JPS6234433B2 - - Google Patents

Info

Publication number
JPS6234433B2
JPS6234433B2 JP53108568A JP10856878A JPS6234433B2 JP S6234433 B2 JPS6234433 B2 JP S6234433B2 JP 53108568 A JP53108568 A JP 53108568A JP 10856878 A JP10856878 A JP 10856878A JP S6234433 B2 JPS6234433 B2 JP S6234433B2
Authority
JP
Japan
Prior art keywords
water
hexavalent chromium
ferrous sulfate
gypsum
contaminated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53108568A
Other languages
Japanese (ja)
Other versions
JPS5535917A (en
Inventor
Tomizo Ono
Katsumi Fujishima
Akitoyo Takano
Nobuaki Sakamaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOTSUKAIDO
NICHIREKI KAGAKU KOGYO KK
Original Assignee
HOTSUKAIDO
NICHIREKI KAGAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOTSUKAIDO, NICHIREKI KAGAKU KOGYO KK filed Critical HOTSUKAIDO
Priority to JP10856878A priority Critical patent/JPS5535917A/en
Publication of JPS5535917A publication Critical patent/JPS5535917A/en
Publication of JPS6234433B2 publication Critical patent/JPS6234433B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、6価クロム汚染水の6価クロムを還
元処理するのに好適で、還元力に持続性のある硫
酸第一鉄を石こうで固形化した6価クロム汚染水
の処理剤および6価クロム汚染水の処理方法に関
する。 クロム鉱滓を埋立や廃棄した土地では、有害な
6価クロムの溶出量が多いために大きな公害問題
となつており、6価クロムの溶出を防止するため
に適切な処置をとることが必要である。 従来6価クロムの溶出防止のための処理方法と
して、多くの方法が提案されているが、一般的に
は6価クロムの汚染水を酸性ないし中性として硫
酸第一鉄、亜硫酸ソーダ、重亜硫酸ソーダ等の還
元剤を作用させ3価クロムに還元し、次で弱アル
カリ性で不溶性の水酸化クロムにかえる方法が用
いられている。 本発明者等は種々研究の結果、クロム鉱滓より
溶出する6価クロムに直接硫酸第一鉄を加えるこ
とによつて、単に3価のクロムイオンに還元する
だけでなく、水に不溶の水酸化クロムの沈澱とし
て分離可能なことを見い出した。その化学反応は
次の様に考えられる。 Ca(OH)2+FeSO4 →CaSO4+Fe(OH)2 ……(1) 2Na2CrO4+6FeSO4+8H2SO4→ Cr2(SO43+3Fe2(SO43 +2Na2SO4+8H2O ……(2) Cr2(SO43+3Ca(OH)2 →2Cr(OH)3+3CaSO4 ……(3) まず(1)式の置換反応によつてPHが下がり、PH9
付近から(2)式の還元反応と、(3)式の沈澱反応がほ
とんど同進に進行し、水酸化クロムとして完全に
沈澱したところで反応は完結する。 以上の反応は遊離の硫酸がなければ進行しない
が次の(4)および(5)式のように硫酸第一鉄および硫
酸第二鉄は加水分解によつて硫酸を遊離する。 2FeSO4+5H2O+1/2O2 →2Fe(OH)3+2H2SO4 ……(4) Fe2(SO43+6H2O →2Fe(OH)3+3H2SO4 ……(5) とくに硫酸第二鉄は遊離の硫酸があれば加水分
解が促進されるから、PHは硫酸第一鉄の場合より
も下がる。6価クロム量が多くなるにしたがつて
その還元によつて生成する硫酸第二鉄量が多くな
りPHはより下がると考えられる。またクロム鉱滓
の6価クロムが硫酸第一鉄により還元されて生じ
た水酸化クロムはゲル状沈澱で、同時に多量に生
ずる水酸化鉄と共沈し不透水性の層をつくる。こ
の層は硫酸第一鉄が6価クロムの当量より過剰で
あると6価クロムの吸着能が非常に大きいことか
らクロム鉱滓処分地の6価クロム溶出防止のた
め、クロム鉱滓処分地の表面から一定の厚さで硫
酸第一鉄と土砂や砕石の混合層を設け、この上に
覆土又はアスフアルトによる保護層を設ける方法
がとられている。この方法により雨水によつて地
表に6価クロムが滲出するのを防止できる。しか
し、地中内部に地下水の流れや連続的に湧水があ
ると、これに6価クロムが溶出して6価クロム汚
染水となり、側溝等に湧出してくることがさけら
れない。このような6価汚染水は、日によつてそ
の量に増減があり、また6価クロムの汚染量も異
なるが、毎日たえず流れ出るために、これらを他
に拡散させることなく速やかに集水し、恒久的に
還元処理することが必要であり、このような還元
処理をするためにも、長時間十分に還元能力を発
揮できる還元剤と経済的で管理の容易な還元処理
システムの開発が要望されている。 本発明は、このような要望にこたえるもので、
6価クロム汚染水の6価クロムを持続的に効率よ
く還元不溶化できる6価クロム汚染水の処理剤
と、この処理剤を用いて6価クロム汚染水を効率
よく無害化処理する6価クロム汚染水の処理方法
を提供することを目的としている。 即ち、本発明は、硫酸第一鉄と石膏および水さ
らに必要に応じて樹脂エマルジヨン、瀝青乳剤、
ゴムラテツクス等を加えて混合し固化成形してな
る6価クロム汚染水の処理剤と、6価クロム汚染
水の流水径路内に該処理剤を充填したカゴを設置
したピツトまたは個所(以下還元域という)を1
個もしくは複数個設け、これらの還元域を通過す
るように6価クロム汚染水を流すことを特徴とす
る。 本発明に使用する硫酸第一鉄は、4水和物、5
水和物、7水和物のいずれも使用できるが、一般
に市販工業用の7水和物(FeSO4・7H2O)が用
いられる。 本発明に使用する石膏は、無水石膏、半水石膏
(α型、β型共)で、一般に半水石膏が用いられ
る。また、水は例えば一般の水道水、地下水、河
川水、湖沼水、工業用水等の淡水と海水のいずれ
でも差し支えない。 本発明に必要に応じて使用される樹脂エマルジ
ヨン、瀝青乳剤、ゴムラテツクス等は例えば次の
ようなものである。 樹脂エマルジヨンでは、石油樹脂、ロジンとそ
の誘導体、クマロンインデン樹脂、スチレン・ブ
タヂエン系樹脂、スチレン・アクリレート系樹
脂、酢酸ビニール系樹脂、酢酸ビニール・アクリ
レート共重合樹脂、ポリアクリレート系樹脂、ア
ルキツド樹脂、ポル塩化ビニール系樹脂、ポリ塩
化ビニリデン系樹脂、ポリエチレン樹脂、エポキ
シ樹脂とその硬化剤等のエマルジヨンでアニオン
系、ノニオン系、カチオン系のいずれのエマルジ
ヨンも使用できる。 瀝青乳剤は、アスフアルト、タール、ピツチな
どの乳剤でアニオン系、ノニオン系、カチオン系
のいずれの乳剤も使用できる。ゴムラテツクスで
は、天然ゴム、合成ゴムたとえばイソプレンゴ
ム、スチレン・ブタヂエンゴム、スチレン・イソ
プレンゴム、ニトリルゴム、クロロプレンゴム、
ブチルゴム、ブタヂエンゴムなどのラテツクス
で、アニオン系、ノニオン系、カチオン系のいず
れのラテツクスも使用できる。これらの樹脂エマ
ルジヨン、瀝青乳剤、ゴムラテツクス等(以下こ
れらを単に樹脂エマルジヨン等という)は併用す
ることもできる。これらの樹脂エマルジヨン等は
固形化した処理剤の防水性を増し硫酸第一鉄の溶
出速度をおくらせることができる。 本発明の6価クロム汚染水の処理剤は上述した
材料により一般に次のようにして造ることができ
る。即ち、硫酸第一鉄に固化剤の石こうを計量混
合し、規定量の水又は樹脂エマルジヨン等を添加
した水を添加混合し、適当な容器あるいは型枠内
に入れて固化し、脱型後重量で1〜10Kg程度の大
きさの塊りに砕いて造られる。 硫酸第一鉄と石膏の割合はいろいろかえること
ができるが、その配合比率は重量比で硫酸第一
鉄:石こう=50:50〜90:10の範囲内が好まし
い。水の量は通常石こう50重量部に対し40重量部
ぐらい使用する。さらに樹脂エマルジヨン等を使
用するときは、通常硫酸第一鉄と石膏の和の10重
量%以内で用いる。 次に本発明による処理剤の作用について説明す
る。 (1) 固形化された処理剤を6価クロム汚染水中に
浸漬すると処理剤から硫酸第一鉄が溶けて6価
クロムを還元し3価の水酸化クロムの形で不溶
化し水酸化鉄と共に沈澱する。処理剤の塊は硫
酸第一鉄の溶解につれて多孔質となり6価クロ
ム汚染水との接触面が広くなり塊の内部の硫酸
第一鉄も順次溶解してすべて還元剤として働ら
く。 (2) 硫酸第一鉄の溶出は長時間にわたつて徐々に
しかも一様に行なわれるので、還元作用を長時
間持続できる。また硫酸第一鉄は石膏固化によ
り消費されないので、処理剤中の還元剤はすべ
て有効に還元剤として作用する。 本発明の処理剤は石膏で固化されているの
で、硫酸第一鉄の水への溶出が初日は約30%程
度であるが、その後はゆるやかで一定の速度で
直線的に溶出し、6〜8日で100%溶出する。
即ち100%溶出するまでの溶出量はほゞ平均化
されるので、この間硫酸第一鉄の還元力は有効
に保持される。石膏固化しない硫酸第一鉄その
まゝのものでは水への溶出は瞬時に行われるの
で、流水等では流れ去つてしまい硫酸第一鉄の
還元力を長時間保持することができない。 固化剤としてセメント、水硝子等を使用する
と、硫酸第一鉄と反応するので、硫酸第一鉄が
消費され、それだけ還元力がなくなる。たとえ
ば硫酸第一鉄をセメントで固化しようとする
と、硫酸第一鉄はセメントのCaOと反応して石
膏になる。 (3) 容易に種々の形状に成形でき、また強度もあ
り取扱いが簡単である。 円柱形、6角柱形、4角形、豆炭形、卵形塊
状その他いろいろの形にでき、強度があるから
実際に使用するときは、カゴにいれて6価クロ
ム汚染水中に浸漬し、使用ずみ後、取出せばよ
く、廃棄も固形物のため取扱いが容易である。 本発明の処理剤は上記のような作用及び特徴を
有するので、これを使用することによりクロム鉱
滓などの処分地から出る6価クロム汚染水を恒久
的に還元処理することができる。 即ち、クロム鉱滓処分地の地下水、湧水、雨水
等の流れを集水して流す流水径路内にピツトを1
個ないし複数個設けて、そのピツトの一つあるい
は複数個に本発明の処理剤をかごに詰めて入れて
おけば、6価クロム汚染水がピツトを通るときに
還元されて無害化されて排出される。ピツトに入
れる処理剤の量は、6価クロム汚染水の流量と汚
染度から決定する。そして処理剤中の硫酸第一鉄
の溶出が6日で完了する処理剤では7日目に新し
い処理剤と交換すればよい。処理剤を入れるピツ
トは適宜撹拌できる様にすれば一層効果的であ
る。硫酸第一鉄の溶出は比重の関係で濃度勾配が
生じ、ピツトの底部が濃く上にいく程薄くなるか
らである。この撹拌の方法として例えばピツトの
底にラセン形のパイプを沈め、このパイプに方向
をかえて小孔を数多くあけておき、時々このパイ
プを通じて外から空気を送つて撹拌するとよい。
これによつて、6価クロム汚染水の還元を一様に
行うことができる。硫酸第一鉄を用いて6価クロ
ム汚染水をピツトで還元して排出された水では、
6価クロムはとれるが、PHがやゝ酸性で硫酸第一
鉄も存在する。従つて、この水をそのまゝ流し、
その下流でピツトの径路以外から流出する6価ク
ロムに汚染されている水と合流させる場合には、
この6価クロムを還元することができる。しかし
酸性の水をそのまゝ排出できない場合には、処理
剤を入れてあるピツトの下流に炭酸カルシウムや
石灰石等を入れ、中和することができる。 この方法をとることにより硫酸第一鉄のロスが
なく有効に還元処理に用いられ、また週1回程度
の処理剤のとりかえで完全に6価クロム汚染水を
無害化でき、しかも非常に管理が容易で経済的で
ある。 本発明の6価クロム汚染水の処理剤および処理
法は、クロム鉱滓処分地の6価クロム汚染水のみ
ならず、種々の排水の6価クロム汚染水にも適用
することができる。 次に実施例について説明する。 なお以下の実施例において試験方法と使用材料
は次の通りである。 試験方法; 硫酸第一鉄石膏固形物(処理剤)の硫酸第一鉄
の溶出試験 硫酸第一鉄に石膏、水等を加えて固化し、材令
7日のもので、径10cm程度の塊を流水中に浸漬し
ておき、一定時間毎に試料を取出した。この試料
の一部を砕き、規定量の水に浸漬して十分撹拌し
たのち濾過し、濾過に硫酸(1+1)5mlを加え
て、N/10過マンガン酸カリウムで滴定し、過マ
ンガン酸カリウムの消費量を硫酸第一鉄
(FeSO4・7H2O)に換算した。 そして、硫酸第一鉄(FeSO4・7H2O)の溶出
量を硫酸第一鉄と石膏との和100g当りの溶出量
(g)で表わした。 使用材料; 硫酸第一鉄 FeSO4・7H2O 石こう 半水石こう 水 水道水 合成ゴムラテツクス スチレン・ブタヂエン
ゴム ラテツクス(不揮発分 50重量%) 瀝青乳剤 カチオン系アスフアルト乳剤 MK
―1(蒸発残溜分58重量%、蒸発残溜物の針入
度145) 実施例 1 表―1に示す配合で硫酸第一鉄に石こう、水、
合成ゴムラテツクス等を混合し直径10cm高さ10cm
の円筒形型枠に注入して固化し、24時間放置後脱
型し本発明の処理剤を得た。
The present invention is suitable for reducing hexavalent chromium in hexavalent chromium-contaminated water, and includes a treatment agent for hexavalent chromium-contaminated water that is made by solidifying ferrous sulfate with gypsum and has a long-lasting reducing power. Concerning a method for treating chromium-contaminated water. Land where chromium slag has been landfilled or disposed of has become a major pollution problem due to the large amount of harmful hexavalent chromium eluted, and it is necessary to take appropriate measures to prevent the leaching of hexavalent chromium. . Many treatment methods have been proposed to prevent the elution of hexavalent chromium, but in general, the hexavalent chromium-contaminated water is made acidic or neutral and treated with ferrous sulfate, sodium sulfite, or bisulfite. A method is used in which chromium is reduced to trivalent chromium by the action of a reducing agent such as soda, and then converted to weakly alkaline and insoluble chromium hydroxide. As a result of various studies, the present inventors have found that by directly adding ferrous sulfate to hexavalent chromium eluted from chromium slag, it is possible to not only reduce it to trivalent chromium ions, but also to oxidize it to water-insoluble hydroxide. It was discovered that it can be separated as a chromium precipitate. The chemical reaction can be considered as follows. Ca(OH) 2 +FeSO 4 →CaSO 4 +Fe(OH) 2 ...(1) 2Na 2 CrO 4 +6FeSO 4 +8H 2 SO 4 → Cr 2 (SO 4 ) 3 +3Fe 2 (SO 4 ) 3 +2Na 2 SO 4 +8H 2 O ...(2) Cr 2 (SO 4 ) 3 +3Ca(OH) 2 →2Cr(OH) 3 +3CaSO 4 ...(3) First, the pH decreases by the substitution reaction of formula (1), and the pH becomes 9.
From the vicinity, the reduction reaction of equation (2) and the precipitation reaction of equation (3) proceed almost simultaneously, and the reaction is completed when chromium hydroxide is completely precipitated. The above reaction does not proceed without free sulfuric acid, but as shown in equations (4) and (5) below, ferrous sulfate and ferric sulfate liberate sulfuric acid through hydrolysis. 2FeSO 4 +5H 2 O+1/2O 2 →2Fe(OH) 3 +2H 2 SO 4 ...(4) Fe 2 (SO 4 ) 3 +6H 2 O →2Fe(OH) 3 +3H 2 SO 4 ...(5) Especially sulfuric acid Hydrolysis of ferric iron is accelerated in the presence of free sulfuric acid, so the pH is lower than with ferrous sulfate. It is thought that as the amount of hexavalent chromium increases, the amount of ferric sulfate generated by its reduction increases, and the pH further decreases. Furthermore, the chromium hydroxide produced when the hexavalent chromium in the chromium slag is reduced by ferrous sulfate is a gel-like precipitate, which co-precipitates with a large amount of iron hydroxide, forming an impermeable layer. This layer is formed from the surface of the chromium slag disposal site in order to prevent the elution of hexavalent chromium from the chromium slag disposal site, as the adsorption capacity for hexavalent chromium is extremely large when ferrous sulfate is in excess of the equivalent amount of hexavalent chromium. The method used is to provide a mixed layer of ferrous sulfate, earth, sand, or crushed stone to a certain thickness, and then provide a protective layer of soil or asphalt on top of this. This method can prevent hexavalent chromium from leaching to the ground surface due to rainwater. However, if there is a flow of underground water or continuous spring water inside the ground, hexavalent chromium will be eluted into the water, resulting in hexavalent chromium-contaminated water, which will inevitably flow into gutters and the like. The amount of such hexavalent contaminated water increases or decreases depending on the day, and the amount of hexavalent chromium contamination also varies, but because it flows out constantly every day, it is necessary to collect it quickly without spreading it elsewhere. , it is necessary to perform a permanent reduction treatment, and in order to carry out such a reduction treatment, there is a need for the development of a reducing agent that can demonstrate sufficient reduction ability for a long time and an economical and easy-to-manage reduction treatment system. has been done. The present invention meets these demands, and
A treatment agent for hexavalent chromium-contaminated water that can sustainably and efficiently reduce and insolubilize hexavalent chromium in hexavalent chromium-contaminated water, and a treatment agent for hexavalent chromium-contaminated water that uses this treatment agent to efficiently detoxify hexavalent chromium-contaminated water. The purpose is to provide a water treatment method. That is, the present invention uses ferrous sulfate, gypsum and water, and if necessary, resin emulsion, bituminous emulsion,
A treatment agent for hexavalent chromium-contaminated water is prepared by adding rubber latex, etc., mixed and solidified, and a pit or a place (hereinafter referred to as a reduction zone) in which a basket filled with the treatment agent is installed in the flow path of the hexavalent chromium-contaminated water. ) to 1
One or more reduction zones are provided, and hexavalent chromium-contaminated water is allowed to flow through these reduction zones. The ferrous sulfate used in the present invention is tetrahydrate, pentahydrate,
Although either hydrate or heptahydrate can be used, commercially available industrial heptahydrate (FeSO 4 .7H 2 O) is generally used. The gypsum used in the present invention is anhydrite or hemihydrate gypsum (both α type and β type), and generally hemihydrate gypsum is used. Furthermore, the water may be either freshwater or seawater, such as general tap water, groundwater, river water, lake water, industrial water, etc. Examples of the resin emulsion, bituminous emulsion, rubber latex, etc. that may be used as necessary in the present invention are as follows. Resin emulsions include petroleum resins, rosin and its derivatives, coumaron indene resins, styrene-butadiene resins, styrene-acrylate resins, vinyl acetate resins, vinyl acetate-acrylate copolymer resins, polyacrylate resins, alkyd resins, Emulsions of polyvinyl chloride resins, polyvinylidene chloride resins, polyethylene resins, epoxy resins and their curing agents, and any of anionic, nonionic, and cationic emulsions can be used. The bitumen emulsion is an emulsion of asphalt, tar, pitch, etc., and any of anionic, nonionic, and cationic emulsions can be used. Rubber latex includes natural rubber, synthetic rubber, such as isoprene rubber, styrene/butadiene rubber, styrene/isoprene rubber, nitrile rubber, chloroprene rubber,
Anionic, nonionic, and cationic latexes such as butyl rubber and butadiene rubber can be used. These resin emulsions, bituminous emulsions, rubber latexes, etc. (hereinafter simply referred to as resin emulsions, etc.) can also be used in combination. These resin emulsions and the like can increase the waterproofness of the solidified processing agent and slow down the elution rate of ferrous sulfate. The treatment agent for hexavalent chromium-contaminated water of the present invention can generally be produced from the above-mentioned materials in the following manner. That is, ferrous sulfate is weighed and mixed with gypsum as a solidifying agent, mixed with a specified amount of water or water to which resin emulsion, etc. has been added, placed in a suitable container or mold, solidified, and the weight is determined after demolding. It is made by crushing it into chunks of about 1 to 10 kg in size. Although the ratio of ferrous sulfate and gypsum can be varied, it is preferable that the weight ratio of ferrous sulfate to gypsum is in the range of 50:50 to 90:10. The amount of water used is usually about 40 parts by weight per 50 parts by weight of gypsum. Furthermore, when using resin emulsion etc., it is usually used within 10% by weight of the sum of ferrous sulfate and gypsum. Next, the action of the processing agent according to the present invention will be explained. (1) When the solidified treatment agent is immersed in water contaminated with hexavalent chromium, ferrous sulfate dissolves from the treatment agent, reduces hexavalent chromium, insolubilizes it in the form of trivalent chromium hydroxide, and precipitates together with iron hydroxide. do. As the ferrous sulfate dissolves, the treatment agent lump becomes porous and the contact surface with the hexavalent chromium-contaminated water becomes wider, and the ferrous sulfate inside the lump also gradually dissolves, all of which work as a reducing agent. (2) Since the elution of ferrous sulfate occurs gradually and uniformly over a long period of time, the reducing action can be sustained for a long period of time. Further, since ferrous sulfate is not consumed by gypsum solidification, all the reducing agents in the treatment agent effectively act as reducing agents. Since the treatment agent of the present invention is solidified with gypsum, the elution of ferrous sulfate into water is about 30% on the first day, but after that it elutes linearly at a slow and constant rate, 100% elution occurs in 8 days.
That is, the amount of elution until 100% elution is approximately averaged, so that the reducing power of ferrous sulfate is effectively maintained during this time. Ferrous sulfate, which does not solidify into gypsum, dissolves into water instantaneously, so it will wash away under running water, and the reducing power of ferrous sulfate cannot be maintained for a long time. If cement, water glass, etc. are used as a solidifying agent, they will react with ferrous sulfate, which will consume the ferrous sulfate and reduce the reducing power. For example, when trying to solidify ferrous sulfate with cement, the ferrous sulfate reacts with CaO in the cement and becomes gypsum. (3) It can be easily molded into various shapes, has strength, and is easy to handle. It can be made into various shapes such as cylindrical, hexagonal prism, square, charcoal, oval, etc., and is strong, so when it is actually used, it is placed in a basket and immersed in hexavalent chromium-contaminated water. It is easy to handle and dispose of by simply taking it out and disposing of it as it is a solid substance. Since the treatment agent of the present invention has the above-mentioned actions and characteristics, by using the treatment agent, it is possible to permanently reduce water contaminated with hexavalent chromium discharged from disposal sites such as chromium slag. In other words, one pit is installed in the water path that collects and flows groundwater, spring water, rainwater, etc. from the chrome slag disposal site.
If one or more pits are provided, and one or more of the pits is filled with the treatment agent of the present invention in a basket, hexavalent chromium-contaminated water is reduced and rendered harmless when it passes through the pits before being discharged. be done. The amount of treatment agent to be put into the pit is determined based on the flow rate and degree of contamination of the hexavalent chromium-contaminated water. In the case of a treatment agent in which the elution of ferrous sulfate in the treatment agent is completed in 6 days, the treatment agent may be replaced with a new treatment agent on the 7th day. It will be more effective if the pit into which the processing agent is placed can be stirred as appropriate. This is because a concentration gradient occurs in the elution of ferrous sulfate due to its specific gravity, and the concentration is higher at the bottom of the pit and becomes thinner toward the top. A good way to stir this is, for example, by sinking a helical pipe into the bottom of the pit, making a number of small holes in the pipe in different directions, and occasionally blowing air through the pipe from outside to stir.
Thereby, the hexavalent chromium-contaminated water can be uniformly reduced. In the water discharged after reducing hexavalent chromium-contaminated water in a pit using ferrous sulfate,
Hexavalent chromium can be removed, but the pH is slightly acidic and ferrous sulfate is also present. Therefore, let this water flow as it is,
If the downstream water is to be combined with water contaminated with hexavalent chromium flowing out from other than the pit path,
This hexavalent chromium can be reduced. However, if acidic water cannot be directly discharged, calcium carbonate, limestone, etc. can be placed downstream of the pit containing the treatment agent to neutralize it. By using this method, there is no loss of ferrous sulfate and it can be effectively used for reduction treatment, and it is possible to completely render hexavalent chromium-contaminated water harmless by replacing the treatment agent about once a week, and it is extremely easy to manage. Easy and economical. The treatment agent and method for hexavalent chromium-contaminated water of the present invention can be applied not only to hexavalent chromium-contaminated water from chromium slag disposal sites, but also to hexavalent chromium-contaminated water from various wastewaters. Next, an example will be described. In addition, the test method and materials used in the following examples are as follows. Test method: Elution test of ferrous sulfate from ferrous sulfate gypsum solid (treatment agent) Ferrous sulfate is solidified by adding gypsum, water, etc., and the material is 7 days old and has a diameter of about 10 cm. was immersed in running water, and samples were taken out at regular intervals. A part of this sample was crushed, immersed in a specified amount of water, thoroughly stirred, and then filtered. 5 ml of sulfuric acid (1+1) was added to the filtrate, and titrated with N/10 potassium permanganate. The consumption amount was converted into ferrous sulfate (FeSO 4 .7H 2 O). The elution amount of ferrous sulfate (FeSO 4 .7H 2 O) was expressed as the elution amount (g) per 100 g of the sum of ferrous sulfate and gypsum. Materials used; Ferrous sulfate FeSO 4・7H 2 O Gypsum Hemihydrate gypsum Water Tap water Synthetic rubber latex Styrene/butadiene
Rubber latex (nonvolatile content 50% by weight) Bituminous emulsion Cationic asphalt emulsion MK
-1 (evaporation residual fraction 58% by weight, penetration of evaporation residue 145) Example 1 Ferrous sulfate, gypsum, water,
Mixed with synthetic rubber latex etc. Diameter 10cm Height 10cm
The mixture was poured into a cylindrical mold to solidify, left for 24 hours, and then removed from the mold to obtain the treatment agent of the present invention.

【表】 〓パーセントで決めている。 〓
これらの処理剤について材令7日のものを試料
とし水に対する硫酸第一鉄の溶出量の経時変化を
調べた。それらの結果を第1図ないし第4図に示
す。第1図は硫酸第一鉄と石膏量の割合による硫
酸第一鉄の溶出量と日数との関係を、第2図ない
し第4図は硫酸第一鉄含有量がそれぞれ60%、70
%および80%(石膏それぞれ40%、30%、20%に
相当する)における合成ゴムラテツクスの無添加
と添加(石膏10重量%)したときの硫酸第一鉄の
溶出量と日数との関係を示すグラフである。第1
図より処理剤は24時間で硫酸第一鉄が30〜50重量
%溶出するがその後はゆるやかで直線的に一定の
速度で溶出しほゞ100%溶出するのに6日間要す
ることが判る。硫酸第一鉄のみで同様に試験する
と速やかに100%溶解する。第2図ないし第4図
から石膏量の10%の合成ゴムラテツクスを添加し
たものは溶出曲線は同様の傾向を示すが、溶出完
了に8日間要することが判る。 実施例 2 硫酸第一鉄80重量部、半水石こう20重量部を混
合し、これに水14重量部に瀝青乳剤2重量部を加
えたものを添加混合し、プラスチツク製バケツに
注入し、固化脱型後、砕いて本発明の処理剤を得
た。同じ配合で実施例1と同様直径10cm高さ10cm
の円柱形供試体を造り材令7日のものについて水
への硫酸第一鉄の溶出試験を行つたが合成ゴムラ
テツクス添加と同様の結果を得ることができた。 実施例 3 表―1のNo.3の配合(硫酸第一鉄80重量%)
で、径10〜30cm程度の塊状の固形処理剤をつく
り、実際のクロム鉱滓処分地から流れる水を集水
した流水径路内に第5図に示す構造のピツトを設
け、6価クロム汚染水の処理を行なつた。 即ち、ピツト2(仕様600m/m×600m/m×
1600m/m)内に固形処理剤80Kgをかご4に入れ
て浸漬した。そしてクロム鉱滓処分地から連続的
に湧出する6価クロム汚染水、雨水による汚染水
を集めて、すべてこのピツト2内を通して排出し
た。 6価クロム汚染水の流量は7t/日で、6価クロ
ム量は60〜90mg/であつた。ピツト2におい
て、処理剤を入れたかご4の下に多数の小孔を有
するラセン形のパイプ5を設け、このパイプ5を
通してタイマー7を備えるコンプレツサー6によ
り30分毎に5分間15〜20/分の空気を送り、撹
拌した。 その結果、ピツト1に流水する汚染水の6価ク
ロムは86mg/であつたが、ピツト2、ピツト3
を出る水では夫々0.08mg/、0.05mg/とな
り、ほゞ完全に6価クロムを除去することができ
た。ピツト2内の処理剤は1週間おきに新しいも
のと取りかえることにより、6価クロムの除去さ
れた良好な排水を維持することができた。 第6図は、6価クロム汚染水を上記還元処理方
法に従つて処理し、河川(錦川及びうえんべつ
川)に放流した場合の適用例を示す系統図で、枠
内の数字はクロム濃度(Cr6+ppm)を表わす。 図において、ピツト9に本発明の処理剤が入つ
ており、ピツト8ではCr6+86ppmであるが、ピ
ツト9,10を出るところで、夫々0.08ppm、
0.05ppmとなる。ピツト未流点Aで、
Cr6+64.2ppmの水が出ているところであるが、ピ
ツト系Bを出る排水と合流することによつて、そ
の下流で0.06ppmに低下する。
[Table] 〓Determined as a percentage. 〓
For these treatment agents, samples of 7-day-old materials were used to examine changes over time in the amount of ferrous sulfate leached into water. The results are shown in FIGS. 1 to 4. Figure 1 shows the relationship between the elution amount of ferrous sulfate and the number of days depending on the ratio of ferrous sulfate and gypsum, and Figures 2 to 4 show the relationship between the ferrous sulfate content and the number of days, respectively.
% and 80% (corresponding to 40%, 30%, and 20% of gypsum, respectively) without the addition of synthetic rubber latex and with addition (10% by weight of gypsum) of ferrous sulfate elution and the relationship between the number of days. It is a graph. 1st
From the figure, it can be seen that 30 to 50% by weight of ferrous sulfate from the processing agent is eluted in 24 hours, but thereafter it elutes slowly and linearly at a constant rate, and it takes 6 days for almost 100% elution. A similar test using only ferrous sulfate quickly dissolves 100%. From Figures 2 to 4, it can be seen that when synthetic rubber latex was added in an amount of 10% of the amount of gypsum, the elution curve showed a similar tendency, but it took 8 days to complete the elution. Example 2 80 parts by weight of ferrous sulfate and 20 parts by weight of hemihydrate gypsum were mixed, 14 parts by weight of water and 2 parts by weight of bitumen emulsion were added and mixed, poured into a plastic bucket, and solidified. After demolding, it was crushed to obtain the processing agent of the present invention. Diameter 10 cm and height 10 cm as in Example 1 with the same composition.
A 7-day-old cylindrical specimen was prepared and tested for the elution of ferrous sulfate into water, and results similar to those obtained when synthetic rubber latex was added were obtained. Example 3 Formula No. 3 in Table 1 (80% by weight of ferrous sulfate)
Then, a solid treatment agent in the form of a lump with a diameter of about 10 to 30 cm was made, and a pit with the structure shown in Figure 5 was installed in the water flow path that collected water flowing from the actual chromium slag disposal site, and the hexavalent chromium-contaminated water was collected. I processed it. In other words, pit 2 (specification 600m/m x 600m/m x
1600 m/m), 80 kg of solid processing agent was placed in basket 4 and immersed. The hexavalent chromium-contaminated water that continuously gushes out from the chromium slag disposal site and the rainwater-contaminated water are collected and discharged through this pit 2. The flow rate of the hexavalent chromium-contaminated water was 7 tons/day, and the amount of hexavalent chromium was 60 to 90 mg/day. In the pit 2, a helical pipe 5 with a large number of small holes is provided below the basket 4 containing the processing agent, and a compressor 6 equipped with a timer 7 passes through this pipe 5 for 5 minutes at a rate of 15 to 20 minutes every 30 minutes. of air and stirred. As a result, the amount of hexavalent chromium in the contaminated water flowing into pit 1 was 86 mg/day, but in pits 2 and 3,
In the water leaving the water, the concentrations were 0.08 mg/ and 0.05 mg/, respectively, and it was possible to remove hexavalent chromium almost completely. By replacing the treatment agent in pit 2 with a new one every week, it was possible to maintain good drainage with hexavalent chromium removed. Figure 6 is a system diagram showing an application example where hexavalent chromium-contaminated water is treated according to the above reduction treatment method and discharged into rivers (Nishiki River and Uenbetsu River), and the numbers in the frame indicate the chromium concentration ( Cr 6+ ppm). In the figure, pit 9 contains the treatment agent of the present invention, and in pit 8 the Cr 6+ concentration is 86 ppm, but when exiting pits 9 and 10, Cr 6+ is 0.08 ppm, respectively.
It becomes 0.05ppm. At pit point A,
Water with a Cr 6+ content of 64.2ppm is coming out, but this decreases to 0.06ppm downstream by merging with the wastewater from pit system B.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は硫酸第
一鉄と石膏の割合による硫酸第一鉄の溶出量と日
数との関係を示すグラフ、第2図ないし第4図は
硫酸第一鉄の含有量がそれぞれ60%、70%および
80%における合成ゴムラテツクスの添加の有無に
よる硫酸第一鉄の溶出量と日数との関係を示すグ
ラフ、第5図は本発明の実施をするためのピツト
の構造の一例を示す説明図、第6図は本発明によ
り6価クロム汚染水を処理し河川に放流した場合
の適用例を示す系統図である。 1,2,3,8,9……ピツト。
The drawings show examples of the present invention, and Figure 1 is a graph showing the relationship between the elution amount of ferrous sulfate and the number of days depending on the ratio of ferrous sulfate and gypsum, and Figures 2 to 4 are graphs showing the relationship between ferrous sulfate and gypsum ratios. Iron content is 60%, 70% and respectively
A graph showing the relationship between the elution amount of ferrous sulfate and the number of days depending on the presence or absence of addition of synthetic rubber latex at 80%, Fig. 5 is an explanatory diagram showing an example of the structure of a pit for carrying out the present invention, and Fig. 6 The figure is a system diagram showing an example of application when hexavalent chromium-contaminated water is treated and discharged into a river according to the present invention. 1, 2, 3, 8, 9...Pitsuto.

Claims (1)

【特許請求の範囲】 1 硫酸第一鉄と石膏および水さらに必要に応じ
て樹脂エマルジヨン、瀝青乳剤、ゴムラテツクス
等を加えて混合し固化成形してなる6価クロム汚
染水の処理剤。 2 6価クロム汚染水の流水径路内に、硫酸第一
鉄と石膏および水さらに必要に応じて樹脂エマル
ジヨン、瀝青乳剤、ゴムラテツクス等を加えて混
合し固化成形してなる6価クロム汚染水の処理剤
を充填したカゴを設置したピツトまたは個所(以
下還元域という)を1個もしくは複数個設け、こ
れらの還元域を通過するように6価クロム汚染水
を流すことを特徴とする6価クロム汚染水の処理
方法。
[Scope of Claims] 1. A treatment agent for hexavalent chromium-contaminated water, which is obtained by mixing ferrous sulfate, gypsum, water, and optionally resin emulsion, bituminous emulsion, rubber latex, etc., and solidifying and molding the mixture. 2. Treatment of hexavalent chromium-contaminated water by adding ferrous sulfate, gypsum, water, and if necessary resin emulsion, bituminous emulsion, rubber latex, etc. to the flowing water path of hexavalent chromium-contaminated water, mixing and solidifying the mixture. Hexavalent chromium pollution is characterized by providing one or more pits or areas (hereinafter referred to as reduction zones) in which baskets filled with the agent are installed, and flowing hexavalent chromium-contaminated water through these reduction zones. How to treat water.
JP10856878A 1978-09-06 1978-09-06 Treatment and treating agent for water contaminated by hexavalent chromium Granted JPS5535917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10856878A JPS5535917A (en) 1978-09-06 1978-09-06 Treatment and treating agent for water contaminated by hexavalent chromium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10856878A JPS5535917A (en) 1978-09-06 1978-09-06 Treatment and treating agent for water contaminated by hexavalent chromium

Publications (2)

Publication Number Publication Date
JPS5535917A JPS5535917A (en) 1980-03-13
JPS6234433B2 true JPS6234433B2 (en) 1987-07-27

Family

ID=14488116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10856878A Granted JPS5535917A (en) 1978-09-06 1978-09-06 Treatment and treating agent for water contaminated by hexavalent chromium

Country Status (1)

Country Link
JP (1) JPS5535917A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235677U (en) * 1988-08-31 1990-03-07

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830694A (en) * 1971-08-26 1973-04-23
JPS516456A (en) * 1974-06-05 1976-01-20 Blaupunkt Werke Gmbh Fm benbetsuki

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830694A (en) * 1971-08-26 1973-04-23
JPS516456A (en) * 1974-06-05 1976-01-20 Blaupunkt Werke Gmbh Fm benbetsuki

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235677U (en) * 1988-08-31 1990-03-07

Also Published As

Publication number Publication date
JPS5535917A (en) 1980-03-13

Similar Documents

Publication Publication Date Title
Ahmad et al. Sustainable management of water treatment sludge through 3 ‘R’concept
Malviya et al. Factors affecting hazardous waste solidification/stabilization: A review
US3980558A (en) Method of disposing sludges containing soluble toxic materials
US20080179253A1 (en) Porous Particulate Material For Fluid Treatment, Cementitious Composition and Method of Manufacture Thereof
Thornton et al. Leachate treatment by coagulation and precipitation
AU2002241323B2 (en) Acidic-wastewater treating material and method of treating acidic wastewater
Ooi et al. Treated effluent in concrete technology
JP2009066570A (en) Method for reducing cement-based turbid water-derived chromium
Almeida et al. Chromium precipitation from tanning spent liquors using industrial alkaline residues: a comparative study
JP3455952B2 (en) How to fix harmful substances
JPS6234433B2 (en)
DE4307468B4 (en) Process for the precipitation of heavy metals, uranium and toxic metals in the rehabilitation of mining facilities, in particular contaminated waters
CN110372168A (en) A kind of method of river sludge resource utilization
Yang et al. Long-term leaching behaviours of cement composites prepared by hazardous wastes
Akhtar Treatment of Acidic Wastewater Effluents and Defluoridation by Lime Materials
GB2060600A (en) Process for the treatment of soil and industrial waste solids
Maree et al. Underground neutralisation of mine water with limestone
Fourie Acid resistance of sewer pipe concrete
CN102266650B (en) Method for detoxifying and curing Cr(VI) by using FeCl2.6H2O added metakaolin based geopolymer
JPH10495A (en) Method for recycling construction sludge
Ackah Assessment of the suitability of sludge from dompoase faecal sludge treatment plant as a building material
CN102198314B (en) Method for detoxifying and curing Cr(VI) by utilizing metakaolin-based geopolymer added with FeSO4.7H2O
Chang et al. Effectiveness of various sludge stabilization and solidification methods
AU2004303442A1 (en) Porous particulate material for fluid treatment, cementitious composition and method of manufacture thereof
Montclair Environmental Management Team Management plan for chromium‐contaminated soil