JPS6234948A - Phenolic resin composition - Google Patents

Phenolic resin composition

Info

Publication number
JPS6234948A
JPS6234948A JP17321385A JP17321385A JPS6234948A JP S6234948 A JPS6234948 A JP S6234948A JP 17321385 A JP17321385 A JP 17321385A JP 17321385 A JP17321385 A JP 17321385A JP S6234948 A JPS6234948 A JP S6234948A
Authority
JP
Japan
Prior art keywords
group
phenolic resin
ratio
methylol
dimethylene ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17321385A
Other languages
Japanese (ja)
Other versions
JPH0574619B2 (en
Inventor
Keiji Oi
大井 慶二
Masae Yamada
山田 正栄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP17321385A priority Critical patent/JPS6234948A/en
Publication of JPS6234948A publication Critical patent/JPS6234948A/en
Publication of JPH0574619B2 publication Critical patent/JPH0574619B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

PURPOSE:A phenolic resin composition having high heat resistance and improved moldability, obtained by blending two solid resol phenolic resins having a free phenol amount of <= a specific value in a specific ratio and mixing the blend with glass fibers. CONSTITUTION:(A) 100pts.wt. phenolic resin of solid resol phenolic resin having <=7wt% free phenol amount obtained by blending (i) a phenolic resin having 800-1,200 number-average molecular weight (Mn) after removal of free phenol, comprising a phenol nucleus bonded functional group of 20-50mol% methylene group, 10-20mol% methylol group and 40-60mol% dimethylene ether group with (ii) a phenolic resin having 600-1,000Mn, comprising the functional gruop of 30-50mol% methylene group, 30-70mol% methylol group and 0-20mol% dimethylene ether group in a ratio of 3:7-7:3 is blended with (B) 100-250pts.wt. glass fibers.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高耐熱性を有し、かつ成形性に優れたフェノー
ル樹脂組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a phenolic resin composition that has high heat resistance and excellent moldability.

〔従来技術〕[Prior art]

自動車、電気、機械の構造部品或いは、摺動部品、稼動
部品、圧締部品等の機械部品には、従来金属が多く使用
されてきたが、軽蓋化、生産性の向上等の要求に伴ない
加工性、外観の優れた樹脂への代替が検討されている。
Traditionally, metal has been widely used for structural parts of automobiles, electrical equipment, and machinery, as well as mechanical parts such as sliding parts, moving parts, and clamping parts, but with the demand for lighter lids and improved productivity, etc. Alternatives to resins with superior processability and appearance are being considered.

これらの部品には耐熱性、強度、寸法安定性、耐薬品性
咎が要求されるため、熱硬化性樹脂が適している。成形
性に優れ、比較的耐熱性にも優れた熱硬化性樹脂として
、フェノール樹脂等が挙げられるが、従来のフェノール
樹脂では、熱変形温度(ASTh’l D 648 )
が200〜230℃が限界であ)、より耐熱性の要求さ
れる自動車のエンジン・ブレーキ・トランスミッシ冒ン
等の部品の樹脂化は遅れている。
These parts require heat resistance, strength, dimensional stability, and chemical resistance, so thermosetting resins are suitable. Examples of thermosetting resins that have excellent moldability and relatively excellent heat resistance include phenolic resins, but conventional phenolic resins have a low heat distortion temperature (ASTh'l D 648).
(The limit is 200 to 230°C), and the use of resin for parts such as automobile engines, brakes, and transmissions, which require higher heat resistance, has been delayed.

また、より耐熱性の優れた熱硬化性樹脂としてはダリイ
ミド樹脂等があるが、lリイミド樹脂は成形加工が難し
いうえに高価である丸め、樹脂化のメリットが少なく、
実用的でない。
In addition, there are thermosetting resins with better heat resistance such as dariimide resin, but dariimide resin is difficult to mold and expensive, and there are few advantages in rolling it and making it into a resin.
Not practical.

〔発明の目的〕[Purpose of the invention]

本発明は従来の熱硬化性樹脂では得られなかった高耐熱
性を有し、かつ成形性に優れた樹脂を得んとして研究し
た結果、樹脂系にレゾール型フェノール樹脂を用い充填
剤にガラス繊維を用いることによシ、耐熱性が向上する
との知見を得、更にこの知見に基づき種々研究を進めて
本発明を完成するに至ったものである。
As a result of research into a resin with high heat resistance and excellent moldability that could not be obtained with conventional thermosetting resins, the present invention uses resol-type phenolic resin as the resin system and glass fiber as the filler. The inventors obtained the knowledge that heat resistance was improved by using the above-described method, and based on this knowledge, they conducted various studies and completed the present invention.

その目的とするところは、高耐熱性を有し、かつ成形性
に優れたフェノール樹脂組成物を提供するにある。
The purpose is to provide a phenolic resin composition that has high heat resistance and excellent moldability.

C発明の構成〕 本発明はフリーフェノール量が7重量%以下、フリーフ
ェノール除外数平均分子量(以下unと略す)が800
〜1200、フェノール核結合官能基がメチレン基・メ
チロール基およびジメチレンエーテル基より構成され、
各官能基の比率がそれぞれ20〜5〇七ルチ・10〜2
〇七ルチおよび40〜6〇七ルチである固形レゾール型
フェノール樹脂と、フリーフェノール量が7重量−以下
、Mnが600〜1000、フェノール核結合官能基が
メチレン基・メチロール基およびジメチレンエーテル基
より構成され、各官能基の比率がそれぞれ30〜5〇七
ルチ・30〜7〇七ルチおよびθ〜20モルチである固
形レゾール型フェノール樹脂との比率が、3ニア〜7:
3であるフェノール樹脂100重量部と、ガラス繊維1
00〜250重量部とからなることを特徴とするフェノ
ール樹脂組成物である。尚各官能基の比率は、樹脂をア
セチル化したのち、NMR測定により求めた。
C Structure of the Invention] The present invention has a free phenol content of 7% by weight or less and a free phenol excluded number average molecular weight (hereinafter abbreviated as un) of 800.
~1200, the phenol core-binding functional group is composed of a methylene group, a methylol group, and a dimethylene ether group,
The ratio of each functional group is 20 to 507% and 10 to 2, respectively.
A solid resol type phenolic resin having 07 ruti and 40 to 607 ruti, the amount of free phenol is 7 weight or less, Mn is 600 to 1000, and the phenol core binding functional group is a methylene group, a methylol group, and a dimethylene ether group. The ratio of each functional group to the solid resol type phenolic resin is 30 to 507%, 30 to 707%, and θ to 20%, respectively, from 3 to 7:
3, 100 parts by weight of phenolic resin, and 1 part of glass fiber.
00 to 250 parts by weight. The ratio of each functional group was determined by NMR measurement after acetylating the resin.

本発明に使用されるフェノール樹脂はいずれも固形レゾ
ール型フェノール樹脂である。液状タイプのもので成形
材料に適用するためには湿式混線工程を追加する必要が
あシ、通常の乾式混線に比べて工程が煩雑となるだけで
なくコスト高となシ、工業的に不利となる。フェノール
樹脂は大別すると、ヘキサメチレンテトラミンを硬化剤
とするノボラック樹脂と、メチロール基を硬化性官能基
とする自硬化性のレゾール樹脂に分けることができるが
、ノボラック樹脂ではその反応機構上、架橋密度が充分
に上がらず、高耐熱性は得られない。
All of the phenolic resins used in the present invention are solid resol type phenolic resins. It is a liquid type, and in order to be applied to molding materials, it is necessary to add a wet cross-ferring process, which is not only more complicated than the normal dry cross-ferring process, but also higher in cost, which is industrially disadvantageous. Become. Phenol resins can be roughly divided into novolac resins that use hexamethylenetetramine as a curing agent, and self-curing resol resins that use methylol groups as curable functional groups.However, due to the reaction mechanism of novolak resins, crosslinking is not possible. Density does not increase sufficiently and high heat resistance cannot be obtained.

また、本発明に使用される固形レゾール型フェノール樹
脂は、いずれも、フリーフェノール量が7重量%以下の
ものである。フリーフェノール量が7重量%以上のもの
は、フェノール樹脂成形材料に適用した場合、比較的低
温で反応が進行し、射出成形時のシリンダー内での熱安
定性が悪い、成形材料が保管中に70−が変わる、或い
は縮合水によシ成形時に型ぐもシを起こすなどの問題が
生じる。
Furthermore, all of the solid resol type phenolic resins used in the present invention have a free phenol content of 7% by weight or less. If the amount of free phenol is 7% by weight or more, when applied to a phenolic resin molding material, the reaction will proceed at a relatively low temperature, resulting in poor thermal stability in the cylinder during injection molding, and when the molding material is stored. Problems arise such as changes in 70- or mold smearing during molding due to condensed water.

また、固形レゾール型フェノール樹脂の組成は、VIn
が800〜1200.フェノール核結合官能基がメチレ
ン基・メチロール基およびジメチレンエーテル基よ#)
I#成され、各官能基の比率がそれぞれ20〜5〇七ル
チ・10〜2〇七ルチおよび40〜6〇七ルチである固
形レゾール型フェノール樹脂(以下ジメチレンエーテル
型レゾールと呼ぶ)と、Unが600〜1000.フェ
ノール核結合官能基がメチレン基・メチロール基および
ジメチレンエーテル基より構成され、各官能基の比率が
それぞれ30〜5〇七ルチ・30〜7〇七ルチおよびθ
〜20モルチである固形レゾール型フェノール樹脂(以
下メチ關−ル朧レゾールと呼ぶ)との比率が3ニア〜7
:3のものである。ジメチレンエーテル型レゾールは、
活性化エネルギーが約30kcat/ motと大きく
、比較的低温では反応が進行しにくく、また高温域では
逆に反応が進行しやすいため、射出成形に適するのに対
し、メチロール型レゾールはメチロール基の活性化エネ
ルギーが約10kcat/motと小さく、比較的低温
で反応が進行するため、射出成形時のシリンダー内での
熱安定性が悪い。また、ジメチレンエーテル型レゾール
の硬化機構は、ラジカル反応経由で進行するが、未反応
、或いは再結合によシ、ジメチレンエーテル基が、相肖
量残存しておシ、ジメチレンエーテル型レゾールではフ
ェノール核間の距離が比較的長いため、メチロール型レ
ゾールよシもI橋密度が上がりに<<、耐熱性が劣る。
In addition, the composition of the solid resol type phenolic resin is VIn
is 800~1200. The phenol core-binding functional groups are methylene, methylol, and dimethylene ether groups.
A solid resol-type phenolic resin (hereinafter referred to as dimethylene ether-type resol) made of I# and having a ratio of each functional group of 20 to 507 ruti, 10 to 207 ruti, and 40 to 607 ruti, respectively. , Un is 600-1000. The phenol core-binding functional group is composed of a methylene group, a methylol group, and a dimethylene ether group, and the ratio of each functional group is 30 to 507 ruti, 30 to 707 ruti, and θ, respectively.
The ratio of solid resol type phenolic resin (hereinafter referred to as methane resol) which is ~20 mole is 3 to 7.
:3. Dimethylene ether type resol is
The activation energy is as large as approximately 30 kcat/mot, and the reaction is difficult to proceed at relatively low temperatures, while the reaction tends to proceed at high temperatures, making it suitable for injection molding, whereas methylol-type resols have a high activation energy of the methylol group. The reaction energy is as small as about 10 kcat/mot, and the reaction proceeds at a relatively low temperature, resulting in poor thermal stability within the cylinder during injection molding. In addition, the curing mechanism of dimethylene ether type resols proceeds via a radical reaction, but a proportionate amount of dimethylene ether groups remain due to unreaction or recombination. Since the distance between the phenol nuclei is relatively long, the I-bridge density also increases in methylol-type resols, resulting in poor heat resistance.

従って高耐熱性を有しかつ成形性にも優れた樹脂を得る
には、ジメチレンエーテル型レゾールと、メチロール型
レゾールの配合比率が3ニア〜7:3であることが望ま
しい。3ニアよりもジメチレンエーテル型レゾールの比
率が少ない場合には射出成形が困難となシ、逆に7;3
よシもメチロール型レゾールの比率が少ない場合には、
耐熱性が不充分となる。
Therefore, in order to obtain a resin having high heat resistance and excellent moldability, it is desirable that the blending ratio of the dimethylene ether type resol and the methylol type resol be from 3 to 7:3. If the ratio of dimethylene ether type resol is lower than that of 7;3, injection molding becomes difficult;
However, if the proportion of methylol-type resol is small,
Heat resistance becomes insufficient.

また、本発明には充填材としてガラス繊維が使用される
。ここでいうガラス繊維とは、繊維が8〜15μ、繊細
長が1〜6IIII+のチョップスストランドタイプの
ものである。耐熱性には充填材の影曽も大きく、木粉の
ような有機物を基材とした成形材料では、熱変形温度で
160〜190℃と耐熱性が劣る。ガラス繊維を充填剤
としたフェノール樹脂は、熱時の歪みに対する強度が強
く熱膨張係数が小さいため、耐熱性、特に耐熱衝撃性に
優れている。また強度、寸法安定性、耐薬品性にも優れ
るという利点を有している。本発明において使用される
ガラス繊維はフェノール樹脂100重量部に対して10
0〜250重量部の範囲であり、100重量部以下では
耐熱性、強度、寸法安定性等の特性面で劣り、また、2
50重量部以上では成形性の点で問題となる。
Moreover, glass fiber is used as a filler in the present invention. The glass fiber mentioned here is a chopped strand type fiber having a fiber length of 8 to 15μ and a fine length of 1 to 6III+. The heat resistance is greatly affected by the filler, and molding materials based on organic substances such as wood flour have poor heat resistance, with a heat distortion temperature of 160 to 190°C. Phenol resins containing glass fiber as a filler have high strength against distortion during heating and a small coefficient of thermal expansion, so they have excellent heat resistance, especially thermal shock resistance. It also has the advantage of being excellent in strength, dimensional stability, and chemical resistance. The glass fiber used in the present invention is 10 parts by weight per 100 parts by weight of the phenolic resin.
The range is from 0 to 250 parts by weight, and if it is less than 100 parts by weight, properties such as heat resistance, strength, and dimensional stability will be poor;
If the amount exceeds 50 parts by weight, problems arise in terms of moldability.

一般には、これらの組成物に対して必要に応じて他の無
機充填材、硬化助剤、離型剤、顔料等を加えて加熱混線
により成形材料を得る。
Generally, other inorganic fillers, curing aids, mold release agents, pigments, etc. are added to these compositions as necessary, and a molding material is obtained by heating and mixing.

〔発明の効果〕〔Effect of the invention〕

本発明に従うと極めて高い耐熱性、耐熱衝撃性を得るこ
とができるうえに、射出成形も可能という成形性に優れ
た成形材料を得ることができるため、自動車、電気、機
械の構造部品或いは各種機械部品、特に自動車のエンジ
ン・ブレーキ等のよシ耐熱性が要求される部品に好適で
ある。
According to the present invention, it is possible to obtain extremely high heat resistance and thermal shock resistance, and also to obtain a molding material with excellent moldability that can be injection molded. It is suitable for parts, especially parts that require high heat resistance such as automobile engines and brakes.

その他耐熱性の要求されるコンミテータ等の電装部品や
高圧部品にも適している。
It is also suitable for other electrical components such as commutators and high voltage components that require heat resistance.

実施例1 フリーフェノール4%、Mn950、メチレン基・メチ
ロール基およびジメチレンエーテル基の比率が、それぞ
れ40モルチ・12モルチ・48モルチであるジメチレ
ンエーテル型レゾール1とフリー7エ) −ル6.1%
、!In1000、メチレン・メチロールおよびジメチ
レンエーテル基の比率がそれぞれ50モルチ・30モル
チ・20モルチであるメチロール型レゾール1との比率
が1;2である、フェノール樹脂に対して表1に示すよ
うな組成でガラス繊維他を混ぜた後、熱ロールで混練し
成形材料を得た。この成形材料を小型成形機を用い成形
性評価を行ない、また半田槽を用い耐熱衝撃性の試験を
行なった。これらの結果を一般特性と共に表−1に示し
た(実施例2・3および比較例1〜4も同様に表−1に
示した)。
Example 1 Dimethylene ether type resol 1 and free 7-el 6. free phenol 4%, Mn 950, and the ratios of methylene group/methylol group and dimethylene ether group are 40 molti, 12 molti, and 48 molti, respectively. 1%
,! In1000, a composition as shown in Table 1 for a phenolic resin in which the ratio of methylene/methylol and dimethylene ether groups is 50 molti, 30 molti, and 20 molti, respectively, and the ratio of methylol type resol 1 is 1:2. After mixing glass fiber and other ingredients, the mixture was kneaded with hot rolls to obtain a molding material. The moldability of this molding material was evaluated using a small molding machine, and the thermal shock resistance was tested using a solder bath. These results are shown in Table 1 along with general characteristics (Examples 2 and 3 and Comparative Examples 1 to 4 are also shown in Table 1).

実施例2 フリーフェノール3.7%、Mn1O00、メチレン基
・メチロール基およびジメチレンエーテル基の比率が、
それぞれ42モルチ・17モルチ・41モルチであるジ
メチレンエーテル型レゾール2とフリーフェノール6.
8%、un800、メチレン基・メチロール基およびジ
メチレンエーテル基の比率が、それぞれ42モルチ・3
8モルチ・20モルチであるメチロール型レゾール2と
の比率が、1;1であるフェノール樹脂にガラス繊維他
を配合し、実施例1と同様に材料化、試験を行なった。
Example 2 Free phenol 3.7%, Mn 1O00, ratio of methylene group/methylol group and dimethylene ether group:
Dimethylene ether type resol 2 and free phenol 6. 42 molti, 17 molti, and 41 molti, respectively.
8%, un800, the ratio of methylene group/methylol group and dimethylene ether group is 42 mol/3, respectively.
A phenol resin having a ratio of 1:1 to methylol-type resol 2 having a ratio of 8 molty to 20 molty was blended with glass fiber and the like, and materials were prepared and tested in the same manner as in Example 1.

実施例3 フリーフェノール5%、Mn850、メチレン基・メチ
ロール基およびジメチレンエーテル基の比率が、それぞ
れ47%・13%・40チのジメチレンエーテル型レゾ
ール3とフリーフェノール6.2%、un700、メチ
レン基・メチロール基およびジメチレンエーテル基の比
率がそれぞれ34チ・63−・3チのメチロール型レゾ
ール3との比率が、2:1であるフェノール樹脂にガラ
ス繊維他を配合し、実施例1と同様に材料化、試験を行
なった0 比較例1 ジメチレンエーテル型レゾール1のみを樹脂成分として
ガラス繊維他を配合して実施例1と同様に材料化、試験
を行なった。
Example 3 Dimethylene ether type resol 3 with free phenol 5%, Mn 850, methylene group/methylol group and dimethylene ether group ratios of 47%, 13% and 40%, respectively, and free phenol 6.2%, un700, Example 1: A phenol resin having a ratio of 2:1 to a methylol type resol 3 having methylene groups, methylol groups, and dimethylene ether groups of 34, 63, and 3, respectively, was blended with glass fiber and the like. 0 Comparative Example 1 A material was prepared and tested in the same manner as in Example 1, using only dimethylene ether type resol 1 as a resin component and blending glass fiber and others.

比較例2 メチロール型レゾール3のみを樹脂成分として、ガラス
繊維梱を配合して実施例1と同様に材料化、試験を行な
った。
Comparative Example 2 A material was prepared and tested in the same manner as in Example 1, using only the methylol type resol 3 as the resin component and adding glass fiber bales.

比較例3 フリーフェノール6、4 ’16. NYn720、O
/P比0.7のノボラック型フェノール樹脂を樹脂成分
として、ヘキサメチレンテトラミン、ガラス繊維梱を配
合して実施例1と同様に材料化、試験を行なった。
Comparative Example 3 Free Phenol 6,4'16. NYn720, O
A novolak type phenol resin with a /P ratio of 0.7 was used as the resin component, hexamethylenetetramine and glass fiber bales were mixed, and the material was prepared and tested in the same manner as in Example 1.

比較例4 ジメチレンエーテル型レゾール2とメチロール型レゾー
ル2との比率が1:1であるフェノール樹脂に対して、
ガラス繊維を用いず、クレー他を配合して実施例1と同
様に材料化、試験を行なった。
Comparative Example 4 For a phenolic resin in which the ratio of dimethylene ether type resol 2 and methylol type resol 2 is 1:1,
A material was prepared and tested in the same manner as in Example 1, except that clay and other ingredients were blended without using glass fiber.

耐熱性についてはガラス転移温度(200〜230℃)
以上における線膨張係数と実際の半円槽を用いた熱衝撃
試験の結果により、判定することができる。
Regarding heat resistance, glass transition temperature (200-230℃)
It can be determined based on the coefficient of linear expansion described above and the results of a thermal shock test using an actual semicircular tank.

実施例はいずれも、ノボラック型フェノール樹脂を用い
た比較例3、およびガラス繊維を用いない比較例4に比
べ明らかに耐熱性に優れている。
All of the examples are clearly superior in heat resistance compared to Comparative Example 3, which uses a novolac type phenolic resin, and Comparative Example 4, which does not use glass fiber.

また、ジメチレンエーテル型レゾールのみを樹脂成分と
した比較例1でも、熱衝撃試験において300℃をクリ
アできず、自動車のエンジン・ブレーキ等の部品用とし
ては耐熱性が不充分である。
Further, even in Comparative Example 1, in which only dimethylene ether type resol was used as the resin component, it was not able to pass 300°C in the thermal shock test, and the heat resistance was insufficient for use in parts such as automobile engines and brakes.

また、実施例はいずれも、射出成形性にも優れ、連続成
形が可能であるのに対して、比較例2は、シリンダー内
熱安定性が不充分で連続成形が不可能である。
In addition, all of the Examples have excellent injection moldability and are capable of continuous molding, whereas Comparative Example 2 has insufficient in-cylinder thermal stability and cannot be continuously molded.

以上よシ本発明は高耐熱性を有し、かつ成形性にも優れ
たフェノール樹脂成形材料を提供するものであシ、特に
高い耐熱性を要求される自動車のエンジン・ブレーキ部
品等に、いかに有用であるかは明らかである。
In summary, the present invention provides a phenolic resin molding material that has high heat resistance and excellent moldability. The usefulness is obvious.

測定方法 1.シリンダー内熱安定性 使用成形機  ミニスーツぞ−M32 成形温度 175℃ シリンダ一温度 前部90℃、後部50℃評価:射出待
ち時間を延長してゆき、射出に規定時間以上要するよう
になった時の待ち時間で表わす。
Measurement method 1. Molding machine using internal thermal stability Minisuit-M32 Molding temperature 175℃ Cylinder temperature 90℃ front, 50℃ rear Evaluation: When the injection waiting time is extended and the injection takes longer than the specified time It is expressed as the waiting time.

2、耐熱衝撃試験 試験片: JISK6911シャルピー試験片(トラン
スファー成形) 第1図に示すように試験片(1)を所定温度の半田(2
)浴槽に半田浸漬深さく3)が2〜3wで10分間浸漬
後、1秒以内に20℃以下の水中内に投入し5分間冷却
させる。
2. Thermal shock test specimen: JIS K6911 Charpy test specimen (transfer molding) As shown in Figure 1, the test specimen (1) was heated to a specified temperature using solder (2).
) After immersing the solder in a bathtub for 10 minutes at a solder immersion depth of 3) at 2 to 3 W, the product is placed in water at 20° C. or less within 1 second and allowed to cool for 5 minutes.

評価:クラックが発生しない最高温度で表わす。Evaluation: Expressed as the maximum temperature at which no cracks occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、耐熱衝撃試験における半田浴槽への浸漬方法
を示す断面図。 第1図
FIG. 1 is a sectional view showing a method of dipping into a solder bath in a thermal shock resistance test. Figure 1

Claims (1)

【特許請求の範囲】[Claims] フリーフェノール量が7重量%以下、フリーフェノール
除外数平均分子量が800〜1200、フェノール核結
合官能基がメチレン基・メチロール基およびジメチレン
エーテル基より構成され各官能基の比率がそれぞれ20
〜50モル%・10〜20モル%および40〜60モル
%である固形レゾール型フェノール樹脂と、フリーフェ
ノール量が7重量%以下、フリーフェノール除外数平均
分子量が600〜1000、フェノール核結合官能基が
、メチレン基・メチロール基およびジメチレンエーテル
基より構成され、各官能基の比率がそれぞれ30〜50
モル%、30〜70モル%および0〜20モル%である
固形レゾール型フェノール樹脂との比率が3:7〜7:
3であるフェノール樹脂100重量部と、ガラス繊維1
00〜2550重量部とからなることを特徴とするフェ
ノール樹脂組成物。
The amount of free phenol is 7% by weight or less, the number average molecular weight excluding free phenol is 800-1200, the phenol core-binding functional group is composed of methylene group, methylol group, and dimethylene ether group, and the ratio of each functional group is 20%.
~50 mol%, 10 to 20 mol%, and 40 to 60 mol% solid resol type phenolic resin, free phenol content is 7% by weight or less, free phenol excluded number average molecular weight is 600 to 1000, and phenol core binding functional group is composed of a methylene group, a methylol group, and a dimethylene ether group, and the ratio of each functional group is 30 to 50.
The ratio of solid resol type phenolic resin is 3:7 to 7: mol%, 30 to 70 mol% and 0 to 20 mol%.
3, 100 parts by weight of phenolic resin, and 1 part of glass fiber.
00 to 2550 parts by weight.
JP17321385A 1985-08-08 1985-08-08 Phenolic resin composition Granted JPS6234948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17321385A JPS6234948A (en) 1985-08-08 1985-08-08 Phenolic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17321385A JPS6234948A (en) 1985-08-08 1985-08-08 Phenolic resin composition

Publications (2)

Publication Number Publication Date
JPS6234948A true JPS6234948A (en) 1987-02-14
JPH0574619B2 JPH0574619B2 (en) 1993-10-18

Family

ID=15956219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17321385A Granted JPS6234948A (en) 1985-08-08 1985-08-08 Phenolic resin composition

Country Status (1)

Country Link
JP (1) JPS6234948A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118147A1 (en) * 2010-03-25 2011-09-29 住友ベークライト株式会社 Solid resol-type phenolic resin and method for producing same
JP2016060874A (en) * 2014-09-19 2016-04-25 旭有機材工業株式会社 Phenol resin molding material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118147A1 (en) * 2010-03-25 2011-09-29 住友ベークライト株式会社 Solid resol-type phenolic resin and method for producing same
JPWO2011118147A1 (en) * 2010-03-25 2013-07-04 住友ベークライト株式会社 Solid resol type phenolic resin and process for producing the same
US8742056B2 (en) 2010-03-25 2014-06-03 Sumitomo Bakelite Co., Ltd. Solid resol-type phenolic resin and method of manufacturing the same
JP2016060874A (en) * 2014-09-19 2016-04-25 旭有機材工業株式会社 Phenol resin molding material

Also Published As

Publication number Publication date
JPH0574619B2 (en) 1993-10-18

Similar Documents

Publication Publication Date Title
JPS6234948A (en) Phenolic resin composition
JP3915045B2 (en) Structural part molding material in machining center and structural part molding in machining center
JP3179777B2 (en) Phenolic resin molding material
JP3969506B2 (en) Method for producing glass fiber-containing phenolic resin molding material, and glass fiber-containing phenolic resin molding product
JP2002220507A (en) Phenol resin molding material
JP3555835B2 (en) Phenolic resin molding material
JPH1030048A (en) Phenolic resin molding material and its moldings
JPH07118501A (en) Phenol resin molding material
JP3375110B2 (en) Phenolic resin molding materials
JP3938477B2 (en) Phenolic resin molding material
JP3152924B2 (en) Melamine / phenol resin composition
JP3555836B2 (en) Phenolic resin molding material
JP3580527B2 (en) Phenolic resin molding material
JPS61287951A (en) Phenolic resin composition
JP3263180B2 (en) Phenolic resin molding material and molded article
JPH08143753A (en) Melamine-phenol resin composition
CN115819728A (en) Epoxy resin composition for coating dry type transformer coil and preparation method thereof
JP3535892B2 (en) Method for producing intermediate material for C / C composite
JP2001234027A (en) Phenolic resin molding compound
JPH10176098A (en) Phenol resin molding material
JPH0827359A (en) Melamine/phenol resin composition
JPH08165407A (en) High thermal conductivity phenolic resin molding material
JPH07309995A (en) Phenolic resin molding material
JPH0693169A (en) Phenolic resin molding material
JP2004277599A (en) Phenolic resin molding material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term