JPS62112250A - Photomagnetic recording element and its production - Google Patents

Photomagnetic recording element and its production

Info

Publication number
JPS62112250A
JPS62112250A JP25086485A JP25086485A JPS62112250A JP S62112250 A JPS62112250 A JP S62112250A JP 25086485 A JP25086485 A JP 25086485A JP 25086485 A JP25086485 A JP 25086485A JP S62112250 A JPS62112250 A JP S62112250A
Authority
JP
Japan
Prior art keywords
film
magneto
recording element
thin film
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25086485A
Other languages
Japanese (ja)
Inventor
Tsuneichi Yoshino
吉野 常一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25086485A priority Critical patent/JPS62112250A/en
Publication of JPS62112250A publication Critical patent/JPS62112250A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a guide groove comparatively easily even when a glass substrate is used as the disk substrate by forming a metallic thin film on the first main surface side of a magnetic substance film provided with the guide groove having an axis easy for magnetization vertical to the film surface and sticking a glass sheet on the second main surface side by an org. adhesive. CONSTITUTION:The metallic thin film 2 consisting, for example, of Au having excellent corrosion resistance and a dielectric layer 3 consisting, for example, of SiN are formed on the first main surface 11 side of the magnetic substance film 1 provided with a guide groove having an axis easy for magnetization vertical to the surface of a film consisting, for example, of TbCo. Besides, the dielectric layer 4 consisting, for example, of SiN for increasing the Kerr's rotating angle in the actual recording and reproduction is formed on the second main surface 12 side of the magnetic substance film 1. Furthermore, the glass sheet 6 is stuck by the org. adhesive 5 consisting, for example, of an UV curing resin.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は熱エネルギーで情報を記録或いは消去し、光と
磁気の相互作用を利用して情報を再生する光磁気記録素
子とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a magneto-optical recording element that records or erases information using thermal energy and reproduces information using interaction between light and magnetism, and a method for manufacturing the same.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、高密度、大容量及び高速アクセタが可能な光メモ
リ装置の研究開発が各方面で精力的に行なわれている。
In recent years, research and development of optical memory devices that are capable of high density, large capacity, and high speed accessors have been actively conducted in various fields.

中でも情報の記録、再生及び消去が可能な光磁気メモリ
装置は、文字や画像等のファイルメモリやコンピュータ
用メモリ等の用途が考えられるため、とりわけ有望視さ
れているものである。
Among these, magneto-optical memory devices capable of recording, reproducing, and erasing information are considered to be particularly promising because they can be used as file memories for characters and images, computer memories, and the like.

この光磁気メモリ装置の記録材料としては、TbCo、
 GdCo、 TbFe、 GdTbFe及びTbty
Fe等の希土類と遷移金属の非晶質合金薄膜が適してい
る。これは希土類と遷移金属の非晶質合金薄膜が膜面に
垂直な方向に磁化容易軸を有し、非晶質であるため粒界
ノイズがなく、記録に必要とされるレーザパワーを少な
くできるという優れた性質を有するためである。しかし
希土類と遷移金属の非晶質合金薄膜を記録材料として用
いた場合は、磁気光学効果であるカー回転角が0.2〜
0.3度と小さく、再生信号の品質が良くないという欠
点がある。この再生信号の品質を向上させるために、記
録材料上或いは基板と記録材料の間に、 SiOやSi
n、の誘電体膜を形成したりして、カー回転角を大きく
する工夫がなされてきた(例えば、アメリカ物理学会発
行Journal of Applied Physi
cs Vol、 45. No、 LAugust 1
974第3643頁参照)。
The recording materials of this magneto-optical memory device include TbCo,
GdCo, TbFe, GdTbFe and Tbty
An amorphous alloy thin film of a rare earth element such as Fe and a transition metal is suitable. This is because the amorphous alloy thin film of rare earths and transition metals has an axis of easy magnetization perpendicular to the film surface, and because it is amorphous, there is no grain boundary noise, and the laser power required for recording can be reduced. This is because it has such excellent properties. However, when an amorphous alloy thin film of rare earth and transition metals is used as a recording material, the Kerr rotation angle due to the magneto-optic effect is 0.2~
The disadvantage is that it is as small as 0.3 degrees, and the quality of the reproduced signal is not good. In order to improve the quality of this reproduced signal, SiO or Si is used on the recording material or between the substrate and the recording material.
Efforts have been made to increase the Kerr rotation angle by forming a dielectric film of n.
cs Vol, 45. No, LA August 1
974, page 3643).

また記録材料を形成するディスク基板は、無機材料のガ
ラス板、有機材料のアクリルやポリカーボネイトおよび
エポキシ等が提案されている。ディスク基板は、記録密
度を大きくし且つトラッキングフォーカシングサーボを
確実に行なうための案内溝が不可欠である。注形成いは
射出成形が行なえる有機材料は、案内溝が形成された金
属性のスタンパを使用して、注形成いは射出成形時に、
比較的容易に案内溝を形成することができるので、実用
上の至近距離にあるとみなさ九でいる。そしてこの有機
ディスク基板−にに前述の記録材料と保護用の誘電体膜
、或いはカー回転角を高めるl電体膜と記録材料と保護
用の金属膜または誘電体膜を、多元スパッタリング装置
を使って真空中で形成する。
Further, as the disk substrate forming the recording material, inorganic glass plates, organic materials such as acrylic, polycarbonate, and epoxy have been proposed. Guide grooves are essential for disk substrates in order to increase recording density and to perform tracking focusing servo reliably. Organic materials that can be cast or injection molded can be molded using a metal stamper with a guide groove.
Since guide grooves can be formed relatively easily, they are considered to be within close range for practical use. Then, the above-mentioned recording material and a protective dielectric film, or an electric film that increases the Kerr rotation angle, a recording material, and a protective metal film or dielectric film are applied to this organic disk substrate using a multi-source sputtering device. Form in vacuum.

ところが、このような有機基板を用いた光磁気記録素子
は1通常雰囲気中でも誘電体膜との応力及び吸湿による
そり変形が生じる。このそり変形は、記録再生装置の動
作特性上の大きな問題となっている。また記録再生時の
回転力にょる変形も、有機基板の場合は避けることがで
きない。更に長期の寿命及び信頼性の目安である高温高
湿下(例えば70℃R+490%)におくと、有機基板
の熱膨張係数が大きいため、吸湿膨張により記録材料と
誘電体膜が有機基板から剥離することがある。また射出
成形によるアクリル或いはポリカーボネイトの有機ディ
スク基板は、射出材料の流れや冷却の不均一性により、
中心がら外周方向へと複屈折性が大きく変化する欠点が
あり、光磁気記録素子用のディスク基板として不適当で
あることがわかっている。一方、注形によるエポキシの
ディスク基板は、複屈折は小さいが量産性がなく、大量
生産ができない欠点がある。
However, in a magneto-optical recording element using such an organic substrate, warping occurs due to stress and moisture absorption with the dielectric film even in a normal atmosphere. This warping deformation poses a major problem in terms of the operating characteristics of recording and reproducing devices. Furthermore, deformation due to rotational force during recording and reproduction cannot be avoided in the case of organic substrates. Furthermore, when placed under high temperature and high humidity conditions (e.g. 70℃R+490%), which is a guideline for long life and reliability, the recording material and dielectric film will peel off from the organic substrate due to hygroscopic expansion due to the large thermal expansion coefficient of the organic substrate. There are things to do. In addition, injection molded acrylic or polycarbonate organic disk substrates suffer from uneven flow and cooling of the injection material.
It has been found that it is unsuitable as a disk substrate for a magneto-optical recording element because it has the disadvantage that the birefringence changes greatly from the center toward the outer periphery. On the other hand, epoxy disk substrates made by casting have small birefringence, but have the drawback of not being mass-producible.

これに対し、無機材料のガラス基板は、温度膨張係数が
小さく吸湿の問題もないが、案内溝を形成することが非
常に面倒であり、更に研摩によるディスク基板製作は大
変高価なものとなる。また少なくとも片面に光学研摩を
施し、レジストを塗布して案内溝付のマスクで露光する
か、或いは精密な送り機構とレーザを有する露光装置に
よりレジストによる案内溝を形成した後、RIE (リ
アクティブイオンエツチング)装置でガラスをエツチン
グして、一枚ずつ案内溝を形成する必要があり、全く量
産性がない問題点を有する。
On the other hand, a glass substrate made of an inorganic material has a small coefficient of thermal expansion and does not have the problem of moisture absorption, but it is very troublesome to form guide grooves, and furthermore, manufacturing a disk substrate by polishing is very expensive. In addition, at least one side is optically polished, resist is applied, and exposed using a mask with guide grooves, or after forming guide grooves with resist using an exposure device equipped with a precise feeding mechanism and laser, RIE (reactive ionization) is performed. It is necessary to etch the glass using an etching device to form guide grooves one by one, which has the problem of not being suitable for mass production.

しかしその反面、温度膨張係数が小さく吸湿性もないの
で、ガラス基板上にカー回転角を高める誘電体膜、記録
材料及び誘電体保護膜を形成してなる光磁気記録素子は
、長寿命という利点をもっている。
However, on the other hand, since the coefficient of thermal expansion is small and there is no hygroscopicity, a magneto-optical recording element formed by forming a dielectric film that increases the Kerr rotation angle, a recording material, and a dielectric protective film on a glass substrate has the advantage of long life. have.

〔発明の目的〕[Purpose of the invention]

本発明はこのような状況に鑑みなされたもので。 The present invention was made in view of this situation.

ディスク基板としてガラス基板を用いながらも、比較的
容易に案内溝を形成することの可能な光磁気記録素子と
その製造方法の提供を目的とする。
The object of the present invention is to provide a magneto-optical recording element in which guide grooves can be formed relatively easily while using a glass substrate as a disk substrate, and a method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

即ち本発明は、膜面に垂直な磁化容易軸を有する案内溝
付きの磁性体膜の第1主而側には金a3膜が形成され、
第2主面側には有機接着剤によりガラス板が貼り合わさ
れていることを特徴とする光磁気記録素子である。
That is, in the present invention, a gold A3 film is formed on the first main side of a magnetic film with a guide groove having an axis of easy magnetization perpendicular to the film surface,
This magneto-optical recording element is characterized in that a glass plate is bonded to the second principal surface side using an organic adhesive.

また本発明は、案内溝を有する有機基板上に全稈と、こ
の磁性体膜上に有機接着剤によりガラス板を貼り合わせ
る工程と、前述の有機基板を剥離する工程とを備えたこ
とを特徴とする光磁気記録素子とその製造方法である。
Furthermore, the present invention is characterized by comprising the steps of bonding the entire culm onto an organic substrate having guide grooves, a glass plate on this magnetic film using an organic adhesive, and the step of peeling off the organic substrate. A magneto-optical recording element and a method for manufacturing the same.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の詳細を図面を参照して説明する。 The details of the present invention will be explained below with reference to the drawings.

第1図は本発明の光磁気記録素子の一部側面の一例を示
す断面図である。同図において、例えばTbCoからな
る膜面に垂直な磁化容易軸を有した案内溝付きの磁性体
膜■の第1主面(1□)側には、例えば耐蝕性の優れた
Auからなる金属薄膜■と例えばSiNからなる誘電体
層■が形成されている。また磁性体膜■の第2主面(1
2)側には、実際の記録再生時にカー回転角を高めるた
めの例えばSiNからなる誘電体層0)が形成され、更
に例えばUV硬化樹脂(Photo Bond I 1
00サンライズメイセイKK)からなる有機接着剤■に
よりガラス板(0が貼り合わされている。
FIG. 1 is a sectional view showing an example of a partial side surface of the magneto-optical recording element of the present invention. In the figure, on the first main surface (1□) side of the magnetic film (1) with guide grooves having an axis of easy magnetization perpendicular to the film surface made of, for example, TbCo, there is a metal made of, for example, Au, which has excellent corrosion resistance. A thin film (2) and a dielectric layer (2) made of, for example, SiN are formed. In addition, the second main surface (1
On the 2) side, a dielectric layer 0) made of, for example, SiN is formed to increase the Kerr rotation angle during actual recording and reproduction, and furthermore, a dielectric layer 0) made of, for example, UV curable resin (Photo Bond I 1) is formed on the 2) side.
The glass plates (0) are bonded together using an organic adhesive (2) made of Sunrise Meisei KK (00 Sunrise Meisei KK).

次に第1図に示した光磁気記録素子の製造方法の一例を
、第2図を用いて説明する。まず同図(a)に示すよう
に、射出形成で製作された案内溝を有する有機基板(1
0)上に、剥離層(11)としてSiO□を200人程
0の厚さにスパッタリング法で形成する。
Next, an example of a method for manufacturing the magneto-optical recording element shown in FIG. 1 will be explained using FIG. 2. First, as shown in FIG. 2(a), an organic substrate (1
0), a peeling layer (11) of SiO□ is formed by sputtering to a thickness of about 200 mm.

ここで剥離層(11)は後の有機基板(10)の剥離を
容易に行なうためのもので、有機基板(10)と熱膨張
係数が大きく異なる金属酸化物、金属窒化物、半導体酸
化物或いは半導体窒化物等からなればよく、膜厚は50
〜500人 の範囲が適当である。次に同図(b)に示
すように、有機基板(10)上に剥離層(11)と連続
してAuをスパッタリング法で2000人程度0厚さに
形成した後、めっき法により更にAuを2μs程度の厚
さに形成して金属薄膜■を完成させる。
Here, the peeling layer (11) is for easily peeling off the organic substrate (10) later, and is made of metal oxide, metal nitride, semiconductor oxide, or It may be made of semiconductor nitride, etc., and the film thickness is 50 mm.
A range of ~500 people is appropriate. Next, as shown in the same figure (b), Au is formed on the organic substrate (10) continuously with the release layer (11) to a thickness of about 2000 by sputtering, and then Au is further deposited by plating. The metal thin film (2) is completed by forming it to a thickness of about 2 μs.

このような手順方法により、微少なピンホールはめっき
工程で皆無となり、完全な金属保護層が形が不明確にな
ることと、雑音源となる粒状構造を発生させないめっき
の電流条件を選定することである。次に金属薄膜■が形
成された有機基板(10)を真空槽内に設置し、逆スパ
ツタリングで金属薄膜■の表面を清浄化した後、第2図
(c)に示すように、厚さ約1000人の誘電体層■、
厚さ約500人の磁性体膜(1)及び厚さ約1000人
の誘電体層(イ)を連続して順次形成し、大気中に取り
出す。
By using such a procedure, there will be no minute pinholes in the plating process, and the shape of the complete metal protective layer will be unclear, and it is possible to select plating current conditions that will not generate granular structures that can become noise sources. It is. Next, the organic substrate (10) on which the metal thin film (2) has been formed is placed in a vacuum chamber, and after cleaning the surface of the metal thin film (10) by reverse sputtering, as shown in FIG. 1000 dielectric layers■,
A magnetic film (1) about 500 thick and a dielectric layer (a) about 1000 thick are successively formed and taken out into the atmosphere.

続いて第2図(d)に示すように、磁性体膜■上に有機
接着剤■によりガラス板0を貼り合わせる。
Subsequently, as shown in FIG. 2(d), a glass plate 0 is bonded onto the magnetic film 2 using an organic adhesive 2.

これからこの貼り合わせ方法について第3図を用いて詳
述する。即ち、シリコンゴム隔壁(20)で仕切られた
真空槽A室の紫外線入射窓(21)上にガラス板0を設
置し、所定量の有機接着剤■を適下する。やや外周の大
きな有機基板(10)は変形することが可能なテフロン
治具(22)によって支持し、位置出しができるように
工夫されている。なお同図において(23)はテフロン
製のセンター出し治具、Bは真空槽室である。
This bonding method will now be described in detail with reference to FIG. That is, a glass plate 0 is placed on the ultraviolet light incident window (21) of a vacuum chamber A partitioned by a silicone rubber partition wall (20), and a predetermined amount of organic adhesive (2) is applied. The organic substrate (10), which has a rather large outer circumference, is supported by a deformable Teflon jig (22) so that it can be positioned. In the figure, (23) is a centering jig made of Teflon, and B is a vacuum chamber.

貼り合わせの手順は。What are the steps for pasting?

■ A、B両室の真空槽を同時に排気し有機接着剤■の
脱泡を充分に行う。
■ Evacuate the vacuum chambers of both chambers A and B at the same time to thoroughly degas the organic adhesive (■).

■ B室の真空槽を徐々に大気圧に戻し有機基板(10
)とガラス板0をシリコンゴム隔壁(20)を介して大
気圧で押し付ける。
■ Gradually return the vacuum chamber in chamber B to atmospheric pressure and return the organic substrate (10
) and glass plate 0 are pressed together at atmospheric pressure via the silicone rubber partition wall (20).

■ 押したままの状態で数分間待って有機接着剤■を充
分に薄く均一化する。
■ Hold it down for a few minutes to make the organic adhesive (■) thin and uniform.

■ 紫外線入射窓(21)からUV光を照射して有機接
着剤■を硬化される。
■ The organic adhesive ■ is cured by irradiating UV light from the ultraviolet incident window (21).

# A室を大気圧に戻し取出す。# Return chamber A to atmospheric pressure and take it out.

である。It is.

そして第2図(e)に示すように、有機基板(10)を
剥離することにより、所望の光磁気記録素子が得られる
。有機基板(10)を剥離する方法としては。
Then, as shown in FIG. 2(e), by peeling off the organic substrate (10), a desired magneto-optical recording element is obtained. The method for peeling off the organic substrate (10) is as follows.

熱膨張の差異を利用することが比較的簡便で好ましい。It is relatively simple and preferable to utilize the difference in thermal expansion.

即ち接着された接合体を70〜80℃に加温することで
、有機基板(10)は剥離層(11)を境にして。
That is, by heating the bonded body to 70 to 80°C, the organic substrate (10) is separated with the peeling layer (11) as a boundary.

簡単に剥すことができる。It can be easily peeled off.

第1図に示した光磁気記録素子は、吸湿膨張のない低熱
膨張係数のガラス板0を実質的な主支持基板として採用
しているため、このガラス板■に接着されている案内溝
付きの磁性体膜■、金属薄膜■及び誘電体層(イ)の伸
縮は、ガラス板0により制約を受けて、ガラス板0の伸
縮と同等になる。
The magneto-optical recording element shown in Fig. 1 uses a glass plate 0 with a low coefficient of thermal expansion and no hygroscopic expansion as the substantial main supporting substrate. The expansion and contraction of the magnetic film (2), the metal thin film (2), and the dielectric layer (A) are restricted by the glass plate 0, and are equivalent to the expansion and contraction of the glass plate 0.

また金属薄膜■は弓蚕力な保護膜を兼ねて磁性体膜0)
を完全に保M@閉しており、実用上充分な寿命特性が得
られる。
In addition, the metal thin film ■ also serves as a protective film with strong magnetic properties.
is completely maintained M@closed, and a practically sufficient life characteristic can be obtained.

一方、第2図に示した光磁気記録素子の製造方法では、
大量生産が可能な案内溝付きの有機基板(10)を補助
基板として利用することにより、廉価で容易に案内溝を
金属薄膜■に転写できるので、ディスク基板としてガラ
ス板0を用いた場合の製造工程の短縮が可能となり、工
業的価値は大きい。
On the other hand, in the method for manufacturing the magneto-optical recording element shown in FIG.
By using the organic substrate (10) with guide grooves, which can be mass-produced, as an auxiliary substrate, the guide grooves can be easily transferred to the metal thin film at a low cost. This makes it possible to shorten the process and has great industrial value.

なお金か薄膜(2)は何層から構成されていてもかまわ
ないが、磁性体膜(]〕を保護する役割があることを考
えた場合、有機基板(10)が剥離された大気と接する
部分は貴金属元素或いは耐蝕性合金からなり、また厚さ
は0.5μm以上であることが望ましい。また磁性体膜
■と誘電体層■は、内周側と外周側の一部分にマスク等
を用いて形成させない配慮を施せば5周辺部が露出して
直接大気に触れることはなく、寿命や信頼性はより向上
する。更に記録再生のためのレーザ光線は、貼り合わせ
たガラス板0の側から入射させるため、ガラス板(0の
複屈折のばらつきは重要であり、充分に吟味されたもの
を選択しなければならないことは勿論である。
It doesn't matter how many layers the thin film (2) is made up of, but considering that it has the role of protecting the magnetic film ()], it is important that the organic substrate (10) comes into contact with the peeled atmosphere. It is preferable that the part is made of a noble metal element or a corrosion-resistant alloy, and that the thickness is 0.5 μm or more. Also, for the magnetic film (■) and the dielectric layer (■), a mask or the like is used on a portion of the inner and outer circumferential sides. If consideration is given to prevent the formation of glass plates, the peripheral area of 5 will not be exposed and come into direct contact with the atmosphere, and the life and reliability will be further improved.Furthermore, the laser beam for recording and reproduction will be transmitted from the side of the bonded glass plate 0. In order to make the light incident on the glass plate, the variation in birefringence of the glass plate (0) is important, and it goes without saying that a glass plate must be selected after careful consideration.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の光磁気記録素子とその製造
方法は、光磁気記録素子に不可欠な案内溝を、有機ディ
スク板を補助基板として、その1−に耐蝕性の優れた金
属薄膜を形成し2て転写するとともに、この金属薄膜を
最終形態の光磁気記録素子で保護層に利用してなるので
、実用−」−充分な寿命特性が得られるのみならず、案
内溝形成等の製造工程が簡略化される。
As explained above, the magneto-optical recording element and the manufacturing method thereof of the present invention are such that the guide grooves essential to the magneto-optical recording element are formed using an organic disk plate as an auxiliary substrate and a metal thin film with excellent corrosion resistance on the auxiliary substrate. At the same time, this metal thin film is used as a protective layer in the final form of the magneto-optical recording element, which not only provides sufficient life characteristics but also simplifies the manufacturing process such as forming guide grooves. is simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光磁気記録素子の一実施例を示す図、
第2図は本発明の光磁気記録素子の製造方法の一実施例
を示す図、第3回は磁性体膜とガラス板とを貼り合わせ
る方法の一例を示す図である。 ■・・・磁性体膜 ■・・・金属薄膜 ■・・・有機接着剤 ■・・・ガラス板 (10)・・・有機基板 代理人 弁理士 則 近 憲 佑 同  大胡典夫 第1図 (a)                      
 (−1,、)(C)       (d) (e) 第2図 第3図
FIG. 1 is a diagram showing an embodiment of the magneto-optical recording element of the present invention;
FIG. 2 is a diagram showing an example of the method for manufacturing a magneto-optical recording element of the present invention, and the third diagram is a diagram showing an example of a method of bonding a magnetic film and a glass plate. ■...Magnetic film ■...Metal thin film■...Organic adhesive■...Glass plate (10)...Organic substrate agent Patent attorney Norio Chika Ken Yudo Norio Ogo Figure 1 ( a)
(-1,,) (C) (d) (e) Figure 2 Figure 3

Claims (4)

【特許請求の範囲】[Claims] (1)膜面に垂直な磁化容易軸を有する案内溝付きの磁
性体膜と、この磁性体膜の第1主面側に形成された金属
薄膜と、前記磁性体膜の第2主面側に有機接着剤により
貼り合わされたガラス板とを備えたことを特徴とする光
磁気記録素子。
(1) A magnetic film with a guide groove having an axis of easy magnetization perpendicular to the film surface, a thin metal film formed on the first main surface side of the magnetic film, and a second main surface side of the magnetic film. 1. A magneto-optical recording element comprising: and a glass plate bonded together with an organic adhesive.
(2)前記金属薄膜は、大気と接する部分が貴金属元素
或いは耐蝕性合金からなることを特徴とする特許請求の
範囲第1項記載の光磁気記録素子。
(2) The magneto-optical recording element according to claim 1, wherein the metal thin film is made of a noble metal element or a corrosion-resistant alloy in a portion that comes into contact with the atmosphere.
(3)前記金属薄膜の厚さは0.5μm以上であること
を特徴とする特許請求の範囲第1項記載の光磁気記録素
子。
(3) The magneto-optical recording element according to claim 1, wherein the thickness of the metal thin film is 0.5 μm or more.
(4)案内溝を有する有機基板上に金属薄膜を形成する
工程と、前記金属薄膜上に膜面に垂直な磁化容易軸を有
する磁性体膜を形成する工程と、前記磁性体膜上に有機
接着剤によりガラス板を貼り合わせる工程と、前記有機
基板を剥離する工程とを備えたことを特徴とする光磁気
記録素子の製造方法。
(4) forming a metal thin film on an organic substrate having a guide groove; forming a magnetic film having an axis of easy magnetization perpendicular to the film surface on the metal thin film; and forming an organic film on the magnetic film. A method for manufacturing a magneto-optical recording element, comprising the steps of bonding glass plates together with an adhesive and peeling off the organic substrate.
JP25086485A 1985-11-11 1985-11-11 Photomagnetic recording element and its production Pending JPS62112250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25086485A JPS62112250A (en) 1985-11-11 1985-11-11 Photomagnetic recording element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25086485A JPS62112250A (en) 1985-11-11 1985-11-11 Photomagnetic recording element and its production

Publications (1)

Publication Number Publication Date
JPS62112250A true JPS62112250A (en) 1987-05-23

Family

ID=17214143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25086485A Pending JPS62112250A (en) 1985-11-11 1985-11-11 Photomagnetic recording element and its production

Country Status (1)

Country Link
JP (1) JPS62112250A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291837A (en) * 1988-09-28 1990-03-30 Hitachi Ltd Magneto-optical recording medium
US6407418B1 (en) 1998-09-16 2002-06-18 Nec Corporation Semiconductor device, method of manufacturing the same, image sensor apparatus having the same and image reader having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291837A (en) * 1988-09-28 1990-03-30 Hitachi Ltd Magneto-optical recording medium
US6407418B1 (en) 1998-09-16 2002-06-18 Nec Corporation Semiconductor device, method of manufacturing the same, image sensor apparatus having the same and image reader having the same

Similar Documents

Publication Publication Date Title
JP2547768B2 (en) Optical magnetic recording medium
JPS62112250A (en) Photomagnetic recording element and its production
JPS6320742A (en) Optical recording medium
JPH02778B2 (en)
JPH0442452A (en) Magneto-optical disk and production thereof
JP2633927B2 (en) Optical recording medium
JPS6168744A (en) Manufacture of optical recording medium
JPH0689474A (en) Production of magneto-optical recording medium
JP2606729B2 (en) Magneto-optical recording medium
JPS6316439A (en) Production of magneto-optical recording medium
JPS6276040A (en) Manufacture of optomagnetic recording medium
JPS62121943A (en) Optical recording medium
JPS6267748A (en) Photomagnetic recording element
JPS62277642A (en) Optical information recording medium and its production
JP2551620B2 (en) Magneto-optical disk
JPH05159366A (en) Optical information recording medium
JP2740814B2 (en) Magneto-optical recording medium
JPH0734272B2 (en) Magneto-optical recording medium
JPH0676372A (en) Production of optical information recording medium having smooth resin protective film and recording medium manufactured by the production
JPS6231050A (en) Photomagnetic recording medium
JPS62162258A (en) Photomagnetic recording element and its production
JPS6013339A (en) Photomagnetic memory medium
JPS6163944A (en) Optical recording medium
JPS61273760A (en) Manufacture of photomagnetic disk
JPH05144102A (en) Magneto-optical disk medium