correction signal of ΔF when the load-spray flow rate conversion correction calculation formula is applied. The load-spray flow rate conversion calculation circuit 22 inputs the output of the load amount detector 16 and the output △F of the load-spray flow rate conversion calculation correction circuit, and initially operates as shown in FIG.
L 1 , F 1 , L 2 , F 2 , L 3 , F 3 , L 4 , F 4 and L 5 , F 5
The load passing through the point - spray flow rate conversion characteristics is set in advance, and the load - is determined by the output of the load amount detector 16.
The characteristics are modified so that the value obtained by adding the output ΔF of the load-spray flow rate conversion arithmetic correction circuit 23 to the spray flow rate value determined from the spray flow rate conversion characteristics becomes the spray flow rate under the load at that time. For example, FIGS. 4 and 5 show the case where the load L is between loads L 2 and L 3 and near the load L 2 , and ΔF is output from the load-spray flow rate conversion calculation correction circuit 23. This will be explained with reference to. When the load is stable, it is determined whether the current load L is closer to either of the break points L 2 , F 2 , L 3 , or F 3 on both sides. Assuming that the current load L is close to the load L 2 , find the points L 2 and F 2 where the straight line connecting L 3 · F 3 and L · F + △F passes through the load L 2 , and instead of L 2 · F 2 The point L 2・F 2 ′ is included in the conversion function characteristics, and L 1
Load F 1 , L 2・F 2 , L 3 , F 3 ′, L 4・F 4 , L 5・F 5 -
Modify the spray flow rate conversion function characteristics. Also, assuming that the current load L is close to L 3 , L 2・F 2 , L・F
Find the point L 3 · F 3 ′ where the straight line connecting +△F passes through L 3 ,
Then, instead of L 3 · F 3 , the point L 3 · F 3 ' is included in the conversion function characteristics, L 1 · F 1 , L 2 · F 2 , L 3 · F 3 ', L 4 · F 4 ,
Correct the conversion function characteristics so that L 5 and F 5 become the load-spray flow rate conversion function. Such a correction operation is always performed between the break points where the current load L is located, and a corrected spray flow rate signal corresponding to the load amount is output. Through such correction operations, it is possible to always set optimum conversion function characteristics in the load-spray flow rate conversion calculation circuit 22.

次に負荷―スプレイ流量変換演算回路22およ
び負荷―スプレイ流量変換演算補正回路23の作
用効果について説明する。
Next, the effects of the load-spray flow rate conversion calculation circuit 22 and the load-spray flow rate conversion calculation correction circuit 23 will be explained.

負荷―スプレイ流量変換演算回路22に初期条
件として第3図に示すごときの負荷―スプレイ流
量変換関数がセツトされる。負荷―スプレイ流量
変換演算補正回路23に補正演算式がセツトされ
る。
A load-spray flow rate conversion function as shown in FIG. 3 is set as an initial condition in the load-spray flow rate conversion calculation circuit 22. A correction calculation formula is set in the load-spray flow rate conversion calculation correction circuit 23.

ところでプラントが安定している条件として次
の3点を取る。
By the way, the following three points are taken as conditions for the plant to be stable.

(1)|負荷変化率|≦所定値 (2)|蒸気温度偏差|≦所定値 (3)(1)、(2)の条件が所定の時間以上継続する。 (1)|Load change rate|≦predetermined value (2)|Steam temperature deviation|≦predetermined value (3) Conditions (1) and (2) continue for a predetermined period of time or longer.

すなわち上記3点の条件が満足されていれば、
第3図の負荷―スプレイ流量変換演算関数特性を
もつ負荷―スプレイ流量変換演算回路22の出力
に温度調節計15の出力を加算した値はプラント
定常状態のこの負荷に対するスプレイ流量を最適
と示される。しかしながらボイラ試運転により求
めた負荷―スプレイ流量変換演算関数特性と実際
の負荷―スプレイ流量変換演算関数特性の違い、
それにボイラの経年変化、効率変化、外乱等によ
り影響を受けて負荷―スプレイ流量変換演算関数
特性に変化が表われるので、負荷―スプレイ流量
変換演算回路22に初期値として第3図に示すご
とき設定された負荷―スプレイ流量変換演算関数
特性が必ずしも最適なものとは限らない。負荷―
スプレイ流量変換演算関数特性とプラントの負荷
―スプレイ流量特性とに差異があれば蒸気温度検
出器14に表われる。負荷―スプレイ流量変換演
算補正回路23から負荷―スプレイ流量補正信号
△Fが出力され、負荷―スプレイ流量変換演算回
路22に入力される。現在の負荷Lが負荷L2
負荷L3との間でかつ負荷L2よりとする。この負
荷―スプレイ流量変換演算回路22では、初期の
負荷―スプレイ流量変換演算関数特性で定まるス
プレイ量をF、補正されたスプレイ流量F′とす
るとF′=F+△Fの信号を加減算回路18に出
力する。このとき負荷―スプレイ流量変換演算関
数特性が次のようにして修正される。すなわち現
状の負荷Lが両側のブレーク点L2,F2,L3・F3
のどちらに近いかを判別する。第5図に示すごと
き負荷Lが負荷L2に近い場合にはL3・F3とL、
F+△Fを結ぶ直線が負荷L2を通る点L2・F2′を
求める。初期に設定したブレーク点L2・F2
L2・F2′としてL1・F0,L2・F2′,L3・F3,L4
F4,L5・F5が負荷―スプレイ流量変換関数特性
となるように修正される。現状の負荷Lが両側の
ブレーク点L2・F2,L3・F3のうちブレーク点
L3・F3よりの場合には、L2・F2とL、F+△F
を結びL3に交わるL3・F3′を求める。初期に設定
したブレーク点L3・F3をL3・F3′としてL1・F0
L2・F2、L3・F3′,L4・F4,L5・F5を結ぶ負荷―
スプレイ流量変換関数特性となるように初期の負
荷―スプレイ流量変換関数特性が修正される。こ
のような補正をくり返えし行なつて補正量の小さ
い負荷―スプレイ流量変換関数特性のものに負荷
―スプレイ流量変換演算回路の特性が修正され、
そして負荷―スプレイ流量変換演算回路はプラン
トの実際の負荷―スプレイ流量変換関数特性と一
致して最適な関数特性を得る。
In other words, if the above three conditions are satisfied,
The value obtained by adding the output of the temperature controller 15 to the output of the load-spray flow rate conversion calculation circuit 22 having the characteristics of the load-spray flow rate conversion calculation function shown in FIG. 3 is shown to be the optimum spray flow rate for this load in the steady state of the plant. . However, there are differences between the load-spray flow rate conversion calculation function characteristics obtained through boiler test runs and the actual load-spray flow rate conversion calculation function characteristics.
In addition, changes appear in the characteristics of the load-spray flow rate conversion calculation function due to changes in the boiler over time, efficiency changes, disturbances, etc. Therefore, the load-spray flow rate conversion calculation circuit 22 is set as an initial value as shown in Figure 3. The calculated load-spray flow rate conversion calculation function characteristics are not necessarily optimal. load-
If there is a difference between the spray flow rate conversion calculation function characteristic and the plant load-spray flow rate characteristic, it will appear on the steam temperature detector 14. A load-spray flow rate correction signal ΔF is outputted from the load-spray flow rate conversion calculation circuit 23 and inputted to the load-spray flow rate conversion calculation circuit 22 . Assume that the current load L is between load L 2 and load L 3 and is greater than load L 2 . In this load-spray flow rate conversion calculation circuit 22, if the spray amount determined by the initial load-spray flow rate conversion calculation function characteristics is F and the corrected spray flow rate F', a signal of F'=F+△F is sent to the addition/subtraction circuit 18. Output. At this time, the load-spray flow rate conversion calculation function characteristics are modified as follows. In other words, the current load L is the break point on both sides L 2 , F 2 , L 3・F 3
Determine which one is closer to. If the load L is close to the load L2 as shown in Fig. 5, L3F3 and L,
Find the point L 2 ·F 2 ' where the straight line connecting F+△F passes through the load L 2 . The initially set break points L 2 and F 2
As L 2・F 2 ′, L 1・F 0 , L 2・F 2 ′, L 3・F 3 , L 4
F 4 , L 5 and F 5 are modified so that they become load-spray flow rate conversion function characteristics. The current load L is the break point of the break points L 2・F 2 and L 3・F 3 on both sides.
In the case of L 3・F 3 , L 2・F 2 and L, F+△F
Find L 3・F 3 ′ that intersects L 3 by connecting them. Assuming the initially set break point L 3 F 3 as L 3 F 3 ′, L 1 F 0 ,
Load connecting L 2・F 2 , L 3・F 3 ′, L 4・F 4 , L 5・F 5 -
The initial load-to-spray flow rate conversion function characteristic is modified to be the spray flow rate conversion function characteristic. By repeating such corrections, the characteristics of the load-spray flow rate conversion calculation circuit are corrected to those of the load-spray flow rate conversion function characteristics with a small correction amount.
Then, the load-spray flow rate conversion calculation circuit obtains the optimum function characteristics by matching the actual load-spray flow rate conversion function characteristics of the plant.

縦軸に負荷、スプレイ流量、蒸気温度をとり、
横軸に時間をとる第6図を参照して従来のものと
本発明とを比較しながら説明する。第6図Aは負
荷を安定状態から上昇して他の安定領域に移向す
る様子を表わし、第6図Bは負荷の変化にともな
いスプレイ流量の変るようすを示し、実線をもち
いて本発明を点線をもちいて従来装置の特性を示
す。そして第6図Cは負荷の変化にともない蒸気
温度の変化するようすが示され、実線で本願発明
のもの、点線で従来のものを表わし、負荷が変化
して蒸気温度が変化しようとしても、この蒸気温
度の応答に比べ先行する負荷量の変化量でスプレ
イ流量を制御し、かつプラントの実際の負荷―ス
プレイ流量変換演算関数特性が負荷−スプレイ流
量変換演算回路にセツトされているので、蒸気温
度の変化としては表われるようなことをなくし得
た。
The vertical axis shows load, spray flow rate, and steam temperature.
The conventional method and the present invention will be compared and explained with reference to FIG. 6, in which time is plotted on the horizontal axis. FIG. 6A shows how the load increases from a stable state and moves to another stable region, and FIG. 6B shows how the spray flow rate changes as the load changes. Characteristics of the conventional device are shown using dotted lines. FIG. 6C shows how the steam temperature changes as the load changes, with the solid line representing the invention of the present invention and the dotted line representing the conventional system. The spray flow rate is controlled by the amount of change in load that precedes the steam temperature response, and the actual load-spray flow rate conversion calculation function characteristics of the plant are set in the load-spray flow rate conversion calculation circuit, so the steam temperature We were able to eliminate what would appear as a change in

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はボイラのスプレイ流量制御装置をブロ
ツク構成にして示す図、第2図は本発明の要部を
ブロツク構成にして示す図、第3図は従来の負荷
―スプレイ流量変換演算回路の特性を示す図、第
4図、第5図は本願における負荷―スプレイ流量
変換演算回路の特性の修正されるようすを説明す
るための図、第6図は本願発明と従来のものとの
作用効果を説明するための図である。 22…負荷―スプレイ流量変換演算回路、23
…負荷―スプレイ流量変換演算補正回路。
Fig. 1 shows a boiler spray flow rate control device in a block configuration, Fig. 2 shows the main parts of the present invention in a block configuration, and Fig. 3 shows the characteristics of a conventional load-spray flow rate conversion calculation circuit. Figures 4 and 5 are diagrams for explaining how the characteristics of the load-spray flow rate conversion calculation circuit in the present application are modified, and Figure 6 is a diagram showing the effects of the present invention and the conventional one. It is a figure for explaining. 22...Load-spray flow rate conversion calculation circuit, 23
...Load-spray flow rate conversion calculation correction circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 過熱部の負荷量に相応してこの過熱部以前の
蒸気に注入する冷却水のスプレイ量を調節するも
のにおいて、負荷に入力する蒸気温度を検出する
温度検出器と、負荷量を検出する負荷検出器と、
温度検出信号および負荷検出信号から負荷に対応
したスプレイ量補正信号を出力する負荷―スプレ
イ流量変換演算補正回路と、予じめ設定された負
荷―スプレイ流量特性を前記スプレイ量補正信号
により修正し、負荷に対する修正負荷―スプレイ
流量特性で定まるスプレイ流量信号を出力する負
荷―スプレイ流量変換演算回路と、蒸気温度検出
器の温度を目標温度に一致させるための調節量を
演算する蒸気温度調節演算回路と、負荷―スプレ
イ流量変換演算回路の出力および蒸気温度調節演
算回路の出力を加減算してスプレイ流量の目標値
とするスプレイ流量調節演算回路とを備えてなる
ことを特徴とするボイラのスプレイ流量制御装
置。
1 In a device that adjusts the spray amount of cooling water injected into the steam before the superheating section in accordance with the load amount of the superheating section, there is a temperature detector that detects the steam temperature input to the load, and a load that detects the load amount. a detector;
a load-spray flow rate conversion calculation correction circuit that outputs a spray amount correction signal corresponding to the load from the temperature detection signal and the load detection signal; and a load-spray flow rate characteristic that is set in advance is corrected by the spray amount correction signal; A correction load for the load - a load that outputs a spray flow rate signal determined by the spray flow rate characteristics - a spray flow rate conversion calculation circuit, and a steam temperature adjustment calculation circuit that calculates the adjustment amount to make the temperature of the steam temperature detector match the target temperature. A spray flow rate control device for a boiler, comprising: a spray flow rate adjustment calculation circuit that adds and subtracts the output of the load-spray flow rate conversion calculation circuit and the output of the steam temperature adjustment calculation circuit to obtain a target value of the spray flow rate. .
JP4027879A 1979-04-05 1979-04-05 Boiler spray flow controller Granted JPS55134208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4027879A JPS55134208A (en) 1979-04-05 1979-04-05 Boiler spray flow controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4027879A JPS55134208A (en) 1979-04-05 1979-04-05 Boiler spray flow controller

Publications (2)

Publication Number Publication Date
JPS55134208A JPS55134208A (en) 1980-10-18
JPS6235001B2 true JPS6235001B2 (en) 1987-07-30

Family

ID=12576146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4027879A Granted JPS55134208A (en) 1979-04-05 1979-04-05 Boiler spray flow controller

Country Status (1)

Country Link
JP (1) JPS55134208A (en)

Also Published As

Publication number Publication date
JPS55134208A (en) 1980-10-18

Similar Documents

Publication Publication Date Title
KR100511670B1 (en) Control Device, Temperature Controller, and Heat Treatment Device
US7053341B2 (en) Method and apparatus for drum level control for drum-type boilers
JPH0665921B2 (en) Boiler start control device
JPS6235001B2 (en)
JP2001295607A (en) Method and device for controlling load of thermal power plant
JP2001082701A (en) Boiler/turbine generator control system
JPS621162B2 (en)
JP2000248904A (en) Output control method for thermal power plant
JP3890355B2 (en) Boiler control device
SU1451443A1 (en) Automatic system for regulating steam parameters after power-generating boiler
JPH0239682B2 (en)
JP3374745B2 (en) Process control device and control method thereof
JPH1073205A (en) Controller for once-through boiler
JPH0335922Y2 (en)
JPH11148604A (en) Controller for boiler vapor temperature
JPS5950002B2 (en) Steam temperature control device
JPH0372884B2 (en)
JPH0461241B2 (en)
JPH07224610A (en) Load control device for steam turbine
JPH01127805A (en) Controller for boiller and turbine plant
JPH07110108A (en) Control of main-steam temperature
JPS5985404A (en) Fuel flow-rate controller for combined type power generation apparatus
JPH1038213A (en) Two stage spray type main vapor temperature controller
JPH05322107A (en) Method for controlling temperature of main steam from boiler
JPH11108306A (en) Spray controller for superheater