JPH0620434B2 - Magnetic resonance imaging method - Google Patents

Magnetic resonance imaging method

Info

Publication number
JPH0620434B2
JPH0620434B2 JP60174892A JP17489285A JPH0620434B2 JP H0620434 B2 JPH0620434 B2 JP H0620434B2 JP 60174892 A JP60174892 A JP 60174892A JP 17489285 A JP17489285 A JP 17489285A JP H0620434 B2 JPH0620434 B2 JP H0620434B2
Authority
JP
Japan
Prior art keywords
phase
pulse
axis
water
spin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60174892A
Other languages
Japanese (ja)
Other versions
JPS6234549A (en
Inventor
雅彦 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP60174892A priority Critical patent/JPH0620434B2/en
Publication of JPS6234549A publication Critical patent/JPS6234549A/en
Publication of JPH0620434B2 publication Critical patent/JPH0620434B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] この発明は磁気共鳴(MR)現象を利用することによ
り、被検体内の任意断層面内の特定原子核の密度および
緩和時間に関する情報を被検体の外部より無侵襲に設定
し、医学的診断を可能とする情報を断層像として表示す
る磁気共鳴イメージング方法に関し、特に2次元フーリ
エ変換により被検体断面内の2物質の特定原子核のそれ
ぞれの密度分布を同時に得るようになした磁気共鳴イメ
ージング方法に関する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention utilizes a magnetic resonance (MR) phenomenon to provide information on the density and relaxation time of specific atomic nuclei in an arbitrary tomographic plane in a subject. The present invention relates to a magnetic resonance imaging method in which information that enables medical diagnosis is displayed as a tomographic image by setting it non-invasively from the outside, and in particular, by using a two-dimensional Fourier transform, the density distributions of specific nuclei of two substances in the cross section of an object are measured. The present invention relates to a magnetic resonance imaging method that can be obtained simultaneously.

[背景技術とその問題点] 通常水素原子核の磁気共鳴イメージング方法において、
例えば水と脂質の複素画像を独立に得ることはできな
い。しかし水と脂質に存在する水素原子核の共鳴周波数
は同一磁場のもとで異なる現象、所謂chemical shift現
象を有効に用いることにより、水と脂質の画像を分解し
て求めることができる。
[Background Art and its Problems] In the magnetic resonance imaging method for hydrogen nuclei,
For example, complex images of water and lipid cannot be obtained independently. However, the resonance frequencies of hydrogen nuclei existing in water and lipids can be obtained by decomposing the images of water and lipids by effectively using different phenomena under the same magnetic field, so-called chemical shift phenomenon.

ここで水と脂質のLarmor周波数の差をΔν[Hz]とす
ると、上記方法は次のように説明できる。第4図のよう
に被検体の第1軸線に沿って保った静磁場内において被
検体を周波数選択性90゜RFパルスで照射して第2の
軸線に沿ってRF磁場を印加して核スピンの位相ズラシ
をし、前記RFパルスの発生からτa+Δτ(但し、τ
aは90゜RFパルスからスピン・エコーまでの時間の
1/2)後に被検体を180゜RFパルスで照射(第4
図では180゜′として示す)して核スピンの位相もど
しをし、次に前記位相ずらし勾配と同じ方向をもつ位相
戻し勾配を加えて前記180゜RFパルス(180
゜′)から予定の経過時間である(τa+Δτ)後核ス
ピン・エコーが生じ、このスピン・エコーが発生した複
合MR信号を収集する。
If the difference between the Larmor frequency of water and lipid is Δν [Hz], the above method can be explained as follows. As shown in FIG. 4, the subject is irradiated with a frequency-selective 90 ° RF pulse in a static magnetic field maintained along the first axis of the subject, and an RF magnetic field is applied along the second axis to cause nuclear spin. Of the RF pulse from the generation of τa + Δτ (where τ
a is a half of the time from the 90 ° RF pulse to the spin echo), and the subject is irradiated with a 180 ° RF pulse (4th time).
(Shown as 180 ° 'in the figure) to dephase the nuclear spins, and then add a phase return gradient having the same direction as the phase shift gradient to add the 180 ° RF pulse (180 °).
A nuclear spin echo occurs after (.tau.a + .DELTA..tau.), Which is a predetermined elapsed time from .degree. '), And a composite MR signal generated by this spin echo is collected.

この場合、90゜RFパルスの発生から180゜RFパ
ルスの発生までの時間がτaである通常の180゜RF
パルスを用いたパルスシーケンスと、上記方法のように
90゜RFパルスの発明から180゜RFパルスの発生
までの時間がτa−Δτである180゜′RFパルスを
用いたパルスシーケンスはいずれもπパルス両側の傾斜
磁場(GR 0)の印加量(GR 0・TG)は同じため、
傾斜磁場による核スピン・エコーの収集は完全に行われ
る。以後この効果を無視してchemical shiftによる位相
の変化のみ考える。いま、水のラーモア周波数で考えた
回転座標系を考えると、水の磁化は停止しているが脂質
の磁化はΔν[Hz]で回転するため、chmical shift
に起因する磁化の動きは第6図(a)(b)の如くな
り、第5図(a)に示す180゜RFパルス(180
゜)によるシーケンスでの磁化の運動に比し、第5図
(b)に示す180゜RFパルス(180゜′)による
シーケンスでの磁化の運動では最終的に2Δτ・Δνだ
け水と脂質の位相がずれることになる。この時2Δτ・
Δν=1/2とすると、水と脂質の信号の位相は180
゜ずれる。第1図に示すような位相エンコード用傾斜磁
場を加え傾斜磁場の強度を順次変化させながらMR信号
を収集し、2次元フーリエ変換を実行すると、水の密度
は正,脂質の密度は負で表示される。水と脂質の混合画
像(水−脂質画像)が得られる。同様にΔτ=0の条件
でMR信号を収集し、2次元フーリエ変換を実行すると
通常求められる水と脂質の密度分布の和を示す画像(水
+脂質画像)が求められる。
In this case, a normal 180 ° RF in which the time from the generation of 90 ° RF pulse to the generation of 180 ° RF pulse is τa
Both the pulse sequence using the pulse and the pulse sequence using the 180 ° 'RF pulse in which the time from the invention of the 90 ° RF pulse to the generation of the 180 ° RF pulse is τa-Δτ as in the above method are π pulses. Since the applied amounts (GR 0 · TG) of the gradient magnetic fields (GR 0) on both sides are the same,
Collection of nuclear spin echoes with a gradient magnetic field is complete. Hereafter, we ignore this effect and consider only the phase shift due to chemical shift. Now, considering a rotating coordinate system that considers the Larmor frequency of water, the magnetization of water is stopped, but the magnetization of lipid rotates at Δν [Hz], so the chmical shift
The movement of the magnetization caused by is as shown in FIGS. 6 (a) and 6 (b), and the 180 ° RF pulse (180 °) shown in FIG.
In comparison with the movement of the magnetization in the sequence by (°), the movement of the magnetization in the sequence by the 180 ° RF pulse (180 ° ') shown in FIG. 5 (b) finally causes the phase of water and lipid by 2Δτ · Δν. Will be shifted. At this time, 2Δτ
If Δν = 1/2, the phase of the water and lipid signals is 180
Deviate. When a two-dimensional Fourier transform is performed by collecting MR signals while sequentially changing the intensity of the gradient magnetic field by adding a gradient magnetic field for phase encoding as shown in Fig. 1, the density of water is displayed as positive and the density of lipid is displayed as negative. To be done. A mixed image of water and lipids (water-lipid image) is obtained. Similarly, when MR signals are collected under the condition of Δτ = 0 and the two-dimensional Fourier transform is executed, an image (water + lipid image) showing the sum of the density distributions of water and lipid which is usually obtained is obtained.

すなわち、次式の如くである。That is, it is as in the following equation.

(水+脂質)画像+(水−脂質)画像= 水のみの画像 (水+脂質)画像−(水−脂質)画像= 脂質のみの画像 しかし、上記の180゜′RFパルスを用いた場合、磁
場の不均一性(最大値ΔHmax)が存在すると2Δτ・
rΔHmax の位相のずれが画像に生じるため、均一性の
極端に長い領域で用いたり、あるいは不均一性の分布を
正確に測定して補正する必要があるという問題点を有し
ていた。更に水と脂質の分解した画像を得るためにはΔ
τ=0と1/4Δνの条件でスキャンを2回実行しなけ
ればならない。
(Water + lipid) image + (water-lipid) image = water only image (water + lipid) image− (water-lipid) image = lipid only image However, when the above 180 ° RF pulse is used, If there is magnetic field inhomogeneity (maximum value ΔHmax), 2Δτ
Since a phase shift of rΔHmax occurs in the image, there is a problem that it is necessary to use it in an extremely long region of uniformity or to accurately measure and correct the distribution of nonuniformity. To obtain an image in which water and lipids are decomposed, Δ
The scan must be executed twice under the conditions of τ = 0 and ¼Δν.

[発明の目的] 本発明は上記事情に鑑みてなされたもので、2次元フー
リエ変換イメージングの様な平面形イメージング方法に
予定の平面上パルス順序を適用させて磁場不均一性の少
ない水と脂質の分離した画像を1回のスキャンで得るこ
とを可能にすることを目的とする。
[Object of the Invention] The present invention has been made in view of the above circumstances, and water and lipid with less magnetic field inhomogeneity by applying a planned planar pulse sequence to a planar imaging method such as two-dimensional Fourier transform imaging. It is intended to be able to obtain the separated images of 1 in one scan.

[発明の概要] 本発明は上記目的を達成する為に、2次元フーリエ変換
により被検体断面内の2物質の特定原子核のスピン密度
の分布を得るようになした磁気共鳴イメージング方法に
おいて、被検体の第1の軸線に沿って静磁場を保ち、被
検体を選択性90゜RFパルスで照射し、予定の領域の
核スピンを励起して第1の予定の領域の期間の間第2の
軸線に沿って2つ(第2軸線,第3軸線)の位相ずらし
の勾配磁場を印加して励起された核スピンの位相を決め
られた量だけ、第2の予定の期間の間、前記RFパルス
の平均発生点からτa+Δτa(但し、τaは90゜の
RFパルスからスピン・エコーまでの時間の1/2)後
に被検体を180゜RFパルスで照射して前記励起され
た核スピンの位相を反転し、前記第2の期間の後の第3
の予定の期間の間、前記位相ずらし勾配磁場(第2軸
線)を加えて前記180゜RFパルスからτa−Δτ後
に、前記位相ずらし勾配磁場(第2軸線)によって位相
ずらしをした核スピンの位相戻しによって生じる核スピ
ン・エコーが、2物質の特定原子核のスピン・エコーに
なるように前記Δτを次式 Δτ=1/8・1/Δν (但し、Δνは2物質の特定原子核の共鳴周波数差)に
設定し、このスピン・エコーが複合MR信号を発生し、
この複合MR信号を収集し、2次元フーリエ変換を行う
ことにより2物質の分布像を1回のスキャンで独立に求
めることを特徴とする。
[Summary of the Invention] In order to achieve the above object, the present invention provides a magnetic resonance imaging method for obtaining a distribution of spin densities of specific nuclei of two substances in a cross section of a subject by a two-dimensional Fourier transform. A static magnetic field is maintained along the first axis of the object, and the subject is irradiated with a selective 90 ° RF pulse to excite nuclear spins in a predetermined region to generate a second axis during the period of the first predetermined region. The RF pulse for a second predetermined time period by applying a phase-determined amount of nuclear spins excited by applying two (2nd axis, 3rd axis) phase-shifted gradient magnetic fields along the Τa + Δτa (where τa is ½ of the time from the 90 ° RF pulse to the spin echo) from the average generation point of γ, and the phase of the excited nuclear spin is inverted by irradiating the subject with a 180 ° RF pulse. And the third after the second period
Of the phase of the nuclear spin phase-shifted by the phase-shifted gradient magnetic field (second axis) after τa-Δτ from the 180 ° RF pulse by applying the phase-shifted gradient magnetic field (second axis) during In order to make the nuclear spin echo generated by the return the spin echo of the specific nuclei of the two substances, Δτ is calculated as follows: Δτ = 1/8 · 1 / Δν (where Δν is the resonance frequency difference between the specific nuclei of the two substances) ), This spin echo generates a composite MR signal,
This composite MR signal is collected and a two-dimensional Fourier transform is performed to independently obtain distribution images of two substances in one scan.

[発明の実施例] 以下、本発明の詳細を図面を用いて説明する。Embodiments of the Invention Hereinafter, details of the present invention will be described with reference to the drawings.

第1図のように被検体の第1の軸線に沿って静磁場を保
ち、期間qの間被検体1を周波数選択性90゜RFパ
ルスで照射し、予定の領域の核スピンを励起して第1の
予定の期間qの間、第2の軸線に沿って少なくとも1
つの位相ずらしのRF磁場を印加して励起された核スピ
ンの位相ずらしをし、第2の予定の期間qの間、前記
RFパルスの平均発生点からτa+Δτ(但し、τaは
90゜RFパルスからスピン・エコーまでの時間τ
1/2)後に被検体を180゜RFパルスで照射して前
記励起された核スピンの位相戻しを開始し、前記第2の
期間qの後の第3の予定の期間qの間、前記位相ず
らし勾配と同じ方向をもつ少なくとも1つの位相戻し勾
配を加えて前記180゜RFパルスからτa−Δτ後
に、前記位相ずらし勾配によって位相ずらしをした核ス
ピンの位相戻しによって生じる核スピン・エコーが、水
と油の水素原子核のスピン・エコーになるように前記Δ
τを次式 Δτ=1/8・1/Δν (但し、Δνは水と油の水素原子核の共鳴周波数差)に
設定し、このスピン・エコーが複合MR信号を発生し、
この複合MR信号を収集するものである。したがって、
90゜RFパルスと180゜RFパルスの時間間隔τa
+Δτと、180゜RFパルスとスピン・エコーの時間
間隔との間には2Δτの時間差があり、水に含まれる水
素原子核の共鳴周波数を基準に考えると脂質は2Δτ・
Δνの位相差を生じ、この位相差が90゜(π/2)で
ある時(2Δτ・Δν=1/4)位相エンコード用の傾
斜磁場の振幅(又は印加時間)を順次変化させて収集し
たMR信号を複素2次元フーリエ変換してできる複素画
像のうち脂質の画像は虚部の画像となるが、水の画像は
実部の画像となる。この場合Δτ=1/8・Δνであ
る。水と脂質の位相差90゜は上記のとうり保持可能で
あるが、実際のMRIでは水の絶対位相が零になるとは
限らず、RF系G磁場から付加される装置,シーケンス
固有の位相差Δψがある。そして、このΔψを得るため
に、被検体と同時に位置が決まっている水ファントムを
おいて(第2図(c)参照)スキャンし画像を形成す
る。この場合、第2図(a)の実部の画Ir′(x,
y)と、第2図(b)に示す虚部の画像Ii′(x,
y)において、位相Δψのため2次元フーリエ変換して
出来た複素画像の実部とIr′(x,y)とIi′
(x,y)に水ファントムの像ができる(第2図
(a),(b)の3と4)の位置が決まっているから水
ファントム3の複素画像値(第2図(a),(b)の3
と4)をとり出して次式によりΔψを求める。
As shown in FIG. 1, a static magnetic field is maintained along the first axis of the subject, and the subject 1 is irradiated with a frequency-selective 90 ° RF pulse for a period q 1 to excite nuclear spins in a predetermined region. For at least 1 along the second axis during the first scheduled period q 2.
Phases of the excited nuclear spins are phase-shifted by applying two phase-shifted RF magnetic fields, and τa + Δτ (where τa is a 90 ° RF pulse) from the average generation point of the RF pulses during the second scheduled period q 2. (1/2) of the time τ E from the spin echo to the spin echo, the object is irradiated with a 180 ° RF pulse to start the phase return of the excited nuclear spins, and after the second period q 3 . during the period q 4 3 appointment, at least one rephasing after .tau.a-.DELTA..tau added a gradient from the 180 ° RF pulse, the nuclear spins by shifting the phase shifting the phase by a gradient with the same direction as the phase shift gradients The nuclear spin echo caused by the phase reversal of is set to be the spin echo of the hydrogen nuclei of water and oil.
τ is set to the following equation Δτ = 1/8 · 1 / Δν (where Δν is the resonance frequency difference between the hydrogen nuclei of water and oil), and this spin echo generates a composite MR signal,
This composite MR signal is acquired. Therefore,
Time interval τa between 90 ° RF pulse and 180 ° RF pulse
There is a time difference of 2Δτ between + Δτ and the time interval of the 180 ° RF pulse and the spin echo. Considering the resonance frequency of hydrogen nuclei contained in water as a reference, lipids are 2Δτ ・
A phase difference of Δν is generated, and when the phase difference is 90 ° (π / 2) (2Δτ · Δν = 1/4), the amplitude (or application time) of the gradient magnetic field for phase encoding is sequentially changed and collected. Among the complex images formed by performing the complex two-dimensional Fourier transform of the MR signal, the lipid image becomes the imaginary part image, while the water image becomes the real part image. In this case, Δτ = 1/8 · Δν. The phase difference of 90 ° between water and lipid can be retained as described above, but in actual MRI the absolute phase of water does not always become zero. There is Δψ. Then, in order to obtain this Δφ, a water phantom whose position is determined at the same time as the subject is set (see FIG. 2 (c)) and scanned to form an image. In this case, the image Ir '(x,
y) and the image Ii '(x, of the imaginary part shown in FIG. 2 (b).
In y), the real part of the complex image obtained by the two-dimensional Fourier transform for the phase Δψ and Ir ′ (x, y) and Ii ′
Since the position of the image of the water phantom is formed at (x, y) (3 and 4 in FIGS. 2 (a) and 2 (b)), the complex image value of the water phantom 3 (FIG. 2 (a), 3 of (b)
And 4) are taken out and Δψ is calculated by the following equation.

Δψ=tan-1虚部値 (第2図(b)の4)実部値(第2図(a)の3) 上式により得られたΔψを用いて次式を被検体の画像
(第2図(a),(b)の1,2)の各ピクセル毎に計
算すると水1と脂質2の画像が第3図(a)(b)のよ
うにそれぞれ分離して得られる。
Δψ = tan −1 imaginary part value (4 in FIG. 2 (b)) real part value (3 in FIG. 2 (a)) Using Δψ obtained by the above formula, the following formula is applied to the image of the subject ( When the calculation is performed for each pixel in FIGS. 2 (a) and 2 (b), 1), images of water 1 and lipid 2 are separately obtained as shown in FIGS. 3 (a) and 3 (b).

Ir(x・y)=Ir′(x・y)cosΔψ +Ii′(x・Y)sinΔψ Ii(x・y)=−Ir′(x・y)sinΔψ +Ii′(x・Y)cosΔψ さらに、水 +脂質の画像は次式 の画像間演算又は次式 のピクセル毎の演算でも可能である。Ir (x · y) = Ir ′ (x · y) cos Δψ + Ii ′ (x · Y) sin Δψ Ii (x · y) = − Ir ′ (x · y) sin Δψ + Ii ′ (x · Y) cos Δψ Further, , Water + lipid image is Between images or the following formula It is also possible to calculate for each pixel of.

したがって、この発明では180゜RFパルスの移動量
がΔτ=1/4・1/ΔνからΔτ=1/8・1/Δν
となり、静磁場不均一性の影響が1/2と小さくなるば
かりでなく、1回スキャンで水と脂質の分布像を分離し
て求めることができる。
Therefore, in the present invention, the movement amount of the 180 ° RF pulse is from Δτ = 1/4 · 1 / Δν to Δτ = 1/8 · 1 / Δν
Therefore, not only is the influence of the static magnetic field inhomogeneity reduced to 1/2, but the distribution image of water and lipid can be obtained separately by one scan.

この発明は前記実施例に限定されるものではなく、この
発明の要旨の範囲内での種々の変形例を包含することは
言うまでもない。例えば、前記実施例は水と油の水素原
子核の複素画像の場合について説明したが、その特質は
適宜選定すればよい。
It is needless to say that the present invention is not limited to the above-mentioned embodiments and includes various modifications within the scope of the gist of the present invention. For example, in the above-mentioned embodiment, the case of a complex image of hydrogen nuclei of water and oil has been described, but the characteristics thereof may be appropriately selected.

[発明の効果] この発明は、90゜RFパルスの平均発生点かτa+Δ
τ後に180゜RFパルスを被検体に照射し、この18
0゜RFパルスからτa+Δτ後に核スピン・エコーが
発生するように前記Δτを次式 Δτ=1/8・1/Δν に設定したから、一回のスキャンで例えば水と油の複素
画像が得られる上に、静磁場不均一性の影響が1/2に
小さくなり、鮮明な複素画像が一回のスキャンで得ら
れ、診断上優れた効果を有する。
[Advantages of the Invention] The present invention is based on the average generation point of 90 ° RF pulse or τa + Δ
After τ, irradiate the subject with a 180 ° RF pulse.
Since Δτ is set to the following equation Δτ = 1/8 · 1 / Δν so that a nuclear spin echo is generated after τa + Δτ from a 0 ° RF pulse, a complex image of water and oil can be obtained by one scan. In addition, the influence of static magnetic field inhomogeneity is reduced to 1/2, and a clear complex image can be obtained by one scan, which is excellent in diagnosis.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの本発明の2次元フーリエ変換に使われるM
Rパルス順序を示すグラフ,第2図(a),(b)は補
正処理前の複素画像を示し、第2図(c)は被検体と水
ファントムの位置の関係を示し、第3図(a),(b)
は補正後の分離した複素画像を示し、第4図は従来の2
次元フーリエ変換に使われるMRパルス順序を示すグラ
フ、第5図(a),(b)は水と脂質の陽子スピンベク
トルの説明図である。 1……水、2……脂質、3……水ファントム。
FIG. 1 shows M used in the two-dimensional Fourier transform of the present invention.
Graphs showing the R pulse sequence, FIGS. 2 (a) and 2 (b) show a complex image before correction processing, FIG. 2 (c) shows the relationship between the positions of the subject and the water phantom, and FIG. a), (b)
Shows the separated complex image after correction, and FIG.
Graphs showing the MR pulse sequence used for the three-dimensional Fourier transform, and FIGS. 5A and 5B are explanatory diagrams of the proton spin vectors of water and lipid. 1 ... water, 2 ... lipid, 3 ... water phantom.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】2次元フーリエ変換により被検体断面内の
2物質の特定原子核のスピン密度の分布を得るようにな
した磁気共鳴イメージング方法において、被検体の第1
の軸線に沿って静磁場を保ち、被検体を選択性90゜R
Fパルスで照射し、予定の領域の核スピンを励起して第
1の予定の領域の期間の間第2の軸線に沿って2つ(第
2軸線,第3軸線)の位相ずらしの勾配磁場を印加して
励起された核スピンの位相を決められた量だけ、第2の
予定の期間の間、前記RFパルスの平均発生点からτa
+Δt(但し、τaは90゜のRFパルスからスピン・
エコーまでの時間の1/2)後に被検体を180゜RF
パルスで照射して前記励起された核スピンの位相を反転
し、前記第2の期間の後の第3の予定の期間の間、前記
位相ずらし勾配磁場(第2軸線)を加えて前記180゜
RFパルスからτa−Δτ後に、前記位相ずらし勾配磁
場(第2軸線)によって位相ずらしをした核スピンの位
相戻しによって生じる核スピン・エコーが、2物質の特
定原子核のスピン・エコーになるように前記Δτを次式 Δτ=1/8・1/Δν (但し、Δνは2物質の特定原子核の共鳴周波数差)に
設定し、このスピン・エコーが複合MR信号を発生し、
この複合MR信号を収集し、2次元フーリエ変換を行う
ことにより2物質の分布像を1回のスキャンで独立に求
めることを特徴とする磁気共鳴イメージング方法。
1. A magnetic resonance imaging method for obtaining a distribution of spin densities of specific nuclei of two substances in a cross section of a subject by a two-dimensional Fourier transform.
Maintains a static magnetic field along the axis of and selects the object 90 ° R
Two (2nd axis, 3rd axis) phase-shifted gradient magnetic fields along the second axis during the period of the first planned area by irradiating with F pulse to excite nuclear spins in the planned area. By a fixed amount of the phase of the excited nuclear spins during the second scheduled period from the average generation point of the RF pulse by τa
+ Δt (where τa is the spin
After the half of the time until the echo), the subject is RF 180 °
The phase of the excited nuclear spins is inverted by irradiating with a pulse, and the phase-shifted gradient magnetic field (second axis) is applied for a third predetermined period after the second period to obtain the 180 ° After τa−Δτ from the RF pulse, the nuclear spin echo generated by the phase reversal of the nuclear spin phase-shifted by the phase-shifted gradient magnetic field (second axis) becomes the spin echo of the specific nuclei of the two substances. Δτ is set to the following equation Δτ = 1/8 · 1 / Δν (where Δν is the resonance frequency difference between specific nuclei of two substances), and this spin echo generates a composite MR signal,
A magnetic resonance imaging method characterized in that a distribution image of two substances is independently obtained by one scan by collecting this composite MR signal and performing a two-dimensional Fourier transform.
JP60174892A 1985-08-07 1985-08-07 Magnetic resonance imaging method Expired - Lifetime JPH0620434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60174892A JPH0620434B2 (en) 1985-08-07 1985-08-07 Magnetic resonance imaging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60174892A JPH0620434B2 (en) 1985-08-07 1985-08-07 Magnetic resonance imaging method

Publications (2)

Publication Number Publication Date
JPS6234549A JPS6234549A (en) 1987-02-14
JPH0620434B2 true JPH0620434B2 (en) 1994-03-23

Family

ID=15986504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60174892A Expired - Lifetime JPH0620434B2 (en) 1985-08-07 1985-08-07 Magnetic resonance imaging method

Country Status (1)

Country Link
JP (1) JPH0620434B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2607466B2 (en) * 1985-08-30 1997-05-07 株式会社日立製作所 Inspection equipment using nuclear magnetic resonance
JPH01227745A (en) * 1988-03-07 1989-09-11 Yokogawa Medical Syst Ltd Chemical shift image forming method by nuclear magnetic resonance photographic device

Also Published As

Publication number Publication date
JPS6234549A (en) 1987-02-14

Similar Documents

Publication Publication Date Title
US6307368B1 (en) Linear combination steady-state free precession MRI
JP4444413B2 (en) Apparatus for quantitative MR imaging of water and fat using quad field echo sequence
US4318043A (en) Method and apparatus for rapid NMR imaging of nuclear densities within an object
JP2000135206A5 (en) A device for quantitative MR imaging of water and fat using a quadruple field echo sequence
JPH0646986B2 (en) Magnetic resonance imager
GB2320576A (en) A multi-echo Dixon water and fat separation sequence
US5051699A (en) Magnetic resonance imaging system
JPH07171122A (en) Correcting method for read gradient magnetic flux polarity in epi and grase mri
US4918386A (en) Method for simultaneously obtaining three-dimensional NMR angiograms and stationary tissue NMR images
US5544653A (en) Magnetic resonance imaging method and apparatus
JP4101300B2 (en) Spectroscopy magnetic resonance imaging method and apparatus
JPH02149250A (en) Magnetic resonance image device
US4920314A (en) Magnetic resonance imaging system
WO2002045584A1 (en) Measuring method in magnetic resonance imaging device and magnetic resonance imaging device
JP2001511057A (en) Magnetic resonance method and apparatus for determining perfusion images
US4855679A (en) Magnetic resonance studies of restricted volumes
US4983918A (en) Magnetic resonance imaging system
JPH0578338B2 (en)
JPH0620434B2 (en) Magnetic resonance imaging method
US7148687B2 (en) Method for the acquisition of moving objects through nuclear magnetic resonance tomography
JP3359938B2 (en) Magnetic resonance imaging
JPH0751124B2 (en) NMR inspection device using chemical shift value
JP3152690B2 (en) Magnetic resonance imaging
EP3726239A1 (en) Susceptibility-weighting from phase-contrast mr imaging
JP2003144413A (en) Magnetic resonance imaging device