JPS6234325B2 - - Google Patents

Info

Publication number
JPS6234325B2
JPS6234325B2 JP56208098A JP20809881A JPS6234325B2 JP S6234325 B2 JPS6234325 B2 JP S6234325B2 JP 56208098 A JP56208098 A JP 56208098A JP 20809881 A JP20809881 A JP 20809881A JP S6234325 B2 JPS6234325 B2 JP S6234325B2
Authority
JP
Japan
Prior art keywords
reactor
rubber
polymerization
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56208098A
Other languages
Japanese (ja)
Other versions
JPS58109517A (en
Inventor
Tetsuto Kawaguchi
Tsutomu Chiba
Masaru Yonekura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP20809881A priority Critical patent/JPS58109517A/en
Publication of JPS58109517A publication Critical patent/JPS58109517A/en
Publication of JPS6234325B2 publication Critical patent/JPS6234325B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Description

【発明の詳細な説明】 本発明はゴム変性ポリスチレン系樹脂の製造法
に関するものであり、更に詳しくは塊状重合(少
量の溶剤等を添加する場合も含む、以下同じ)に
よる該樹脂の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a rubber-modified polystyrene resin, and more particularly to a method for producing the resin by bulk polymerization (including the case where a small amount of solvent is added, the same applies hereinafter). It is something.

ゴム変性ポリスチレン系樹脂は、スチレン系樹
脂をゴムで変性することによつて、著しく、その
耐衝撃性が向上し、実用的に多く使用されてい
る。これらは主として、塊状重合法、懸濁重合
法、乳化重合法で製造されているが産業廃棄物の
処理や副資材等にもとずくコスト等の点から塊状
重合の有意性が認められて来ている。
Rubber-modified polystyrene resins are widely used in practical use because their impact resistance is significantly improved by modifying styrene resins with rubber. These are mainly produced by bulk polymerization, suspension polymerization, and emulsion polymerization, but the significance of bulk polymerization has been recognized from the viewpoint of costs based on industrial waste disposal and secondary materials. ing.

従来、このゴム変性ポリスチレン系樹脂を塊状
重合で製造する方法については多くの提案があ
り、例えばプラグフロー性反応器を用いる方法、
回分式反応器を用いる方法、連続槽型反応器を用
いる方法等がある。
Conventionally, there have been many proposals for producing this rubber-modified polystyrene resin by bulk polymerization, such as a method using a plug flow reactor,
There are methods using a batch reactor, methods using a continuous tank reactor, etc.

しかしながら、プラグフロー性反応器のみで重
合を完結するのは、系の粘度上昇によつて熱除去
が困難になり連続操作に適さず、また、回分式反
応器のみで重合を完結させると、重合終了物を排
出した際に反応器内に多くの樹脂が附着し、1回
毎の洗浄を要するばかりでなく、シート等にした
場合の表面欠陥の原因となるゲルスポツトの発生
要因ともなり、到底実用に供せられるものではな
い。
However, completing polymerization only in a plug-flow reactor is not suitable for continuous operation because the viscosity of the system increases, making it difficult to remove heat, and completing polymerization only in a batch reactor When the finished product is discharged, a large amount of resin adheres to the inside of the reactor, which not only requires cleaning every time, but also causes gel spots that cause surface defects when made into sheets, etc., making it impossible to put it into practical use. It is not something that can be offered to people.

一方、連続槽型反応器を用いる方法において
は、操作性、制御性等の点において優れている
が、得られるゴム変性ポリスチレン系樹脂の透明
性が悪いという問題がある。この連続槽型反応器
を用いる方法については、先にその改良法の1つ
を提案したが(特公昭49−26951号公報)、耐衝撃
性と加工流動性についてはバランスの良好なゴム
変性ポリスチレン系樹脂が得られるが、透明性に
ついては大巾には改善されない。
On the other hand, the method using a continuous tank reactor is excellent in terms of operability, controllability, etc., but has the problem that the resulting rubber-modified polystyrene resin has poor transparency. Regarding the method using this continuous tank reactor, one of the improved methods was previously proposed (Japanese Patent Publication No. 49-26951). Although a resin based on this method is obtained, the transparency is not significantly improved.

従つて、この連続槽型反応器による塊状重合に
よつて得られるゴム変性ポリスチレン系樹脂の欠
点の1つは透明性に欠けるということである。該
樹脂は広い用途に用いられるので、その全ての用
途で透明性が必要なわけではないが、食品容器、
フイルム等に用いる場合など透明性のよいものが
望まれる。また、種々の品質の異なつたゴム変性
ポリスチレン系樹脂が望まれ、変化に富む製品が
得られる製造方法が望まれている。
Therefore, one of the drawbacks of the rubber-modified polystyrene resin obtained by bulk polymerization using this continuous tank reactor is that it lacks transparency. Since the resin is used in a wide range of applications, transparency is not required for all applications, but it can be used for food containers,
A material with good transparency is desired when used in films and the like. Furthermore, rubber-modified polystyrene resins of various qualities are desired, and a manufacturing method that allows a wide variety of products to be obtained is desired.

本発明者等は、かかる観点に鑑み、耐衝撃性等
の機械的特性を低下させることなく透明性に優れ
たゴム変性ポリスチレン系樹脂の製造方法につい
て鋭意研究を重ねた結果、スチレン系単量体85〜
97重量部にゴム質重合体3〜15重量部を混合した
重合原料に重合開始剤として有機過酸化物をスチ
レン系単量体1モル当り2×10-5〜4×10-4モル
添加し、これを回分式反応器又はプラグフロー性
の強い反応器で反応率25〜50%(重量%、以下同
じ)となるように塊状予備重合し、次いで1個以
上の連続槽型反応器で塊状重合し、樹脂中のゴム
粒径を1.5〜3μの範囲内にすることによつて目
的を達成し得ることを見い出し、本発明を完成し
たものである。
In view of this point of view, the present inventors have conducted extensive research on a method for producing rubber-modified polystyrene resins that have excellent transparency without reducing mechanical properties such as impact resistance, and have found that styrene monomers 85~
To a polymerization raw material prepared by mixing 97 parts by weight with 3 to 15 parts by weight of a rubbery polymer, 2 x 10 -5 to 4 x 10 -4 mol of organic peroxide was added as a polymerization initiator per 1 mol of styrenic monomer. This is prepolymerized in bulk in a batch reactor or reactor with strong plug flow properties to a reaction rate of 25 to 50% (wt%, the same hereinafter), and then in one or more continuous tank reactors. The present invention was completed based on the discovery that the object could be achieved by polymerizing the resin and controlling the rubber particle size in the range of 1.5 to 3 microns.

本発明に用いられるスチレン系単量体としては
スチレン、α―メチルスチレン、核置換スチレン
等の単独または混合物があり、また、ゴム質重合
体としては、スチレン系単量体とグラフト重合体
を生成するものであれば良く、例えば、ブタジエ
ンゴム、スチレン―ブタジエンゴム、アクリロニ
トリル―ブタジエンゴム、エチレン―プロピレン
―第三成分ゴム等がある。スチレン系単量体97〜
85重量部に、ゴム質重合体3〜15重量部を添加
し、好ましくは均一な溶液としたものを重合原料
とし、必要に応じて、20重量部以下の溶剤を添加
してもよい。これらの溶剤としては、芳香族炭化
水素、脂環式あるいは脂肪族炭化水素、ケトン
類、アルコール類等がある。
Styrenic monomers used in the present invention include styrene, α-methylstyrene, nuclear-substituted styrene, etc. alone or in mixtures, and rubbery polymers include styrene monomers and graft polymers. Examples thereof include butadiene rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, ethylene-propylene-third component rubber, and the like. Styrenic monomer 97~
A polymerization raw material is prepared by adding 3 to 15 parts by weight of a rubbery polymer to 85 parts by weight, preferably forming a homogeneous solution, and if necessary, up to 20 parts by weight of a solvent may be added. These solvents include aromatic hydrocarbons, alicyclic or aliphatic hydrocarbons, ketones, alcohols, and the like.

1個以上の連続槽型重合器で行う重合に先だつ
て行なう予備重合は回分式反応器またはプラグフ
ロー性の強い反応器で行なう必要がある。この反
応器として使用される回分式反応器としては、通
例、槽型の反応器が使用され、撹拌機を備えたも
のである。また、プラグフロー性の強い反応器と
しては理想的には固形分の異なる反応液を相互に
混合することなく、移動させることのできるもの
がよい。換言すれば、定常的な状態において反応
器の入口から出口に向うに従つて反応率が連続的
に増加しているプラグフロー型の反応器を云う。
この反応器としての好適な具体例を示せば、十分
な長さを有する空洞パイプの中に軸方向に混合を
殆んど生じない様に設計された掻き取り刃等の回
転体を設置したものあるいはこれらプラグフロー
型反応器の外周面に加熱、冷却のためのジヤケツ
トを設けた反応器等がある。このプラグフロー型
反応器を複数個直列に結合すること、その1部
を、予熱帯、重合帯に分けて使用することも可能
である。
Prepolymerization carried out prior to polymerization carried out in one or more continuous tank type polymerization vessels must be carried out in a batch type reactor or a reactor with strong plug flow properties. As the batch reactor used as this reactor, a tank-type reactor is usually used and is equipped with a stirrer. Ideally, a reactor with a strong plug flow property is one that can move reaction liquids with different solid contents without mixing them with each other. In other words, it is a plug flow type reactor in which the reaction rate increases continuously from the inlet to the outlet in a steady state.
A preferred specific example of this reactor is one in which a rotary body such as a scraping blade is installed in a hollow pipe of sufficient length that is designed to cause almost no mixing in the axial direction. Alternatively, there are reactors having jackets for heating and cooling provided on the outer peripheral surface of these plug flow type reactors. It is also possible to connect a plurality of these plug flow type reactors in series, and to use one part of the reactor separately for the pre-preparation zone and the polymerization zone.

本発明に使用する有機過酸化物としては、半減
期が10時間になる分解温度が80〜130℃のもので
あり、好ましくは100℃以上のものであつて、反
応温度に応じて選定すればよい。この有機過酸化
物の例としては、ジクミルパーオキサイド、2,
5―ジメチル―2,5―ジ(t―ブチルパーオキ
シ)ヘキサン、1,3―ビス(t―ブチルパーオ
キシイソプロピル)ベンゼン、t―ブチルクミル
パーオキサイド、ジ―t―ブチルパーオキサイ
ド、2,5―ジメチル―2,5―ジ(t―ブチル
パーオキシ)ヘキシン―3等のジアルキルパーオ
キサイド類、1,1―ジ(t―ブチルパーオキ
シ)―3,3,5―トリメチルシクロヘキサン、
1,1―ジ(t―ブチルパーオキシ)シクロヘキ
サン、2,2―ジ(t―ブチルパーオキシ)ブタ
ン、4,4―ジ(t―ブチルパーオキシ)バレリ
ン酸n―ブチル等のパーオキシケタール類、ジ
(t―ブチルパーオキシ)ヘキサヒドロテレフタ
レート、ジ(t―ブチルパーオキシ)アゼレー
ト、t―ブチルパーオキシ―3,5,5―トリメ
チルヘキサエート、t―ブチルパーオキシアセテ
ート、t―ブチルパーオキシベンゾエート等のア
ルキルパーオキシエステル類等を挙げることがで
きる。
The organic peroxide used in the present invention has a decomposition temperature of 80 to 130°C, preferably 100°C or higher, at which the half-life is 10 hours, and the organic peroxide is selected depending on the reaction temperature. good. Examples of this organic peroxide include dicumyl peroxide, 2,
5-dimethyl-2,5-di(t-butylperoxy)hexane, 1,3-bis(t-butylperoxyisopropyl)benzene, t-butylcumyl peroxide, di-t-butyl peroxide, 2, Dialkyl peroxides such as 5-dimethyl-2,5-di(t-butylperoxy)hexyne-3, 1,1-di(t-butylperoxy)-3,3,5-trimethylcyclohexane,
Peroxyketals such as 1,1-di(t-butylperoxy)cyclohexane, 2,2-di(t-butylperoxy)butane, and n-butyl 4,4-di(t-butylperoxy)valerate , di(t-butylperoxy)hexahydroterephthalate, di(t-butylperoxy)azelate, t-butylperoxy-3,5,5-trimethylhexaate, t-butylperoxyacetate, t-butyl Examples include alkyl peroxy esters such as peroxybenzoate.

本発明において使用する有機過酸化物の添加量
は、スチレン系単量体1モルに対して、2×10-5
モル〜4×10-4モル、好ましくは5×10-5〜3×
10-4モルである。2×10-5モル以下では物性改良
にほとんど効果がなく、一方、4×10-4モル以上
とすれば、物性改良には効果があるが、塊状重合
では、特に転化率の高い領域において、重合反応
の制御がきわめて困難となり、好ましくない。
The amount of organic peroxide used in the present invention is 2×10 -5 per mole of styrene monomer.
moles to 4×10 −4 moles, preferably 5×10 −5 to 3×
10 -4 mol. If it is less than 2 × 10 -5 mol, it has little effect on improving physical properties, while if it is more than 4 × 10 -4 mol, it is effective in improving physical properties, but in bulk polymerization, especially in the region of high conversion, This is not preferable since it becomes extremely difficult to control the polymerization reaction.

回分式反応器またはプラグフロー性の強い反応
器で行なう予備重合はその反応率(スチレン系単
量体がポリマーに転化した割合をいう。以下同
じ)が25〜50%であることが必須である。25%よ
り小さいと、物性の改良度合が小さく、満足でき
るものではなく、50%を越えると、全体の反応
を、回分式反応器のみまたはプラグフロー性の強
い反応器のみで行なうのと同様になつて、先に述
べた欠点がそのまま露呈し、安定に生産すること
が困難である。また、予備重合の温度は90〜160
℃の範囲内がよいが、可能な除熱速度、反応の制
御等から、100〜130℃がより好ましい。予備重合
の温度が160℃以上になるとほとんど熱重合とな
り、触媒の効果が認められないし、生ずるポリマ
ーの分子量が小さくなるばかりでなく、制御が困
難となり好ましくない。また、予備重合の温度が
90℃以下では、本発明に云う有機過酸化物を、使
用しても反応速度が小さすぎ、実用的でない。
For prepolymerization carried out in a batch reactor or a reactor with strong plug flow, it is essential that the reaction rate (ratio of styrenic monomer converted to polymer; the same applies hereinafter) is 25 to 50%. . If it is less than 25%, the degree of improvement in physical properties is small and unsatisfactory, and if it exceeds 50%, it is similar to conducting the entire reaction only in a batch reactor or a reactor with strong plug flow properties. As a result, the above-mentioned drawbacks are exposed as they are, making it difficult to produce stably. In addition, the temperature of prepolymerization is 90 to 160
It is preferably within the range of 100 to 130°C, but from the viewpoint of possible heat removal rate, reaction control, etc. If the prepolymerization temperature is 160° C. or higher, the polymerization will mostly be thermal polymerization, and the effect of the catalyst will not be observed, and the molecular weight of the resulting polymer will not only be small, but also difficult to control, which is undesirable. Also, the temperature of prepolymerization is
At temperatures below 90°C, even if the organic peroxide referred to in the present invention is used, the reaction rate is too low to be practical.

本発明に使用する連続槽式反応器は、1個また
は2個以上を用いることができる。予備重合にお
ける反応率25〜50%のものを、最終反応器出口に
おいて、反応率70〜90%まで重合させうるものな
らば適宜のものが使用できるが、内容物を実質的
に均一にできる撹拌機を備え、温度制御は、圧力
をコントロールすることによつて重合熱をモノマ
ー等の気化熱によつて除去するものが望ましい。
One or more continuous tank reactors can be used in the present invention. Any suitable material can be used as long as it can polymerize a reaction rate of 25 to 50% in the prepolymerization to a reaction rate of 70 to 90% at the final reactor outlet, but stirring that can make the contents substantially uniform can be used. It is desirable that the temperature be controlled by controlling the pressure so that the heat of polymerization is removed by the heat of vaporization of the monomer or the like.

本発明において、樹脂中のゴム粒径を1.5〜3
μの範囲内に調整することは得られたゴム変性ポ
リスチレン系樹脂の耐衝撃性を維持すると同時に
優れた透明性を付与する上で重要なことである。
ゴム粒径が1.5μ以下になると耐衝撃性が低下
し、また、3μ以上になると透明性が低下する。
この樹脂中のゴム粒径を1.5〜3μの範囲内に調
整する手段としては、種々考えられるが、第1反
応器における予備重合の際の撹拌速度を制御する
こともその一つの方法である。
In the present invention, the rubber particle size in the resin is 1.5 to 3.
Adjusting μ within the range is important for maintaining the impact resistance of the obtained rubber-modified polystyrene resin and at the same time imparting excellent transparency.
When the rubber particle size is less than 1.5μ, impact resistance decreases, and when it is more than 3μ, transparency decreases.
Various methods can be considered for adjusting the rubber particle size in the resin within the range of 1.5 to 3 μm, and one method is to control the stirring speed during prepolymerization in the first reactor.

本発明においては白色鉱油、ステアリン酸ブチ
ル、フタール酸ジオクチル等の潤滑剤や、ブチル
化ヒドロキシルトルエン(BHT)、n―オクタデ
シル―β―(4′―ヒドロキシ―3′,5′―ジ―t―
ブチルフエニル)プロピオネート等のフエノール
系、4,4―ブチリデン―ビス(3―メチル―6
―t―ブチルフエニル―ジ―トリデミル)フオス
フアイト等のホスフアイト系その他の安定剤や、
ステアリン酸カルシウム、エチレンビスステアロ
アミド等の外部潤滑剤、その他着色剤、帯電防止
剤等、適宜の添加剤を重合前、重合中、あるいは
重合後に適宜添加してもよい。
In the present invention, lubricants such as white mineral oil, butyl stearate, dioctyl phthalate, butylated hydroxyl toluene (BHT), n-octadecyl-β-(4'-hydroxy-3',5'-di-t-
Phenols such as butylphenyl) propionate, 4,4-butylidene-bis(3-methyl-6
-t-butylphenyl-di-tridemyl) phosphite and other phosphite stabilizers,
Appropriate additives such as external lubricants such as calcium stearate and ethylene bisstearamide, other colorants, and antistatic agents may be added as appropriate before, during, or after polymerization.

本発明によれば、重合開始剤として有機過酸化
物をスチレン単量体1モル当り2×10-5〜4×
10-4モル使用し、第1反応器における予備重合の
反応率を25〜50重量%の範囲内にし、また、樹脂
中のゴム粒径を1.5〜3μとすることによつて、
耐衝撃性等の機械的特性を低下させることなく透
明性に優れたゴム変性ポリスチレン系樹脂を製造
法として有利な塊状重合により製造することがで
きる。
According to the present invention, an organic peroxide is used as a polymerization initiator in an amount of 2×10 -5 to 4× per mole of styrene monomer.
By using 10 -4 mol, making the reaction rate of prepolymerization in the first reactor within the range of 25 to 50% by weight, and setting the rubber particle size in the resin to 1.5 to 3μ,
Rubber-modified polystyrene resins with excellent transparency can be produced by bulk polymerization, which is advantageous as a production method, without reducing mechanical properties such as impact resistance.

以下、本発明を実施例及び比較例に基づいて具
体的に説明する。
Hereinafter, the present invention will be specifically explained based on Examples and Comparative Examples.

実施例 1 スチレン単量体93.5重量部、ポリブタジエンゴ
ム(旭化成株式会社製商品名ジエンNF35A)6.5
重量部、t―ブチルクミルパーオキサイド0.025
重量部、n―オクタデシル―β―(4′―ヒドロキ
シ―3′,5′―ジ―t―ブチルフエニル)プロピオ
ネート(チバ・ガイド―社製安定剤、商品名イル
ガノツクス)0.065重量部及び白色鉱油4.0重量部
を均一に混合し、この混合物を135℃で回分式の
予備反応器で反応率33%まで重合を行い、次いで
2個の槽からなる連続槽型反応器で反応率85%ま
で重合し、脱揮処理した後にペレツトにした。こ
のペレツトのゴム粒径をコールターカウンター
(米国、コールターエレクトロニツクス社製)に
て測定した結果は2.2μであり、平行透過率約5
%の0.3mmシートをブランクにしてその値を100と
し、積分球式透過測定により透明性を測定した結
果は140であり、また、アイゾツト衝撃強度
(ASTM D―256)を測定した結果は10.3Kg・cm/
cmであつた。これらの結果から得られたブタジエ
ンゴム変性ポリスチレン樹脂はその耐衝撃性及び
透明性が共に優れていることが判明した。
Example 1 Styrene monomer 93.5 parts by weight, polybutadiene rubber (product name Diene NF35A manufactured by Asahi Kasei Corporation) 6.5 parts by weight
Part by weight, t-butylcumyl peroxide 0.025
Parts by weight, 0.065 parts by weight of n-octadecyl-β-(4'-hydroxy-3',5'-di-t-butylphenyl) propionate (stabilizer manufactured by Ciba Guide, trade name Irganox) and 4.0 parts by weight of white mineral oil. This mixture was polymerized at 135°C in a batch-type preliminary reactor to a reaction rate of 33%, and then polymerized to a reaction rate of 85% in a continuous tank reactor consisting of two tanks. After devolatilization, it was made into pellets. The rubber particle size of this pellet was measured using a Coulter Counter (manufactured by Coulter Electronics, USA) and was 2.2μ, with a parallel transmittance of approximately 5.
% 0.3mm sheet as a blank and its value was set to 100, and the result of measuring transparency by integrating sphere transmission measurement was 140, and the result of measuring Izod impact strength (ASTM D-256) was 10.3Kg. ·cm/
It was cm. These results revealed that the butadiene rubber-modified polystyrene resin had excellent impact resistance and transparency.

実施例 2 予備重合の反応率を帯留時間と反応温度とによ
つて種々変化させたほかは実施例1と同様に行な
い、得られた重合物の透明性とアイゾツト衝撃強
度とを測定した。結果を図に示すが、予備重合に
おける反応率が25%を越えるあたりから透明性が
大巾に向上し、また、50%を越えるとアイゾツト
衝撃強度が低下する。
Example 2 The same procedure as in Example 1 was carried out except that the reaction rate of the prepolymerization was varied depending on the residence time and reaction temperature, and the transparency and Izod impact strength of the obtained polymer were measured. The results are shown in the figure. When the reaction rate in prepolymerization exceeds 25%, the transparency improves significantly, and when it exceeds 50%, the Izod impact strength decreases.

実施例 3 実施例1で用いたものと同じ原料を用い、スチ
レン単量体91.5重量部、ポリブタジエンゴム8.5
重量部、t―ブチルクミルパーオキサイド0.02重
量部、前記イルガノツクス0.085重量部及び白色
鉱油4.0重量部を均一に混合し、この混合物を撹
拌機と熱媒ジヤケツトを備えたプラグフロー性反
応器(長さ/相当直径の比60)からなる予備反応
器にポンプで装入し、ジヤケツト温度を150℃に
保つて出口の反応率を32.6%となるように予備重
合し、次い3個の槽を直列に接続してなる連続槽
型反応器に逐次装入した。各槽は撹拌機と熱媒ジ
ヤケツトとを備え、内部には気相部を有するもの
で、所定温度に見合う圧力に維持して第1槽の温
度を140℃、第2槽の温度を145℃及び第3槽の温
度を150℃に夫々制御し、第3槽の出口における
反応率を82.7%とした。得られた重合物について
は、脱揮処理をした後ペレツトとし、実施例1の
場合と同様にブタジエンゴム変性ポリスチレン樹
脂中のゴム粒径、透明性及びアイゾツト衝撃強度
を測定した。結果は、ゴム粒径が2.1μ、透明性
が151、アイゾツト衝撃強度が16.0Kg・cm/cmであ
つた。
Example 3 Using the same raw materials as those used in Example 1, 91.5 parts by weight of styrene monomer and 8.5 parts by weight of polybutadiene rubber.
parts by weight, 0.02 parts by weight of t-butylcumyl peroxide, 0.085 parts by weight of the above-mentioned Irganox, and 4.0 parts by weight of white mineral oil. /Equivalent diameter ratio 60) with a pump, the jacket temperature was maintained at 150°C, and prepolymerization was carried out so that the reaction rate at the outlet was 32.6%, and then three tanks were connected in series The reactors were sequentially charged into a continuous tank reactor connected to the reactor. Each tank is equipped with an agitator and a heat medium jacket, and has a gas phase inside.The pressure in the first tank is maintained at a pressure commensurate with the predetermined temperature, and the temperature in the second tank is 140°C and 145°C. The temperatures of the third tank and the third tank were controlled at 150° C., and the reaction rate at the outlet of the third tank was 82.7%. The obtained polymer was subjected to devolatilization treatment and then made into pellets, and the rubber particle size, transparency, and Izod impact strength of the butadiene rubber-modified polystyrene resin were measured in the same manner as in Example 1. The results were that the rubber particle size was 2.1μ, the transparency was 151, and the Izot impact strength was 16.0Kg·cm/cm.

比較例 1 重合開始剤を使用しないで若干反応温度を上
げ、予備重合の反応率を31重量%としたほかは実
施例3と同様に行つた。得られたブタジエンゴム
変性ポリスチレン樹脂について、樹脂中のゴム粒
径、透明性及びアイゾツト衝撃強度を測定した結
果は、樹脂中のゴム粒径が2.1μ、透明性が60、
アイゾツト衝撃強度が14.0Kg・cm/cmであり、透
明性が著るしく悪かつた。
Comparative Example 1 The same procedure as in Example 3 was carried out except that no polymerization initiator was used, the reaction temperature was slightly raised, and the reaction rate of the prepolymerization was 31% by weight. Regarding the obtained butadiene rubber-modified polystyrene resin, the rubber particle size in the resin, transparency, and Izod impact strength were measured. The results showed that the rubber particle size in the resin was 2.1μ, the transparency was 60μ, and the transparency was 60μ.
The Izot impact strength was 14.0 kg·cm/cm, and the transparency was extremely poor.

比較例 2 予備反応器、第1槽の撹拌回転数を大きくした
ほかは、ほゞ実施例1と同様に行なつた。ゴム粒
径が1.2μで透明性は高かつたがアイゾツト衝撃
強度は、7Kg・cm/cmを低く、実用に供し難いも
のであつた。
Comparative Example 2 The same procedure as in Example 1 was carried out except that the stirring rotational speed of the preliminary reactor and the first tank was increased. Although the rubber particle size was 1.2 μm and the transparency was high, the Izot impact strength was low at 7 kg·cm/cm, making it difficult to put it to practical use.

【図面の簡単な説明】[Brief explanation of the drawing]

図は実施例2の結果を示すもので、予備重合の
反応率と透明性及びアイゾツト衝撃強度との関係
を示すグラフ図である。
The figure shows the results of Example 2, and is a graph showing the relationship between the reaction rate of prepolymerization, transparency, and Izod impact strength.

Claims (1)

【特許請求の範囲】 1 スチレン系単量体85〜97重量部にゴム質重合
体3〜15重量部を混合した重合原料に重合開始剤
として有機過酸化物をスチレン系単量体1モル当
り2×10-5〜4×10-4モル添加し、これを回分式
反応器又はプラグフロー性の強い反応器で反応率
25〜50%となるように塊状予備重合し、次いで1
個以上の連続槽型反応器で塊状重合し、かつ、樹
脂中のゴム粒径を1.5〜3μの範囲内にすること
を特徴とするゴム変性スチレン系樹脂の製造法。 2 有機過酸化物はその10時間半減期温度が80〜
130℃である特許請求の範囲第1項記載のゴム変
性スチレン系樹脂の製造法。
[Claims] 1. Organic peroxide is added as a polymerization initiator to a polymerization raw material prepared by mixing 85 to 97 parts by weight of a styrene monomer with 3 to 15 parts by weight of a rubbery polymer per mole of the styrene monomer. Add 2 x 10 -5 to 4 x 10 -4 moles and increase the reaction rate in a batch reactor or reactor with strong plug flow.
Bulk prepolymerization to 25-50%, then 1
1. A method for producing a rubber-modified styrenic resin, which is characterized by carrying out bulk polymerization in a continuous tank reactor or more, and controlling the rubber particle size in the resin to be within the range of 1.5 to 3 μm. 2 Organic peroxides have a 10-hour half-life temperature of 80~
A method for producing a rubber-modified styrenic resin according to claim 1, wherein the temperature is 130°C.
JP20809881A 1981-12-24 1981-12-24 Production of rubber-modified styrene resin Granted JPS58109517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20809881A JPS58109517A (en) 1981-12-24 1981-12-24 Production of rubber-modified styrene resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20809881A JPS58109517A (en) 1981-12-24 1981-12-24 Production of rubber-modified styrene resin

Publications (2)

Publication Number Publication Date
JPS58109517A JPS58109517A (en) 1983-06-29
JPS6234325B2 true JPS6234325B2 (en) 1987-07-27

Family

ID=16550597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20809881A Granted JPS58109517A (en) 1981-12-24 1981-12-24 Production of rubber-modified styrene resin

Country Status (1)

Country Link
JP (1) JPS58109517A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686559B2 (en) * 1984-09-27 1994-11-02 出光石油化学株式会社 Fluorocarbon resistant sheet material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4846691A (en) * 1971-10-14 1973-07-03
JPS4999649A (en) * 1972-12-29 1974-09-20
JPS49107395A (en) * 1973-02-15 1974-10-11
JPS537794A (en) * 1976-07-12 1978-01-24 Idemitsu Petrochemical Co Process for producing impacttresistant polysyrene
JPS55120615A (en) * 1979-03-07 1980-09-17 Monsanto Co Improved bulk polymerization

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4846691A (en) * 1971-10-14 1973-07-03
JPS4999649A (en) * 1972-12-29 1974-09-20
JPS49107395A (en) * 1973-02-15 1974-10-11
JPS537794A (en) * 1976-07-12 1978-01-24 Idemitsu Petrochemical Co Process for producing impacttresistant polysyrene
JPS55120615A (en) * 1979-03-07 1980-09-17 Monsanto Co Improved bulk polymerization

Also Published As

Publication number Publication date
JPS58109517A (en) 1983-06-29

Similar Documents

Publication Publication Date Title
US5905096A (en) Continuous production process of expandable styrene polymer beads
JP2971351B2 (en) Multi-stage bulk process for production of ABS graft copolymer with controlled grafting, phase inversion and crosslinking
MXPA98001167A (en) Continuous process for the preparation of polimerosde estireno expansi
EP1943306B1 (en) Low temperature initiators for improving the rubber phase volume of hips formulations
JPH04234415A (en) Method and equipment for continuous manufacture of abs polymer
US20150252134A1 (en) Swell index of hips using additives
JPS62121716A (en) Production of grafted ethylene/acrylate copolymer
JPH04234414A (en) Continuous manufacture of impact-resistant polystyrene-acrylonitrile copolymer
JPS6234325B2 (en)
US4732924A (en) Method for producing vinyl aromatic resin composition
US3499059A (en) Method of making toughened polymers from emulsions of immiscible solutions of elastomers,thermoplastic polymers and ethylenically unsaturated monomers stabilized by the addition of block or graft copolymers
US3759879A (en) Continuous bulk polymerization process for vinyl chloride copolymers
US5455321A (en) Process for producing high molecular weight monovinylidene aromatic polymers
US4187261A (en) Vinyl aromatic polymerization process
WO1981001291A1 (en) Process for producing rubber-modified styrene series resin
JPH07173231A (en) Method and apparatus for producing high-impact styrenic resin
EP3891219A1 (en) Chain extended or branched copolymers of vinylidene aromatic monomer and unsaturated compounds with nucleophilic groups
JPH072959A (en) High-impact styrene resin composition and its production
US4355157A (en) Hot water precipitation of resins containing maleic anhydride
JP4663107B2 (en) Rubber-modified aromatic vinyl copolymer resin composition and method for producing the same
JP3137768B2 (en) Recycling method of impact-resistant styrenic resin molding
JPH0480049B2 (en)
US5189095A (en) High-impact polystyrene
JP4920145B2 (en) Rubber-modified aromatic vinyl copolymer resin composition and method for producing the same
JPH02286702A (en) Styrene polymer and its production