JPS6234549A - Magnetic resonance imaging method - Google Patents

Magnetic resonance imaging method

Info

Publication number
JPS6234549A
JPS6234549A JP60174892A JP17489285A JPS6234549A JP S6234549 A JPS6234549 A JP S6234549A JP 60174892 A JP60174892 A JP 60174892A JP 17489285 A JP17489285 A JP 17489285A JP S6234549 A JPS6234549 A JP S6234549A
Authority
JP
Japan
Prior art keywords
pulse
water
image
phase
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60174892A
Other languages
Japanese (ja)
Other versions
JPH0620434B2 (en
Inventor
畑中 雅彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60174892A priority Critical patent/JPH0620434B2/en
Publication of JPS6234549A publication Critical patent/JPS6234549A/en
Publication of JPH0620434B2 publication Critical patent/JPH0620434B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は磁気共鳴(MR)現象を利用することにより
、被検体内の任意断層面内の特定原子核の密度および緩
和時間に関する情報を被検体の外部より無侵襲に設定し
、医学的診断を可能とする情報を断層像として表示する
磁気共鳴イメージング方法に関し、特に2次元フーリエ
変換により被倹体断面内の2物質の特定原子核のそれぞ
れの密度のイ【iを同1時(こ1gるよう(こなしたR
1気共1鳴イメージン′グ方)人に閏で−ろ。
Detailed Description of the Invention [Technical Field of the Invention] The present invention utilizes magnetic resonance (MR) phenomena to obtain information about the density and relaxation time of specific atomic nuclei within an arbitrary cross-sectional plane within the subject. Regarding the magnetic resonance imaging method, which is set non-invasively from the outside and displays information that enables medical diagnosis as a tomographic image, in particular, it is possible to calculate the density of each specific atomic nucleus of two substances in the cross section of the object using two-dimensional Fourier transform. i [i at the same time
Imaging method of one energy and one sound) Leap at people.

[前日技術とその問題点1 通常水桑原子咳の磁気共1烏イメージング方払において
、例えば水と脂質の複水画像を独立に得ることはできな
い1.シかし水と脂質に存在する水素比j′咳の共鳴周
波数(J、同・−磁場のもとで異なる現τ2、所謂ct
1emical 5hift]gxを有効に用いること
にJ:す、水と脂Y!1の画像を分解して求めることか
できる。
[Previous day's technology and its problems 1. In the normal magnetic imaging method of water mulberry atomic cough, for example, double water images of water and lipids cannot be obtained independently. 1. The hydrogen ratio j′ present in water and lipids is the resonant frequency of cough (J, the same) - different current τ2 under the magnetic field, the so-called ct
1emical 5hift] To use gx effectively J: So, water and fat Y! It can be obtained by decomposing the image of 1.

ここて水と脂質のt−at″mo「周波数の膣をΔν[
1−17−1とすると、上記方法は次のように説明でき
る。
Here, the vagina of water and lipid t-at''mo' frequency is Δν[
1-17-1, the above method can be explained as follows.

第4図のように被検体の第1441線に沿って保った静
磁場内に(6いて被検体を周波数選択性90°RFパル
スで照射して第2の軸線に)aつてRF磁場を印加して
核スピンの位相ズラシをし、前記RFパルスの発生から
τa+△τ(1目し、τaは90″RFパルスからスピ
ン・エコーまでの時間の1/2)後に被検体を180°
RFパルスで照射(第4図でIJ、180=どじ−で示
づ)して)変スピンの位相もどしをし、次(こ前記位相
ず′うし勾配と同じ方向をもつ位相戻し勾配を加え−C
前記180°RFパルス(1B○°″)から予定の経過
時間である(τa+△τ)後咳スピン・工」−が生じ、
このスピン・エコーが発生()た複合MR倍信号収集す
る。
As shown in Figure 4, an RF magnetic field is applied within the static magnetic field maintained along the 1441st line of the subject (at 6, the subject is irradiated with a frequency-selective 90° RF pulse to the second axis). to shift the phase of the nuclear spin, and after the generation of the RF pulse τa + △τ (1st position, τa is 1/2 of the time from the 90″ RF pulse to the spin echo), the object is rotated by 180°.
The phase of the variable spin is returned by irradiation with an RF pulse (indicated by IJ, 180 = doji- in Fig. 4), and then a phase-returning gradient having the same direction as the above-mentioned phase-shifting gradient is added. C
After the scheduled elapsed time (τa + △τ) from the 180° RF pulse (1B○°″), a post-cough spin “-” occurs;
A composite MR multiplied signal generated by this spin echo is collected.

この場合、90°RFパルスの発生から180゜RFパ
ルスの発生までの時間かτaておる通常の180°RF
パルスを用いたパルスシーケンスと、上記方法のように
90°RFパルスの発生から180°RFパルスの発生
までの時間が7.a−△τである180’  −RFパ
ルスを用いたパルスシーケンスはいずれもπパルス両側
の傾斜磁場(GRO)の印加m(GRO・]゛G)は同
じため、傾斜磁場による核スピン・ニー1−の収集は完
全に行われる。以後この効果を無視してchemica
l 5hiftによる位相の変化のみ考える。いま、水
のラーモア周波数で考えた回転座標系を考えると、水の
磁化は停止しているか脂質の磁化は△ν[Hz]て回転
するため、chmical 5hiftに起因する磁化
の動きは第6図(a)(b)の如くなり、第5図(a)
に示す180°RFパルス(180’)によるシーケン
スでの磁化の運動に比し、第5図(b)に示す180°
RFパルス(180° −)によるシーケンスでの磁化
の運動では最終的に2Δτ・Δνだけ水と脂質の位相が
ずれることになる1、この時2△τ・△ν=1/2とす
ると、水と脂質の信8の位相は180°ずれる。第1図
に示ずようへ位相エンコード用傾斜磁場を加え傾斜磁場
の強度を順次変化させながらMR倍信号収集し、2次元
フーリエ変換を実行づると、水の密度は正、脂質の密度
は負で表示される。水と脂質の混合画像(水−脂質画像
)が得られる。同様にΔτ−〇の条件でMR倍信号収集
し、2次元フーリエ変換を実行すると通常水められる水
と脂質の密度分布の和を示す画像(水子脂質画像)か求
められる。
In this case, the time from the generation of the 90° RF pulse to the generation of the 180° RF pulse is τa, which is the normal 180° RF pulse.
7. Pulse sequence using pulses and the time from generation of 90° RF pulse to generation of 180° RF pulse as in the above method. In all pulse sequences using a 180'-RF pulse that is a-△τ, the applied gradient magnetic field (GRO) m(GRO・]゛G) on both sides of the π pulse is the same, so the nuclear spin knee due to the gradient magnetic field 1 - collection is complete. From now on, ignore this effect and use chemica.
Only the change in phase due to l5hift will be considered. Now, if we consider the rotating coordinate system based on the Larmor frequency of water, the magnetization of water is either stopped or the magnetization of lipids rotates at △ν [Hz], so the movement of magnetization caused by chemical 5hift is shown in Figure 6. As shown in (a) and (b), Figure 5 (a)
Compared to the movement of magnetization in the sequence caused by the 180° RF pulse (180') shown in Figure 5(b), the 180° RF pulse (180') shown in Figure 5(b)
In the sequence of magnetization movement caused by RF pulses (180° -), the phase of water and lipid will eventually shift by 2Δτ・Δν1. At this time, if 2Δτ・△ν=1/2, The phase of the lipid signal 8 is shifted by 180°. As shown in Figure 1, a gradient magnetic field for phase encoding is applied, the intensity of the gradient magnetic field is sequentially changed, MR multiplied signals are collected, and a two-dimensional Fourier transform is performed. The density of water is positive, and the density of lipids is negative. is displayed. A mixed image of water and lipids (water-lipid image) is obtained. Similarly, by collecting MR multiplied signals under the condition of Δτ-0 and performing two-dimensional Fourier transformation, an image (water molecule lipid image) showing the sum of the density distributions of water and lipid, which is normally submerged, can be obtained.

すなわち、次式の如くである。That is, as shown in the following equation.

(水土脂質)画像+(水−脂質)画像=水のみの画像 (水+脂質)画像−(水−脂質)画像−脂質のみの画1
象 しかし、上記の180° ”RFパルスを用いた場合、
磁場の不均一性(最大値△Hmax)が存在覆−ると2
Δτ・rΔl−1maxの位相のずれが画像に生じるた
め、均一性の極端に長い領域で用いたり、あるいは不均
一性の分15を正確に測定して補正覆る必要があるとい
う問題点を有していた。更に水と脂質の分解した画像を
得るためにはΔτ=Oと1/4△νの条件でスキャンを
2回実行しなければならない。
(water-soil-lipid) image + (water-lipid) image = water-only image (water + lipid) image - (water-lipid) image - lipid-only image 1
However, when using the above 180° RF pulse,
If magnetic field inhomogeneity (maximum value △Hmax) exists, 2
Since a phase shift of Δτ・rΔl−1max occurs in the image, it has the problem that it must be used in an extremely long region of uniformity, or that it is necessary to accurately measure and compensate for the nonuniformity. was. Furthermore, in order to obtain an image in which water and lipid are separated, scanning must be performed twice under the conditions of Δτ=O and 1/4Δν.

[発明の目的コ 本発明は上記事情に鑑みてなされたもので、2次元フー
リエ変換イメージングの様な平面形イメージング方法に
予定の平面上パルス順序を適用させて磁場不均一性の少
ない水と脂質の分離した画像を1回のスキャンで1?る
ことを可能にり−ることを目的とする。
[Purpose of the Invention] The present invention has been made in view of the above-mentioned circumstances, and is to apply a predetermined planar pulse order to a planar imaging method such as two-dimensional Fourier transform imaging to obtain water and lipids with less magnetic field inhomogeneity. 1 separated image in one scan? The purpose is to make it possible to

[発明の概要1 本発明は上記目的を達成す為に、2次元フーリ工変換に
より被検体断面内の2物質の特定原子核のスピン密度の
分布を得るようになした磁気共鳴イメージング方法にお
いて、被検体の第1の軸線に治って静磁場を保ち、被検
体を選択性90”RFパルスで照射し、予定の領域の核
スピンを励起して第1の予定の領域の期間の間第2の軸
線に沿って2つ(第2軸線、第3軸線)の位相ずらしの
勾配磁場を印加して励起された核スピンの位相を決めら
れた鉛だけ、第2の予定の期間の間、前記RFパルスの
平均発生点からτa+Δτa(但し、τaは90’のR
Fパルスからスピン・エコーまでの時間の1/2)後に
被検体を180°RFパルスで照射して前記励起された
核スピンの位相を反転し、前記第2のW]間の後の第3
の予定の期間の間、前記位相ずらし勾配磁場(第2軸線
)を加えて前記180°RFパルスからτa−Δτ後に
、前記位相ずらし勾配磁場(第2軸線)によって位相ず
らしをした核スピンの位相戻しによって生じる核スピン
・エコーが、2物質の特定原子核のスピン・エコーにな
るように前記Δτを次式%式% (但し、Δνは2物貿の特定原子核の共鳴周波数差)に
設定し、このスピン・エコーが1MR信号を発生し、こ
の複合MR倍信号収集し、2次元フーリエ変換を行うこ
とにより2物質の分布像を1回のスキャンで独立に求め
ることを特徴とする。
[Summary of the Invention 1 In order to achieve the above object, the present invention provides a magnetic resonance imaging method that obtains the distribution of spin densities of specific atomic nuclei of two substances in a cross section of an object by two-dimensional Fourier transformation. Maintaining a static magnetic field aligned with the first axis of the specimen, the specimen is irradiated with a selective 90'' RF pulse to excite the nuclear spins in the predetermined region and generate a second predetermined region for the duration of the first predetermined region. By applying two (second axis, third axis) phase-shifting gradient magnetic fields along the axis, only the phase of the excited nuclear spins is determined, and during the second predetermined period, the RF From the average generation point of the pulse τa + Δτa (however, τa is R of 90'
1/2 of the time from the F pulse to the spin echo), the subject is irradiated with a 180° RF pulse to invert the phase of the excited nuclear spins, and
During the scheduled period of time, the phase shifting gradient magnetic field (second axis) is applied, and after τa−Δτ from the 180° RF pulse, the phase of the nuclear spins shifted by the phase shifting gradient magnetic field (second axis) The above Δτ is set to the following formula % (where Δν is the resonant frequency difference of the specific atomic nuclei of the two materials) so that the nuclear spin echo generated by the return becomes the spin echo of the specific atomic nucleus of the two materials, This spin echo generates one MR signal, and this composite MR signal is collected and subjected to two-dimensional Fourier transformation, thereby obtaining distribution images of two substances independently in one scan.

[発明の実施例] 以下、本発明の詳細を図面を用いて説明する。[Embodiments of the invention] Hereinafter, details of the present invention will be explained using the drawings.

第1図のように被検体の第1の軸線に沿って静磁場を保
ち、期間q1の開被検体1を周波数選択性90°RFパ
ルスで照射し、予定の領域の咳スピンを励起して第1の
予定の期間q2の間、第2の軸線に沿って少なくとも1
つの位相ずらしのRFla場を印加して励起された核ス
ピンの位相ずらしをし、第2の予定の期間q3の間、前
記RFパルスの平均発生点からτa+Δτ(但し、τa
は90”RFパルスからスピン・エコーまでの時間τE
の1/2)後に被検体を180°RFパルスで照射して
前記励起された核スピンの位相戻しを開始し、前記第2
の期間q3の後の第3の予定の期間q4の間、前記位相
ずらし勾配と同じ方向をもつ少なくとも1つの位相戻し
勾配を加えて前記180°RFパルスからτa−Δτ後
に、前記位相ずらし勾配によって位相ずらしをした核ス
ピンの位相戻しによって生じる核スピン・エコーが、水
と油の水素原子核のスピン・エコーになるように前記Δ
τを次式 %式% (但し、Δνは水と油の水素原子核の共鳴周波数差)に
設定し、このスピン・エコーが複合MR倍信号発生し、
この複合MR倍信号収集するものである。したがって、
90°RFパルスと180゜RFパルスの時間間隔τa
+Δτと、180°RFパルスとスピン・エコーの時間
間隔との間には2Δτの時間差があり、水に含まれる水
素原子核の共鳴周波数を基準に考えると脂質は2Δτ・
Δνの位相差を生じ、この位相差が90° (π/2)
である時(2Δτ・Δν=1/4)位相エンコード用の
傾斜磁場の振幅(又は印加時間)を順次変化させて収集
したMR倍信号複素2次元フーリエ変換してできる複素
画像のうち脂質の画像は虚部の画像となるが、水の画像
は実部の画像となる。
As shown in Figure 1, a static magnetic field is maintained along the first axis of the subject, and the open subject 1 is irradiated with a frequency-selective 90° RF pulse during period q1 to excite cough spins in the predetermined region. at least 1 along the second axis during the first scheduled period q2.
The excited nuclear spins are phase-shifted by applying two phase-shifting RFla fields, and during a second scheduled period q3, τa + Δτ (where τa
is the time from 90” RF pulse to spin echo τE
1/2), the subject is irradiated with a 180° RF pulse to start rephasing the excited nuclear spins, and the second
during a third predetermined time period q4 after period q3 of , by adding at least one phase-returning gradient having the same direction as the phase-shifting gradient τa−Δτ after the 180° RF pulse, by the phase-shifting gradient. The above Δ
τ is set to the following formula % formula % (where Δν is the resonance frequency difference between the hydrogen nuclei of water and oil), and this spin echo generates a composite MR multiplied signal,
This composite MR multiplied signal is collected. therefore,
Time interval τa between 90° RF pulse and 180° RF pulse
There is a time difference of 2Δτ between +Δτ and the time interval between the 180° RF pulse and the spin echo, and considering the resonance frequency of hydrogen nuclei contained in water as a standard, lipids have a time difference of 2Δτ・
A phase difference of Δν is generated, and this phase difference is 90° (π/2)
When (2Δτ・Δν=1/4) MR multiplied signal complex collected by sequentially changing the amplitude (or application time) of the gradient magnetic field for phase encoding A lipid image among the complex images created by two-dimensional Fourier transformation is an image of the imaginary part, but the image of water is an image of the real part.

この場合△τ=1/8・Δνで必る。水と脂質の位相差
90°は上記のとうり保持可能であるが、実際のMRI
では水の絶対位相が零になるとは限らず、RF系G磁場
から構成される装置、シーケンス固有の位相差Δψがお
る。そして、このΔψを得るために、被検体と同時に位
置が決まっている水ファントムをおいて(第2図(C)
参照)スキャンし画像を形成する。この場合、第2図(
a)の実部の画Ir” (X、V)と、第2図(b)に
示す虚部の画像1i′(x、y)において、位相Δψの
ため2次元フーリエ変換して出来た複素画像の実部Ir
−(X、V)とll−(X、V)に水ファントムの像が
できる(第2図(a)、(b)の3と4)の位置が決ま
っているから水ファントム3の複素画像値(第2図(a
>、(b)の3と4)をとり出して次式によりΔψを求
める。
In this case, Δτ=1/8·Δν is required. The phase difference of 90° between water and lipids can be maintained as described above, but in actual MRI
In this case, the absolute phase of water is not necessarily zero, and there is a phase difference Δψ unique to the device and sequence composed of the RF G magnetic field. In order to obtain this Δψ, a water phantom whose position is determined at the same time as the subject is placed (Fig. 2 (C)).
Reference) Scan and form an image. In this case, Figure 2 (
In the real part image Ir'' (X, V) of a) and the imaginary part image 1i' (x, y) shown in FIG. Real part Ir of the image
An image of the water phantom is created at - (X, V) and ll- (X, V) (3 and 4 in Figure 2 (a) and (b)) are fixed, so the complex image of water phantom 3 is created. Value (Figure 2 (a)
>, 3 and 4) in (b) are taken out and Δψ is determined by the following equation.

△ψ=tan−1虚部値 (第2図(b>(7)4)実部値(第2図(a)の3)
上式(、二より17られた△φを用いて次式を被検体の
画像く第2図(a>、(b)の1,2)の各ピクセル1
0に計篩Jろど水1と脂で12の画像か第3図(a)l
)のようにそれぞれ分離して1びられる1゜ fr (x−y)−Ir−(x−y)cosΔψ+I 
i ” (X−Y)sinΔφ I  i  (X  −V)= −I r−(x−y)
si n Δφ+I i −(X−Y)CO3△Φ さらに、水 十脂質の画像は次式 %式%() の画像間演瞳又は次式 Ir”’2  くXy)+I  i  ′2  (X−
y>のピクセル毎の演算でもb」能で市る。
△ψ=tan-1 Imaginary part value (Figure 2 (b>(7) 4) Real part value (3 in Figure 2 (a))
Using the above equation (2), calculate the image of the subject using the following equation.
Figure 3 (a) l
), 1°fr (x-y)-Ir-(x-y)cosΔψ+I
i ” (X-Y)sinΔφ I i (X-V)=-I r-(x-y)
sin Δφ+I i −(X−Y)CO3ΔΦ Furthermore, the image of water and 10 lipids can be calculated using the following formula % formula % () or the following formula Ir”'2 ×Xy)+I i ′2 (X−
Even the calculation for each pixel of y> is given by the function b.

したかって、この発明では180°RFパルスの移動損
かΔτ−1/4・1/Δνから△τ=1/8・1/Δし
となり、静v7i揚不均−性の影響が1/2と小さくな
るばかりではなく、1回スキャンで水と脂質の分布像を
分離して求めることができる。
Therefore, in this invention, the movement loss of the 180° RF pulse becomes △τ = 1/8 1/Δ from Δτ-1/4 1/Δν, and the influence of static v7i lift non-uniformity is reduced by 1/2. Not only is it smaller, but it is also possible to separate the distribution images of water and lipids in a single scan.

この発明は前記実施例に限定されるものて(J、なく、
この発明の要旨の範囲内での種々の変形例を包含するこ
とは言うまでもない。例えば、前記実施例は水と油の水
素原子核の複素画像の場合について説明したが、その特
質は適宜選定すればよい1゜[発明の効果] この発明は、90°RFパルスの平均発生点かτa+Δ
τ後に180°RFパルスを被検体に照射し、この18
0°RFパルスからτa十△τ1稔に核スピン・エコー
が発生するように前記△τを次式 %式% に設定したから、−回のスキャンで例えば水と油の複素
画像が1qられる上に、静磁場不均一性の影響が1/2
に小さくなり、鮮明な複素画像が一回のスキャンで得ら
れ、診断上優れた効果を有する。
This invention is not limited to the above embodiments.
It goes without saying that various modifications are included within the scope of the invention. For example, in the above embodiment, the case of a complex image of hydrogen nuclei in water and oil was explained, but the characteristics may be selected as appropriate. τa+Δ
After τ, a 180° RF pulse is irradiated to the subject, and this 18
Since the above △τ is set to the following formula % so that a nuclear spin echo is generated at τa + △τ1 from the 0° RF pulse, for example, 1q complex images of water and oil can be obtained in − scans. , the influence of static magnetic field inhomogeneity is 1/2
It is small in size, and a clear complex image can be obtained in a single scan, which has excellent diagnostic effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの本発明の2次元フーリエ変換に使われるM
Rパルス順序を示すグラフ、第2図(a>、(b)は補
正処理前の複素画像を示し、第2図(C)は被検体と水
ファントムの位置の関係を示し、第3図(a)、(b)
は補正後の分離した根糸画像を示し、第4図は従来の2
次元フーリエ変換に使われるMRパルス順序を示すグラ
フ、第5図(a>、(b)は水と脂質の陽子スピンベタ
1〜ルの説明図である。 第5図 (G) (b) Q4        q5
Figure 1 shows M used in the two-dimensional Fourier transform of this invention.
Graphs showing the R pulse order, Fig. 2 (a>, (b) show complex images before correction processing, Fig. 2 (C) show the relationship between the positions of the subject and the water phantom, and Fig. 3 ( a), (b)
shows the separated root thread image after correction, and Fig. 4 shows the conventional two root thread images.
Graphs showing the MR pulse order used for dimensional Fourier transform, Figure 5 (a>, (b) are explanatory diagrams of proton spin patterns of water and lipids. Figure 5 (G) (b) Q4 q5

Claims (1)

【特許請求の範囲】 2次元フーリエ変換により被検体断面内の2物質の特定
原子核のスピン密度の分布を得るようになした磁気共鳴
イメージング方法において、被検体の第1の軸線に沿っ
て静磁場を保ち、被検体を選択性90°RFパルスで照
射し、予定の領域の核スピンを励起して第1の予定の領
域の期間の間第2の軸線に沿って2つ(第2軸線、第3
軸線)の位相ずらしの勾配磁場を印加して励起された核
スピンの位相を決められた量だけ、第2の予定の期間の
間、前記RFパルスの平均発生点からτa+Δt(但し
、τaは90°のRFパルスからスピン・エコーまでの
時間の1/2)後に被検体を180°RFパルスで照射
して前記励起された核スピンの位相を反転し、前記第2
の期間の後の第3の予定の期間の間、前記位相ずらし勾
配磁場(第2軸線)を加えて前記180°RFパルスか
らτa−Δτ後に、前記位相ずらし勾配磁場(第2軸線
)によって位相ずらしをした核スピンの位相戻しによっ
て生じる核スピン・エコーが、2物質の特定原子核のス
ピン・エコーになるように前記Δτを次式 Δτ=1/8・1/Δν (但し、Δνは2物質の特定原子核の共鳴周波数差)に
設定し、このスピン・エコーが複合MR信号を発生し、
この複合MR信号を収集し、2次元フーリエ変換を行う
ことにより2物質の分布像を1回のスキャンで独立に求
めることを特徴とする磁気共鳴イメージング方法。
[Claims] In a magnetic resonance imaging method in which the distribution of spin densities of specific atomic nuclei of two substances within a cross section of an object is obtained by two-dimensional Fourier transformation, a static magnetic field is applied along a first axis of the object. and irradiate the subject with a selective 90° RF pulse to excite the nuclear spins in the predetermined region along a second axis (second axis, Third
τa+Δt (where τa is 90 After 1/2 of the time from the 180° RF pulse to the spin echo, the subject is irradiated with a 180° RF pulse to invert the phase of the excited nuclear spins, and the second
During a third predetermined period after a period of The above Δτ is calculated by the following formula Δτ = 1/8・1/Δν (where Δν is 2 substances (resonance frequency difference of a specific atomic nucleus), this spin echo generates a composite MR signal,
A magnetic resonance imaging method characterized by collecting this composite MR signal and performing two-dimensional Fourier transformation to obtain distribution images of two substances independently in one scan.
JP60174892A 1985-08-07 1985-08-07 Magnetic resonance imaging method Expired - Lifetime JPH0620434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60174892A JPH0620434B2 (en) 1985-08-07 1985-08-07 Magnetic resonance imaging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60174892A JPH0620434B2 (en) 1985-08-07 1985-08-07 Magnetic resonance imaging method

Publications (2)

Publication Number Publication Date
JPS6234549A true JPS6234549A (en) 1987-02-14
JPH0620434B2 JPH0620434B2 (en) 1994-03-23

Family

ID=15986504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60174892A Expired - Lifetime JPH0620434B2 (en) 1985-08-07 1985-08-07 Magnetic resonance imaging method

Country Status (1)

Country Link
JP (1) JPH0620434B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250650A (en) * 1985-08-30 1987-03-05 Hitachi Ltd Inspection method using nuclear magnetic resonance
JPH01227745A (en) * 1988-03-07 1989-09-11 Yokogawa Medical Syst Ltd Chemical shift image forming method by nuclear magnetic resonance photographic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250650A (en) * 1985-08-30 1987-03-05 Hitachi Ltd Inspection method using nuclear magnetic resonance
JPH01227745A (en) * 1988-03-07 1989-09-11 Yokogawa Medical Syst Ltd Chemical shift image forming method by nuclear magnetic resonance photographic device
JPH0376132B2 (en) * 1988-03-07 1991-12-04 Yokokawa Medeikaru Shisutemu Kk

Also Published As

Publication number Publication date
JPH0620434B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
KR100610990B1 (en) Mr imaging method and mri system
JP3529446B2 (en) Correction method of read gradient magnetic field polarity in EPI and GRASE MRI
JP2000135206A (en) Method and device for quantitative mr imaging of water and fat using quartet field echo sequence
JPS5967450A (en) Method of conquering effect of false fidnmr signal
JPS6272346A (en) Formation of chemical shift image corrected in field non-uniformity information
US5078141A (en) Method and system for acquiring image representing brain surface anatomy
JPH074352B2 (en) Operation method of nuclear magnetic resonance apparatus
JPS60242352A (en) Method of generating nmr image of sample and nmr image forming device
US5051699A (en) Magnetic resonance imaging system
JPH02149250A (en) Magnetic resonance image device
JP2003052668A (en) Nuclear spin tomograph and its operating method
US4920314A (en) Magnetic resonance imaging system
JPH03505693A (en) How to capture spin resonance spectra and perform spin resonance imaging
JPH0578338B2 (en)
JPS6234549A (en) Magnetic resonance imaging method
JPH10305021A (en) Formation of pulse sequence for nuclear spin tomography and nuclear spin tomographic apparatus
JP3907944B2 (en) Magnetic resonance imaging method and apparatus
JPS6266846A (en) Nmr examination apparatus using chemical shift value
JPS60151548A (en) Method and apparatus for inspection by means of nuclear magnetic resonance
US7511491B2 (en) Imaging procedure and magnetic-resonance imaging system for the acquisition of the longitudinal spin-lattice relaxation time
JPH03106339A (en) Magnetic resonance imaging device
JP2002052005A (en) Magnetic resonance imaging method
JP3249114B2 (en) MRI apparatus and gradient magnetic field applying method in MRI apparatus
Felmlee et al. Magnetic resonance imaging phase encoding: a pictorial essay.
JPH0767443B2 (en) Magnetic resonance imaging method