JPS6234348A - Manufacture of photomagnetic recording medium - Google Patents

Manufacture of photomagnetic recording medium

Info

Publication number
JPS6234348A
JPS6234348A JP17370585A JP17370585A JPS6234348A JP S6234348 A JPS6234348 A JP S6234348A JP 17370585 A JP17370585 A JP 17370585A JP 17370585 A JP17370585 A JP 17370585A JP S6234348 A JPS6234348 A JP S6234348A
Authority
JP
Japan
Prior art keywords
substrate
film
magneto
optical recording
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17370585A
Other languages
Japanese (ja)
Inventor
Akira Aoyama
明 青山
Takeo Kawase
健夫 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP17370585A priority Critical patent/JPS6234348A/en
Publication of JPS6234348A publication Critical patent/JPS6234348A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To execute work without leaking a vacuum tank at all, and to reduce the cost by forming in advance a conductive material film on other part than a recording part of a recording surface side of a transparent substrate, bringing the conductive material film into contact with a jig for fixing the transparent substrate, and also forming a transparent conductive film on the whole transparent substrate. CONSTITUTION:Silver paste 10 is applied thinly to other part than a recording part of a recording surface side on a polycarbonate transparent substrate 9 at first. Thereafter, the substrate 9 is fixed to a substrate holer 2 by using a fixing jig 8. Next, sputtering is started by using an ITO target 4 and rotating the substrate holder 2 in a vacuum, and an ITO transparent conductive film 11 if formed. Subsequently, sputtering is started by rotating the substrate holder 2 without breaking the vacuum and applying a DC bias voltage, and a photomagnetic recording film 12 is formed. According to such constitution, there is no necessity for resetting the substrate by leaking a vacuum tank to the atmospheric pressure, therefore, the time for forming vacuum is enough by once, and the cost of a medium can be reduced remarkably.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光磁気記録媒体の真空成膜法による製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a magneto-optical recording medium by a vacuum film forming method.

〔発明の概要〕[Summary of the invention]

本発明は記録−再生・消去が可能な光磁気記録媒体の製
造方法において、非晶質光磁気記録膜を作成する透明基
板の記録面側の記録部分以外に、あらかじめ導電体を作
成し、さらに導電体の上に透明導t#!Xを作成するこ
とにより、真空槽を破らず非晶質光磁気記録膜の作成中
に透明基板にDCバイアス電圧を印加できるようにした
ものである。
The present invention is a method for manufacturing a magneto-optical recording medium capable of recording, reproducing, and erasing, in which a conductor is prepared in advance in a region other than the recording portion on the recording surface side of a transparent substrate for forming an amorphous magneto-optical recording film, and Transparent conductor t# on conductor! By creating X, it is possible to apply a DC bias voltage to the transparent substrate during the creation of an amorphous magneto-optical recording film without breaking the vacuum chamber.

〔従来の技術〕[Conventional technology]

従来、光磁気記録媒体に用いられている材料は主KT&
−Fs 、 Gd−Tb−Fls−Go 、 Tb−P
e −cm 、 Ckd−Tb−F、 、 Od−11
1g 、 Gd−c(、、等の希土類−遷移金属が主流
である。それ以外にMn−B1等のファラデー効果を利
用した光磁気記録媒体もあったが、膜が多結晶でノイズ
が多い、キューリ一温度が高く書き込みに〈h等の欠点
が多く、前述の希土類−遷移金属が主流となってきた。
Conventionally, the materials used for magneto-optical recording media are mainly KT&
-Fs, Gd-Tb-Fls-Go, Tb-P
e-cm, Ckd-Tb-F, , Od-11
Rare earth-transition metals such as 1g, Gd-c (, etc.) are mainstream.In addition, there were magneto-optical recording media using the Faraday effect such as Mn-B1, but the film was polycrystalline and had a lot of noise. The above-mentioned rare earth-transition metals have become mainstream because they have many drawbacks such as high Curie temperature and 〈h in writing.

これは、非晶質であり粒界ノイズが無く、キューリ一温
度も120℃〜200℃までと半導体レーザーでも十分
書き込めるという長所がある。そして、これら非晶質希
土類−遷移金属膜の製造方法は、スパッタリング、イオ
ンブレーティング、イオンビーム蒸着などのイオン化薄
膜形成技術によって基板の上に形成するのが主流となっ
ており、この場合、膜質の向上を目的として金属製基板
ホルダーに直流バイアス電圧を印加することが知られて
いる。しかしながら、この場合基板としてガラス、プラ
スチックなどの透明基板で電気絶縁体が使用されるため
、基板に直接バイアス電圧が印加されず、膜質の向上は
望めない、そのため、これら透明基板上に、AJ 、 
Cw等の金属膜を成膜し、基板ホルダーと接触させれば
DCバイアス電圧?基板に印加できる。
This has the advantage that it is amorphous, has no grain boundary noise, has a Curie temperature of 120° C. to 200° C., and can be written satisfactorily even with a semiconductor laser. The mainstream method for producing these amorphous rare earth-transition metal films is to form them on a substrate using ionized thin film formation techniques such as sputtering, ion blating, and ion beam evaporation. It is known to apply a DC bias voltage to a metal substrate holder for the purpose of improving the performance. However, in this case, since a transparent substrate such as glass or plastic is used as an electrical insulator, a bias voltage is not directly applied to the substrate, and no improvement in film quality can be expected.Therefore, AJ,
If a metal film such as Cw is formed and brought into contact with the substrate holder, the DC bias voltage can be increased? Can be applied to the substrate.

しかしながら、データの記録・再生・消去は通常基板側
からのレーザ光によっておこなわれるため、AJ 、 
(4等の金属@を一レーザ光が透過出来ず記録・再生・
消去が不可能となってしまう、そこで次に考えられるの
が、前述の八!・CU等の金属薄膜のかわりに透明導電
vx1に成膜するという方法である。(特開昭58−2
15744) 〔発明が解決しようとする問題点及び目的〕しかしなが
ら、前述の従来技術では導電膜を基板に真空成膜した後
、一度真空槽内の真空をリークし、導電膜と基板ホルダ
ーとを接触させ、そして再度真空引きしDCバイアス電
圧を印加しながら光磁気記録膜を成膜しなければならな
い、つまり、光磁気記録媒体を作成するのに2度真空引
きを要し、コストアップにつながる。このことを詳しく
説明すれば、第3図のようになる。この図は従来技術に
よるDCスパッタ法の製造工程図であり、模式的に示し
たものである。まずは)に示すように、最初に羽の透明
導電膜を成膜する。ここで31は基板ホルダー、羽は透
明基板(ガラス、pc、PMMA 、エポキシ樹脂等)
、34は基板固定用治具で、羽の透明導電膜はあの基板
固定用治具には接触していない、これは基板固定用治具
の影響で治具の周囲にFi膜は出来ないためである。そ
こで真空槽を一度リークし、あの透明導電膜と31の基
板ホルダーを接触させるようにしたのが(b)で、35
0基板固定用治具がそれである。この治具は34の治具
よりも少し大型であの透明透明導電膜と接触している。
However, since data recording, reproduction, and erasing are normally performed using laser light from the substrate side, AJ,
(A laser beam cannot pass through a metal such as 4th grade, so recording, reproducing,
Erasing becomes impossible, so the next thing to consider is the above-mentioned 8! - This is a method of forming a film on transparent conductive vx1 instead of a metal thin film such as CU. (Unexamined Japanese Patent Publication No. 58-2
15744) [Problems and objectives to be solved by the invention] However, in the above-mentioned conventional technology, after a conductive film is vacuum-formed on a substrate, the vacuum inside the vacuum chamber is once leaked, and the conductive film and the substrate holder are brought into contact with each other. Then, the magneto-optical recording film must be deposited while evacuation is applied again and a DC bias voltage is applied. In other words, evacuation is required twice to create a magneto-optical recording medium, which increases costs. If this is explained in detail, it will be as shown in Fig. 3. This figure is a manufacturing process diagram of a conventional DC sputtering method, and is shown schematically. First, as shown in ), a transparent conductive film for the wings is first formed. Here, 31 is a substrate holder, and the wings are transparent substrates (glass, PC, PMMA, epoxy resin, etc.)
, 34 is a substrate fixing jig, and the transparent conductive film of the wing is not in contact with that substrate fixing jig. This is because the Fi film cannot be formed around the jig due to the effect of the substrate fixing jig. It is. Therefore, we leaked the vacuum chamber once and brought the transparent conductive film into contact with the substrate holder of 31, which is shown in (b).
This is the 0 board fixing jig. This jig is slightly larger than jig 34 and is in contact with that transparent conductive film.

そして、再度真空引きしDCバイアス電圧を印加しなが
ら光磁気記録V!Xft成膜したのが(c)で、36が
光磁気記録膜(Tb7g 、 Tb?#Co 。
Then, while vacuuming again and applying a DC bias voltage, magneto-optical recording V! (c) is the Xft film formed, and 36 is a magneto-optical recording film (Tb7g, Tb?#Co).

GdTbF、  等希土類−遷移金属膜)で、37がl
)C電源である。
GdTbF, etc.), 37 is l
)C power supply.

この様に従来の技術では、導電膜と基板固定用油At−
接触させるため一度は真空槽をリークしなければならず
、非常にコストアップになる。これ社光磁気記録媒体が
良i初期真空度(lxl(J″’Torr’Torr以
下直磁化膜にならないため、媒体のコストはほとんどが
装置償却コストになりてしまi1冥空楢を一度リークす
るということは非常なロスにつながるものである。そこ
で本発明はこのような問題点を解決するもので、その目
的とするところは、真空槽を一度もリークすることなく
連続して透明導1!膜、光磁気記録膜全成膜し、しかも
光磁気記録膜、の成膜中には基板KDCバイアス電圧を
印加せしめる様にし、安価な光磁気記録媒体を提供する
ところにある。
In this way, in the conventional technology, the conductive film and the substrate fixing oil At-
In order to make contact, the vacuum chamber must be leaked at least once, which greatly increases costs. Since this company's magneto-optical recording medium does not become a directly magnetized film with a good initial vacuum level (lxl (J"'Torr'Torr), most of the cost of the medium is the amortized cost of the equipment. This leads to a huge amount of loss.The present invention is intended to solve these problems, and its purpose is to continuously conduct transparent conduction without leaking the vacuum chamber even once! The purpose of this method is to provide an inexpensive magneto-optical recording medium by completely forming the magneto-optical recording film and by applying a substrate KDC bias voltage during the formation of the magneto-optical recording film.

c問題点を解決するための手段〕 本発明の光磁気記録媒体の製造方法は、磁化の向きが膜
rrJVc垂直で上向きか下向きかの2直をとる非晶質
光磁気記録媒体の製造方法において、非晶質光磁気記録
膜を作成する透明基板の記録面側の記録部分以外に、あ
らかじめ導電体膜を作成し、導電体膜と透明基板を固定
する治具とを接触させておき、さらに透明基板全体く透
明導電[を作成すること′t%微とする。
Means for Solving Problem c] The method for manufacturing a magneto-optical recording medium of the present invention is a method for manufacturing an amorphous magneto-optical recording medium in which the direction of magnetization is perpendicular to the film rrJVc and has two directions: upward and downward. In addition to the recording area on the recording surface side of the transparent substrate on which the amorphous magneto-optical recording film is to be created, a conductive film is prepared in advance, and a jig for fixing the conductive film and the transparent substrate is brought into contact with each other. It is assumed that transparent conductivity is formed throughout the entire transparent substrate.

〔作用〕[Effect]

本発明の上記の構成を第2図に示す、これは本発明によ
る光磁気記録媒体の製造工程の断面図である。まず斡)
に示すように透明基板乙の記録面側の記録部分以外に、
あらかじめ導電体膜おを作成し、この導電体膜ると透明
基板221に固定する基板固定用治具スとを接触させて
おく、この基板固定用治具冴は基板ホルダー211c固
定されるもので、当然基板ホルダーとは接触している。
The above structure of the present invention is shown in FIG. 2, which is a sectional view of the manufacturing process of the magneto-optical recording medium according to the present invention. first)
As shown in , in addition to the recording part on the recording surface side of the transparent substrate B,
A conductive film is prepared in advance, and this conductive film is brought into contact with a substrate fixing jig to be fixed to the transparent substrate 221. This substrate fixing jig is used to fix the substrate holder 211c. , of course, is in contact with the substrate holder.

そして次に(b)に示すように、透明基板全体に透明導
電膜25を作成する。このようにすることにより、あら
かしめ作成した導を体膜ると透明導電膜5は接触するこ
とが出来る。つまり基板ホルダ21に印加したDCバイ
アス電圧は透明基板に印加出来ることKなる。このこと
は、あらかじめ作成した導電体@は十分に薄いため、透
明導電膜は十分回り込み導電体膜と接触することが可能
になるのである。一方、従来技術による方法では、基板
固定治具に導電体膜に比してかなり大きく、透明導電膜
をf″F−底しても回り込まなhために、基板固定治具
と透明導電膜は接触しないのである。
Then, as shown in (b), a transparent conductive film 25 is formed over the entire transparent substrate. By doing so, the transparent conductive film 5 can come into contact with the roughly prepared conductive body film. In other words, the DC bias voltage applied to the substrate holder 21 can be applied to the transparent substrate. This is because the conductor @ prepared in advance is sufficiently thin, so that the transparent conductive film can sufficiently wrap around and come into contact with the conductor film. On the other hand, in the conventional method, the substrate fixing jig and the transparent conductive film are considerably larger than the conductive film and cannot be wrapped around even if the transparent conductive film is f''F-bottomed. There is no contact.

〔実施例〕〔Example〕

第1図は本発明の実施例における光磁気記録媒体及び製
造装置の断面図でありて、lFi真空檜でアースに落さ
れている、2は基板ホルダーで回転できるようになって
おり、3のDCバイアス電源で電圧が印加できる。4は
工Toターゲット(透明導1!膜用)で、5は?−ター
ゲット、6はT6チツプで光磁気記録膜用である。そし
て、これらのターゲットはDC電源7によりDCスパッ
タされるものである。又、8t:f基板固定治具でA!
製であり、9は透明基板(ポリカルボネート基板)で、
1(]が導導電膜Agペースト)、11が透明導電膜(
工” 0膜) e 12が光磁気記録[IR(T67g
@:Tbrイch組成)である。
FIG. 1 is a cross-sectional view of a magneto-optical recording medium and a manufacturing apparatus according to an embodiment of the present invention, in which 2 is rotatable with a substrate holder, and 3 is grounded with an lFi vacuum hinoki. Voltage can be applied using a DC bias power supply. 4 is the engineering target (for transparent conductor 1! film), and 5 is ? - Target 6 is a T6 chip for magneto-optical recording film. These targets are subjected to DC sputtering by a DC power supply 7. Also, A with 8t:f board fixing jig!
9 is a transparent substrate (polycarbonate substrate),
1 ( ] is a conductive conductive film Ag paste), 11 is a transparent conductive film (
0 film) e 12 is magneto-optical recording [IR (T67g
@:Tbrich composition).

まず、ポリカーボネート透明基板9上の記録面側の記録
部分以外(このS合は内周のチャッキング部分)に銀ペ
ースト10を薄く塗布する。その後人!の基板固定用治
具を用い、基板ホルfi°−2とポリカーボネート透明
基板9を固定する。この状態で基板ホルダー2と銀ベー
ス) 10の導通がとれたことになる。そして、4の工
Toターゲットを用i、初期真空度I X 10−’T
ort−まで真空引き後、Af電圧、5m Torr 
、 02分圧8×10″″″TOf”r導入し、Pow
gr 100 Wで基板ホルダー金回転させながらスパ
ッタを開始し、工TO透明導電膜11を30OA作成し
た。この状態が基板ホルダー2と工TO透明導電膜11
の導通がとれたことになる。そして次に1真空を破らず
に再度初期真空度がI X 10−’Torrになるま
で真空引きし、Af電圧a5 m Torr導入し、P
ower 100 Wで基板ホルダーを回転させながら
スパッタを開始した。この時基板ホルダーには、DCバ
イアスを源3t−用い−707の電圧を印している。そ
して、T6F、光磁気記録膜12を100OA作成した
First, a thin layer of silver paste 10 is applied to a portion of the polycarbonate transparent substrate 9 other than the recording portion on the recording surface side (the chucking portion on the inner circumference in this case). Then people! Using a substrate fixing jig, the substrate holder fi°-2 and the polycarbonate transparent substrate 9 are fixed. In this state, conduction between the substrate holder 2 and the silver base 10 has been established. Then, using the target of 4, the initial vacuum degree I x 10-'T
After evacuation to ort-, Af voltage, 5m Torr
, 02 partial pressure 8×10''''TOf''r was introduced, Pow
Sputtering was started while rotating the substrate holder at gr 100 W, and a TO transparent conductive film 11 of 30 OA was formed. This state is the substrate holder 2 and the TO transparent conductive film 11.
This means that continuity has been established. Then, without breaking the 1 vacuum, the initial vacuum degree was again evacuated until it reached I x 10-' Torr, an Af voltage of a5 m Torr was introduced, and P
Sputtering was started while rotating the substrate holder under power of 100 W. At this time, a voltage of -707 is applied to the substrate holder using a DC bias source 3t-. Then, a T6F magneto-optical recording film 12 of 100 OA was fabricated.

ここで、本発明により作成した光磁気記録媒体のカー回
転角測定図を第4図(tL)に示す、併せて、銀ペース
ト10がなく、工To膜形成後、続けて−707のバイ
アス電圧を印加しながらTbF、光磁気記録膜を作成し
た場合のカー回転角測定図を第4図(b)に示す、横軸
は印加磁場、縦軸はカー回転角を示している。この図よ
り本発明法による媒体は、カーヒスヘリシスの角形性が
非常によく、バイアス電圧が印加されていることがわか
る。一方(b)のヒステリシスは、バイアス電圧が印加
されていない、そして、本発明法によるバイアス電圧が
印加された媒体は、カー回転角の若干の向上、保磁力の
減少が見られる。これは、バイアス電圧が印加されたた
めに、TbF#膜中の酸素がたたき出されたためと考え
られる。
Here, the Kerr rotation angle measurement diagram of the magneto-optical recording medium prepared according to the present invention is shown in FIG. FIG. 4(b) shows a measurement diagram of the Kerr rotation angle when a TbF magneto-optical recording film was prepared while applying . From this figure, it can be seen that the medium produced by the method of the present invention has very good squareness of Kerhis helisis, and a bias voltage is applied. On the other hand, in the case of hysteresis in (b), no bias voltage is applied, and in the medium to which a bias voltage is applied according to the method of the present invention, a slight improvement in Kerr rotation angle and a decrease in coercive force are observed. This is considered to be because oxygen in the TbF# film was driven out due to the bias voltage being applied.

〔発明の効果〕〔Effect of the invention〕

以上述べたように′$発明によれば、非晶質光磁気記録
膜を作成する透明基板の記録面側の記録部分以外に、あ
らかじめ導電体膜全作成し、導m本膜と透明基板を固定
する治具とを接触させておき、その後透明基板全体に透
明導電膜を作成し、さらに透明基板にDCバイアス電圧
を印加しながら非晶質光磁気記録膜を作成することによ
り1.光磁気記録媒体にDCバイアス電圧と印加するこ
とができ、光磁気記録媒体のカー回転角の向上、角形性
の向上が見られ、さらにバイアス電圧を印加するために
真空槽を大気圧にリークし、基板をセットし直す必要性
がなく、連続して透明導電膜、非晶質光磁気記録iを作
成できることから真空引きの時間が一度で済むことから
媒体の大幅なコストダウンがはかれるものである。
As described above, according to the '$ invention, the conductive film is entirely formed in advance on the recording surface side of the transparent substrate on which the amorphous magneto-optical recording film is to be made, and the conductive film and the transparent substrate are bonded together. 1. By keeping the fixing jig in contact with each other, then forming a transparent conductive film over the entire transparent substrate, and further forming an amorphous magneto-optical recording film while applying a DC bias voltage to the transparent substrate. A DC bias voltage can be applied to the magneto-optical recording medium, and improvements in the Kerr rotation angle and squareness of the magneto-optical recording medium can be seen.Furthermore, in order to apply the bias voltage, the vacuum chamber can be leaked to atmospheric pressure. There is no need to reset the substrate, and since transparent conductive films and amorphous magneto-optical recording can be created continuously, vacuuming only needs to be done once, which can significantly reduce the cost of the medium. .

ここで、本発明がどの程度のコストダウンになるかを見
たのが第5図であり、初期真空度に対する基板1枚当り
の装置償却図である。このコスト計算は、スパッタ装置
が1億円、加り/月、2Ahr/日稼動の時であり、一
度に120uφのディスりを3枚スパッタできるもので
ある。この図から明らかなように通常、初期真空度はl
 X 1(J−’Tarr以下で成膜するため、一度の
真空引きで済む本発明の場合は3216円/枚で済むコ
ストが、二度の真空引きが必要な従来の方法では、倍の
6432円/枚かかることになり本発明によるコストダ
ウンは非常なものであることがわかる。
Here, the extent to which the present invention reduces costs is shown in FIG. 5, which is a graph of device depreciation per substrate with respect to the initial degree of vacuum. This cost calculation is based on the assumption that the sputtering equipment costs 100 million yen per month and operates for 2 Ahr/day, and can sputter three sheets of 120 uφ diameter at a time. As is clear from this figure, the initial degree of vacuum is usually l
Since the film is formed at less than X 1 (J-'Tarr), the cost of the present invention, which requires only one evacuation, is 3,216 yen/sheet, but the cost of the conventional method, which requires two evacuations, is twice as high as 6,432 yen/sheet. It can be seen that the cost reduction achieved by the present invention is significant since it costs 10,000 yen per sheet.

尚、本実施例に用いた導を体として、銀ペーストを用い
たが、カーボンペースト、等の導体膜であればあらゆる
ものが適することFi=うまでもない、さらに透明導電
膜も工TO膜以外にZ?LO。
Incidentally, although silver paste was used as the conductor used in this example, any conductive film such as carbon paste is suitable. NiZ? L.O.

s3o、 、 Tho、等どのようなものでも良い、又
を光磁気記録膜もTb1!′6膜以外に、 Tb’H’
aCo 、 GdT61Fg 。
It can be anything such as s3o, , Tho, etc. Also, the magneto-optical recording film can be Tb1! In addition to '6 membrane, Tb'H'
aCo, GdT61Fg.

GdTbF、Go等の希土類−遷移金属を主成分とする
ものであれば何らさしつかえない、そして、媒体の構造
も2層以外に、31’!1.4層等、九母気記録膜の後
にt!j′B1.体膜、反射膜等が積層されても間粗は
ない、又、透明基板もポリカーボネート以外に、ポリメ
チルメタクリレート、エポキシ樹脂、ガラス等でも何ら
さしつかえない。
Anything is acceptable as long as the main component is a rare earth-transition metal such as GdTbF or Go, and the structure of the medium may be 31'! 1.4 layers, etc., after the nine-layer recording film t! j′B1. Even when the body film, reflective film, etc. are laminated, there is no spacing, and the transparent substrate can also be made of polymethyl methacrylate, epoxy resin, glass, etc. in addition to polycarbonate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光磁気記録媒体及び製造装置の断面図。 第2図(α)、(b)は光磁気記録媒体の製造工程の断
面図。 第3図(ロ))〜(c)は従来技術によるDCスパッタ
法の製造工程の断面図。 第4図(ロ))Fiバイアス電圧が印加できたカー回転
角測定図。 第4図(b)はバイアス電圧が印加できなかったカー回
転角測定図。 第5図は初期真空度に対する基板1枚当りの装置償却図
。 1・・・真空槽 2・e・基板ホルダー 3・・・DCバイアス電源 4・・・工TOターゲット(透明導電膜用)5・・・F
−ターゲツ°ト ロ・・・Tbチップ 7・・・DC電源 8・・・基板固定用治具 9−・・透明基板(ポリカーボネート基板)lO・・・
銀ペースト 11・・・工To透明導電膜 12・・・TbFIl光磁気記録膜 21・・・基板ホルダー n・・・透明基板 器・・・導電体膜 ス・・・基板固定用治具 25+1・・透明導電膜 31・・・基板ホルダー !・・・透明基板(ガラス、PC,PMMA。 エポキシ樹脂等) お・・・透明導電膜 あ・・・基板固定用治具 35・−・基板固定用治具 36@−−光磁気記録@ (’rbyg、’rbygc
o、GdT6pg等希土類−遷移金属膜)
FIG. 1 is a sectional view of a magneto-optical recording medium and a manufacturing apparatus. FIGS. 2(α) and 2(b) are cross-sectional views of the manufacturing process of the magneto-optical recording medium. FIGS. 3(b) to 3(c) are cross-sectional views of the manufacturing process of the DC sputtering method according to the prior art. Figure 4 (b)) Kerr rotation angle measurement diagram where Fi bias voltage could be applied. FIG. 4(b) is a diagram of Kerr rotation angle measurement where no bias voltage could be applied. FIG. 5 is a diagram showing the depreciation of the device per substrate with respect to the initial degree of vacuum. 1...Vacuum chamber 2・e・Substrate holder 3...DC bias power supply 4...TO target (for transparent conductive film) 5...F
- Target transfer...Tb chip 7...DC power supply 8...Substrate fixing jig 9-...Transparent substrate (polycarbonate substrate) lO...
Silver paste 11...To transparent conductive film 12...TbFIl magneto-optical recording film 21...Substrate holder n...Transparent substrate holder...Conductor film...Substrate fixing jig 25+1.・Transparent conductive film 31...Substrate holder! ...Transparent substrate (glass, PC, PMMA, epoxy resin, etc.)...Transparent conductive film...Substrate fixing jig 35...Substrate fixing jig 36@--Magneto-optical recording@( 'rbyg,'rbygc
Rare earth-transition metal film such as o, GdT6pg)

Claims (1)

【特許請求の範囲】[Claims] 磁化の向きが膜面に垂直で上向きか下向きかの2値をと
る非晶質光磁気記録媒体の製造方法において、前記非晶
質光磁気記録膜を作成する透明基板の記録面側の記録部
分以外に、あらかじめ導電体膜を作成し、前記導電体膜
と前記透明基板を固定する治具とを接触させておき、そ
の後前記透明基板全体に透明導電膜を作成し、さらに前
記透明基板にDCバイアス電圧を印加しながら前記非晶
質光磁気記録膜を作成することを特徴とする光磁気記録
媒体の製造方法。
In a method for manufacturing an amorphous magneto-optical recording medium in which the direction of magnetization is perpendicular to the film surface and has a binary value of upward or downward, a recording portion on the recording surface side of a transparent substrate for forming the amorphous magneto-optical recording film. In addition, a conductive film is created in advance, the conductive film and a jig for fixing the transparent substrate are brought into contact with each other, a transparent conductive film is then created on the entire transparent substrate, and a DC is applied to the transparent substrate. A method for manufacturing a magneto-optical recording medium, comprising forming the amorphous magneto-optical recording film while applying a bias voltage.
JP17370585A 1985-08-07 1985-08-07 Manufacture of photomagnetic recording medium Pending JPS6234348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17370585A JPS6234348A (en) 1985-08-07 1985-08-07 Manufacture of photomagnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17370585A JPS6234348A (en) 1985-08-07 1985-08-07 Manufacture of photomagnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6234348A true JPS6234348A (en) 1987-02-14

Family

ID=15965599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17370585A Pending JPS6234348A (en) 1985-08-07 1985-08-07 Manufacture of photomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6234348A (en)

Similar Documents

Publication Publication Date Title
JPH03173958A (en) Magneto-optical disk
JPS6234348A (en) Manufacture of photomagnetic recording medium
JPS58215744A (en) Photothermal magnetic recording medium
JPH02265052A (en) Production of optical recording medium
JPS61196439A (en) Photomagnetic recording medium and its production
JPS6316439A (en) Production of magneto-optical recording medium
JPH0328739B2 (en)
JPS59171057A (en) Magneto-optical recording medium
JPS61148649A (en) Photoelectromagnetic recording medium and its production
JPS6310357A (en) Magneto-optical recording medium
JPS63282942A (en) Magneto-optical recording medium and its production
JPS63241739A (en) Magneto-optical disk
JPS62112250A (en) Photomagnetic recording element and its production
KR0137444B1 (en) Magneto optical recording medium and manufacturing method
JPS62121943A (en) Optical recording medium
JP2846872B2 (en) Method for manufacturing magneto-optical storage element
JP2918628B2 (en) optical disk
JPS6344340A (en) Magneto-optical recording element and its production
JPH01286151A (en) Magneto-optical recording medium
JPS61253654A (en) Production of photothermomagnetic recording medium
JPS61153856A (en) Information recording medium
JPS62103860A (en) Manufacture of optical magnetic recording medium
JPS6013339A (en) Photomagnetic memory medium
JPS6116052A (en) Photothermomagnetic recording medium
JPH07176078A (en) Optical recording medium