JPS6234302Y2 - - Google Patents
Info
- Publication number
- JPS6234302Y2 JPS6234302Y2 JP1979137873U JP13787379U JPS6234302Y2 JP S6234302 Y2 JPS6234302 Y2 JP S6234302Y2 JP 1979137873 U JP1979137873 U JP 1979137873U JP 13787379 U JP13787379 U JP 13787379U JP S6234302 Y2 JPS6234302 Y2 JP S6234302Y2
- Authority
- JP
- Japan
- Prior art keywords
- electrochemical
- secondary battery
- current
- load
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001514 detection method Methods 0.000 claims description 23
- 238000000034 method Methods 0.000 description 39
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 13
- 229910052709 silver Inorganic materials 0.000 description 13
- 239000004332 silver Substances 0.000 description 13
- 238000010586 diagram Methods 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910005580 NiCd Inorganic materials 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- Y02E60/12—
Landscapes
- Measurement Of Current Or Voltage (AREA)
- Secondary Cells (AREA)
Description
【考案の詳細な説明】
この考案は二次電池の消費量が設定所定値に達
するとこれを検出し、二次電池の消費量が所定値
に達したことを報知する電池の消費量報知装置に
関するものである。[Detailed description of the invention] This invention is a battery consumption notification device that detects when the consumption of the secondary battery reaches a predetermined value and notifies that the consumption of the secondary battery has reached the predetermined value. It is related to.
二次電池の電気エネルギを負荷に供給してこれ
を駆動させる場合、二次電池の消費量を検知して
それが予め設定した所定値を越えた場合に、使用
中の二次電池を充電し直すことが負荷の効率的な
駆動と使用する二次電池の寿命向上のために必要
である。このために二次電池の消費量を検出して
それが設定所定値に達したことを報知する装置が
要求される。従来は一般に二次電池の端子間電圧
を測定し、これが予め設定した所定値より低下す
ることを確認してこの二次電池の充電を行なつて
いた。 When the electrical energy of a secondary battery is supplied to a load to drive it, the amount of consumption of the secondary battery is detected and if it exceeds a preset value, the secondary battery in use is charged. It is necessary to correct this in order to drive the load efficiently and extend the life of the secondary battery used. For this reason, a device is required that detects the amount of consumption of the secondary battery and notifies that it has reached a predetermined value. Conventionally, the voltage between the terminals of a secondary battery was generally measured, and the secondary battery was charged after confirming that the voltage was lower than a predetermined value.
しかし、近年広く使用されているNiCd電池な
どでは、その放電特性が向上し、使用初期から長
時間に亘つてその放電による電圧降下が極めて小
さく、その作動可能期間の末期に近い時点でない
とこの端子電圧の低下を明確にとらえることがで
きない。従つてこの時点において電池の消費量を
検知してそれを報知してもその報知時点ではすで
に電池に残存する電気エネルギが少なく、この報
知が行なわれてから負荷を駆動可能な時間が極め
て少ない。従つて、この方法では二次電池の充電
時期を適切に把握することができず、負荷の駆動
途中において電池が消費され盡されてしまつて停
電事故が発生したり、逆に電池の残存電気エネル
ギが充分ある状態にもかかわらず必要以上に充電
を繰返して電池の寿命を短縮したりするなどの事
故がしばしば見受けられた。 However, the discharge characteristics of NiCd batteries, which have been widely used in recent years, have improved, and the voltage drop due to discharge is extremely small over a long period of time from the beginning of use. It is not possible to clearly detect the drop in voltage. Therefore, even if the amount of battery consumption is detected and reported at this point, there is already little electrical energy remaining in the battery at the time of notification, and the time during which the load can be driven after this notification is made is extremely short. Therefore, with this method, it is not possible to properly determine when to charge the secondary battery, and the battery may be consumed while driving the load, resulting in a power outage accident, or conversely, the remaining electrical energy of the battery may be lost. Accidents such as shortening the life of the battery by repeating charging more than necessary even when there is sufficient battery life have often been observed.
この考案は上述の従来の電池の消費量測定上の
諸欠点を解決し、電池の消費量が予め設定した所
定値に達するとこれを確実に検出し、電池の消費
量が所定値に達したことを迅速正確に報知するこ
とを可能にした電池の消費量報知装置を提供する
ものである。 This invention solves the above-mentioned drawbacks of conventional battery consumption measurement, reliably detects when the battery consumption reaches a preset value, and detects when the battery consumption reaches a predetermined value. To provide a battery consumption amount reporting device that can quickly and accurately notify the amount of battery consumed.
この考案は次のような構成となつている。即ち
二次電池から負荷への電流供給回路に負荷電流を
検出する電流検出用抵抗が直列に挿入される。こ
の負荷電流の電流検出用抵抗に並列に、同一極が
互に接続された2個の電気化学的時限素子の直列
接続回路が接続される。 This idea has the following structure. That is, a current detection resistor for detecting the load current is inserted in series in a current supply circuit from the secondary battery to the load. A series connection circuit of two electrochemical time elements each having the same pole connected to each other is connected in parallel to this current detection resistor for the load current.
この2個の電気化学的時限素子は交互にそれぞ
れ負荷電流の供給時及び電池の充電時にクリア電
流が流れ、負荷への電流供給時にクリア電流が流
れている一方の素子の両端電圧が所定値に達する
のを検出する検出手段が設けられる。この検出手
段の出力信号によつて報知手段が駆動されるので
この考案の電池の消費量報知装置によると、電池
の消費量が予め設定された所定値に達したことを
検出し、これを報知することが可能となる。 Clearing current flows through these two electrochemical time elements alternately when supplying load current and charging the battery, respectively, and when supplying current to the load, the voltage across the one element through which the clearing current is flowing reaches a predetermined value. Detection means are provided for detecting the arrival of the signal. Since the notification means is driven by the output signal of the detection means, the battery consumption notification device of this invention detects that the battery consumption has reached a predetermined value and notifies the user of this. It becomes possible to do so.
以下、この考案の電池の消費量報知装置をその
実施例に基づき図面を使用して詳細に説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS The battery consumption amount reporting device of this invention will be described in detail below based on an embodiment thereof using the drawings.
第1図はこの考案の実施例の構成を示す回路図
で、二次電池11より負荷12への電流供給回路
に直列に電流検出用抵抗13が挿入される。 FIG. 1 is a circuit diagram showing the configuration of an embodiment of this invention, in which a current detection resistor 13 is inserted in series with a current supply circuit from a secondary battery 11 to a load 12.
即ち、二次電池11の正電極側がダイオード1
4の陰極側に接続され、このダイオード14の陽
極側が充電端子t1となつている。ダイオード14
の陰極側は負荷投入スイツチ15を介して負荷1
2の一端に接続され、この負荷12の他端は充電
端子t2となつている。充電端子t2と二次電池11
の負電極側との間に電流検出用抵抗13が接続さ
れる。 That is, the positive electrode side of the secondary battery 11 is connected to the diode 1.
The anode side of this diode 14 serves as a charging terminal t1 . diode 14
The cathode side of is connected to the load 1 via the load input switch 15.
The other end of this load 12 serves as a charging terminal t2 . Charging terminal t 2 and secondary battery 11
A current detection resistor 13 is connected between the negative electrode side and the negative electrode side.
従つて負荷投入スイツチ15を投入すると二次
電池11から負荷12に負荷電流が供給され、こ
の負荷電流に対応する電流が、電流検出用抵抗1
3に流れ、この電流検出用抵抗13を流れる電流
によつて負荷電流を検出することが可能である。 Therefore, when the load input switch 15 is turned on, a load current is supplied from the secondary battery 11 to the load 12, and a current corresponding to this load current is passed through the current detection resistor 1.
The load current can be detected by the current flowing through the current detection resistor 13.
互に同一極が接続された2個の電気化学的時限
素子16−1,16−2の直列接続回路が電流検
出用抵抗13に並列に接続される。 A series connection circuit of two electrochemical time-limiting elements 16-1 and 16-2 connected to each other at the same pole is connected in parallel to the current detection resistor 13.
即ち、電流検出用抵抗13と充電端子t2との接
続点が抵抗17を介して電気化学的時限素子16
−1の陽極Aに接続されている。この抵抗17は
電気化学的時限素子16−1,16−2に所定の
電流を供給するための調整用の抵抗である。電気
化学的時限素子16−1の陰極Kと電気化学的時
限素子16−2の陰極Kとが接続され、電気化学
的時限素子16−2の陰極Aは抵抗13と二次電
池11の負電極側との接続点に接続される。 That is, the connection point between the current detection resistor 13 and the charging terminal t2 is connected to the electrochemical timer 16 via the resistor 17.
-1 is connected to anode A. This resistor 17 is an adjustment resistor for supplying a predetermined current to the electrochemical time elements 16-1 and 16-2. The cathode K of the electrochemical timer 16-1 and the cathode K of the electrochemical timer 16-2 are connected, and the cathode A of the electrochemical timer 16-2 is connected to the resistor 13 and the negative electrode of the secondary battery 11. Connected to the connection point with the side.
電気化学的時限素子としては例えばイーセル
(E−CELL)を使用することができる。イーセ
ルは第2図に示すような構成のもので一端面が閉
塞した円筒状の銀製の陰極18のほゞ中心軸に沿
つて金製の小径円柱状陽極19が挿入配設され
る。陰極18の開放面側は円柱状の蓋体20で閉
塞され、この蓋体20の軸心の廻りに陽極19の
直径よりも僅かに大きい開孔21が形成され、そ
こから陽極19が外部に取り出されて陽極端子2
2がこれに接続形成されている。陰極18の開放
面側端部において陽極端子22は絶縁固定体23
で陰極18に絶縁固定される。 For example, an E-CELL can be used as an electrochemical timer. The Ecel has a structure as shown in FIG. 2, in which a small-diameter cylindrical anode 19 made of gold is inserted and disposed approximately along the central axis of a cylindrical silver cathode 18 with one end closed. The open side of the cathode 18 is closed with a cylindrical lid 20, and an opening 21 slightly larger than the diameter of the anode 19 is formed around the axis of the lid 20, through which the anode 19 is exposed to the outside. Taken out and anode terminal 2
2 is connected to this. At the end of the open surface of the cathode 18, the anode terminal 22 is connected to an insulating fixed body 23.
It is insulated and fixed to the cathode 18.
一方、陰極18の底面からは陰極端子24が軸
心に平行に接続形成されている。円筒状の陰極1
8内には電解液25が充填されている。 On the other hand, a cathode terminal 24 is connected to the bottom surface of the cathode 18 in parallel to the axis. Cylindrical cathode 1
8 is filled with an electrolytic solution 25.
このイーセルにおいて陰極18と陽極19間に
直流電圧を印加し、陰極18から陽極19方向へ
直流電圧を流すと、電解液25に浸された陽極1
9の面上に銀が電着する。このようにして陽極1
9と陰極18間に電圧を印加して陰極18から陽
極19方向へ電流を流し陽極19の面上に銀を電
着する工程をセツト工程と呼んでいる。 In this Ecell, when a DC voltage is applied between the cathode 18 and the anode 19 and the DC voltage is passed from the cathode 18 to the anode 19 direction, the anode 1 immersed in the electrolyte 25
Silver is electrodeposited on the surface of 9. In this way, anode 1
The step of electrodepositing silver on the surface of the anode 19 by applying a voltage between the anode 9 and the cathode 18 to flow a current from the cathode 18 toward the anode 19 is called a setting step.
セツト工程を行なつたイーセルにおいて陽極1
9と陰極18間にセツト工程とは逆方向に電圧を
印加し、陽極19から陰極18に向つて電流を流
すようにすると、陽極19の面上に電着されてい
た銀が陰極18に移動する。この時の銀の全移動
量はセツト工程において陽極19の面上に電着さ
れていた銀量に等しく、単位時間当りの電流値と
移動時間の積に比例する。この工程をクリア工程
と呼んでいる。 Anode 1 in Ecel where the setting process was carried out.
When a voltage is applied between the anode 9 and the cathode 18 in the opposite direction to the setting process and a current is caused to flow from the anode 19 to the cathode 18, the silver electrodeposited on the surface of the anode 19 moves to the cathode 18. do. The total amount of silver movement at this time is equal to the amount of silver electrodeposited on the surface of the anode 19 in the setting step, and is proportional to the product of the current value per unit time and the movement time. This process is called the clearing process.
金は電解液25に対して不溶性であるため陽極
19の面上に電着されていた銀が移動され盡すと
陽極19と陰極18間の抵抗値が急激に上昇し、
両電極間の電圧が大きくなる。この両電極間の電
圧の急激な増大を検出することにより銀の完全移
動を知り、これを利用してイーセルをタイマ、カ
ウンタ或いは積分素子として使用することが可能
である。 Since gold is insoluble in the electrolytic solution 25, when the silver electrodeposited on the surface of the anode 19 is transferred, the resistance value between the anode 19 and the cathode 18 increases rapidly.
The voltage between both electrodes increases. By detecting this sudden increase in the voltage between the two electrodes, it is possible to know the complete movement of silver, and by utilizing this, it is possible to use the Ecel as a timer, counter, or integrating element.
さて、第1図の回路に戻ると電気化学的時限素
子16−1,16−2としてイーセルを使用し、
最初電気化学的時限素子16−1としてセツト工
程を施したものを用い電気化学的時限素子16−
2としてクリア工程を施したものを使用する。こ
のようにすると負荷投入スイツチ15を投入して
電池11から負荷12に負荷電流を供給すると、
この負荷電流によつて電流検出用抵抗13の両端
に負荷電流の変動に対応する電圧が与えられ、電
気化学的時限素子16−1にはその陽極Aから陰
極K方向に電流が流れるので、電気化学的時限素
子16−1はクリア工程に入ることになる。 Now, returning to the circuit shown in Figure 1, Ecel is used as the electrochemical timer elements 16-1 and 16-2,
Initially, an electrochemical timer 16-1 that had been subjected to a setting process was used as the electrochemical timer 16-1.
As No. 2, use a material that has been subjected to a clearing process. In this way, when the load input switch 15 is turned on and the load current is supplied from the battery 11 to the load 12,
This load current applies a voltage corresponding to the fluctuation of the load current across the current detection resistor 13, and current flows through the electrochemical time element 16-1 from its anode A to its cathode K. The chemical timer 16-1 will enter a clearing process.
従つてセツト工程で陽極Aの面上に電着されて
いた銀が、このクリア工程によつて陽極Aから陰
極Kに移動し、すべての銀量が移動されつくした
状態で、電気化学的時限素子16−1の陽極Aの
電圧が上昇することになり、これを検知すれば電
気化学的時限素子16−1はタイマとして作動さ
せることが可能になる。 Therefore, the silver electrodeposited on the surface of the anode A in the setting process moves from the anode A to the cathode K in the clearing process, and when all the silver has been transferred, the electrochemical time limit is reached. The voltage at the anode A of element 16-1 will rise, and upon detection of this, electrochemical time element 16-1 can be operated as a timer.
互に同一極が接続された2個の電気化学的時限
素子中で負荷12への電流供給時にクリア電流が
流れている素子の両端間電圧が所定値に達するの
を検出する検出手段が設けられ、この検出手段の
出力で二次電池11の消費量が所定値に達したこ
とが報知手段により報知される。 A detection means is provided for detecting when the voltage across the element through which the clearing current is flowing reaches a predetermined value when current is supplied to the load 12 among two electrochemical time-limiting elements having the same poles connected to each other. Based on the output of the detection means, the notification means notifies that the consumption amount of the secondary battery 11 has reached a predetermined value.
即ち、比較器27が設けられ、その一入力端子
が電気化学的時限素子16−1の陽極Aに接続さ
れる。一方電気化学的時限素子16−2の陽極A
は抵抗26を介して比較器27の+入力端子に接
続される。又、比較器27の+入力端子は抵抗2
8を介して発光ダイオード29の陽極側に接続さ
れ、発光ダイオード29の陰極側は抵抗30を介
して比較器27の出力端子に接続される。 That is, a comparator 27 is provided, one input terminal of which is connected to the anode A of the electrochemical timer 16-1. On the other hand, the anode A of the electrochemical timer 16-2
is connected to the + input terminal of the comparator 27 via the resistor 26. In addition, the + input terminal of the comparator 27 is connected to the resistor 2.
8 to the anode side of the light emitting diode 29, and the cathode side of the light emitting diode 29 is connected to the output terminal of the comparator 27 via a resistor 30.
発光ダイオード29の陽極側にツエナダイオー
ド31の陰極側が接続され、ツエナダイオード3
1の陽極側は充電端子t2に接続される。発光ダイ
オード29の陽極側とツエナダイオード31の陰
極側との接続点に抵抗32の一端が接続され、こ
の抵抗32の他端はダイオード33の陰極側に接
続される。このダイオード33の陽極側は負荷投
入スイツチ15を介してダイオード14の陰極側
に接続されている。 The cathode side of the Zener diode 31 is connected to the anode side of the light emitting diode 29, and the Zener diode 3
The anode side of 1 is connected to charging terminal t2 . One end of a resistor 32 is connected to the connection point between the anode side of the light emitting diode 29 and the cathode side of the Zener diode 31, and the other end of this resistor 32 is connected to the cathode side of the diode 33. The anode side of this diode 33 is connected to the cathode side of the diode 14 via the load input switch 15.
さて、電気化学的時限素子16−1としてセツ
ト工程を経たイーセルを使用し、電気化学的時限
素子16−2としてクリア工程を経たイーセルを
使用し、負荷投入スイツチ15を投入して負荷1
2に充電された二次電池11から負荷電流を供給
する場合の動作について説明する。 Now, an Ecel that has gone through a setting process is used as the electrochemical timer 16-1, an Ecel that has gone through a clearing process is used as the electrochemical timer 16-2, and the load input switch 15 is turned on to turn on the load 1.
The operation in the case where a load current is supplied from the secondary battery 11 charged to 2 is explained.
この場合、二次電池11の正電極端子、負荷投
入スイツチ15、負荷12、電流検出用抵抗1
3、二次電池11の負電極端子で閉回路が形成さ
れ、そこを負荷電流に対応する電流が流れること
になる。この負荷電流によつて電流検出用抵抗1
3の両端に負荷電流の変動に対応した電圧変動が
生ずる。 In this case, the positive electrode terminal of the secondary battery 11, the load input switch 15, the load 12, and the current detection resistor 1
3. A closed circuit is formed by the negative electrode terminal of the secondary battery 11, through which a current corresponding to the load current flows. This load current determines the current detection resistor 1.
Voltage fluctuations occur at both ends of 3 in response to fluctuations in load current.
このために電気化学的時限素子16−1及び1
6−2には、負荷電流の変動に比例する電流が流
れることになる。この電流は二次電池11の正電
極端子、負荷投入スイツチ15、負荷12、抵抗
17、電気化学的時限素子16−1の陽極A、電
気化学的時限素子16−1の陰極K、電気化学的
時限素子16−2の陰極K、電気化学的時限素子
16−2の陽極A及び二次電池11の負電極端子
が形成する閉回路を流れることになる。 For this purpose, the electrochemical timers 16-1 and 16-
A current proportional to the fluctuation of the load current flows through the positive electrode terminal of the secondary battery 11, the load switch 15, the load 12, the resistor 17, the anode A of the electrochemical timing element 16-1, the cathode K of the electrochemical timing element 16-1, the cathode K of the electrochemical timing element 16-2, the anode A of the electrochemical timing element 16-2, and the negative electrode terminal of the secondary battery 11.
従つてセツト工程を経た電気化学的時限素子1
6−1に対しては電流はその陽極Aから陰極K方
向へ流れるので、電気化学的時限素子16−1は
クリア工程に置かれる。又クリア工程を経た電気
化学的時限素子16−2に対しては電流はその陰
極Kから陽極A方向に流れるので、電気化学的時
限素子16−2はセツト工程に置かれる。 Therefore, the electrochemical timer 1 that has undergone the setting process
For 6-1, the current flows from its anode A to its cathode K, so that the electrochemical timer 16-1 is placed in a clearing process. Furthermore, since the current flows from the cathode K to the anode A in the electrochemical timer 16-2 which has undergone the clearing process, the electrochemical timer 16-2 is placed in the set process.
電気化学的時限素子16−1,16−2として
特性の等しいものを使用すると、電気化学的時限
素子16−1のクリア工程が進行し、陽極A面上
に電着されていた銀がその陰極Kに移動されつく
し、クリア工程が完了すると、電気化学的時限素
子16−2では陰極Kから陽極A面上への銀の電
着が終了し、セツト工程が完了することになる。 When electrochemical timers 16-1 and 16-2 having the same characteristics are used, the clearing process of the electrochemical timer 16-1 progresses, and the silver electrodeposited on the anode A surface is transferred to the cathode. When the silver is completely transferred to K and the clearing process is completed, the electrodeposition of silver from the cathode K to the anode A surface is completed in the electrochemical time element 16-2, and the setting process is completed.
この状態で電気化学的時限素子16−1の陽極
Aと陰極K間の抵抗値が急激に増加するため、電
気化学的時限素子16−1の陽極Aの電圧が急激
に増加する。比較器27はその一入力端子の電圧
値が負荷投入スイツチ15を投入して負荷に電流
を供給している状態で二次電池11の正電極端
子、負荷投入スイツチ15、ダイオード33、抵
抗32、抵抗28、抵抗26、二次電池11の負
電極端子という閉回路を流れる電流と、抵抗3
2,28,26で分割されて設定されるその+入
力端子の電圧値を越えるとこれを検知してその出
力端子の信号の論理値が“0”となるように設定
されている。 In this state, the resistance value between the anode A and the cathode K of the electrochemical timer 16-1 increases rapidly, so that the voltage at the anode A of the electrochemical timer 16-1 increases rapidly. The comparator 27 is connected to the positive electrode terminal of the secondary battery 11, the load application switch 15, the diode 33, the resistor 32, A current flows through a closed circuit consisting of resistor 28, resistor 26, and the negative electrode terminal of secondary battery 11, and resistor 3
It is set so that when the voltage value of the + input terminal, which is set by dividing by 2, 28, and 26, is exceeded, this is detected and the logic value of the signal at the output terminal becomes "0".
従つて電気化学的時限素子16−1のクリア工
程が完了し、その陽極Aが電圧が上昇すると、発
光ダイオード29が点灯する。セツト工程を経た
電気化学的時限素子16−1にクリア工程が施さ
れてこれが完了するまでの時間が、例えば二次電
池11により負荷12に電流を供給し、その消費
量が全蓄電量の80%に達する時間に一致するよう
に設定されている。従つて電気化学的時限素子1
6−1のクリア工程が完了し、発光ダイオード2
9が点灯した時点で二次電池11を充電すれば効
率のよい充電を行なうことができる。 Therefore, when the clearing process of the electrochemical timer 16-1 is completed and the voltage at its anode A increases, the light emitting diode 29 lights up. The time it takes for the electrochemical timer 16-1 to undergo the clearing process after the set process is completed, for example, when the secondary battery 11 supplies current to the load 12, and its consumption is 80% of the total stored electricity. % is set to match the time it reaches. Therefore, the electrochemical timer 1
The clearing process of 6-1 is completed, and the light emitting diode 2
If the secondary battery 11 is charged when 9 lights up, efficient charging can be achieved.
二次電池11の充電に際しては負荷投入スイツ
チ15を開き負荷12を二次電池11から切離し
ておいてから、充電端子t1,t2間に充電器を接続
する。この場合、充電電流は充電端子t1、ダイオ
ード14、二次電池11の正電極端子、二次電池
11の負電極端子、電流検出用抵抗13、充電端
子t2という閉回路を流れる。 When charging the secondary battery 11, the load input switch 15 is opened to disconnect the load 12 from the secondary battery 11, and then a charger is connected between the charging terminals t1 and t2 . In this case, the charging current flows through a closed circuit including the charging terminal t 1 , the diode 14 , the positive electrode terminal of the secondary battery 11 , the negative electrode terminal of the secondary battery 11 , the current detection resistor 13 , and the charging terminal t 2 .
こゝで電流検出用抵抗13を流れる電流によつ
て電気化学的時限素子16−2の陽極Aと電気化
学的時限素子16−1の陽極A間に電位差を生ず
る。従つてセツト工程が完了した状態にある電気
化学的時限素子16−2の陽極Aからその陰極K
方向に電流が流れるので電気化学的時限素子16
−2はクリア工程に置かれる。又クリア工程が完
了した状態にある電気化学的時限素子16−1で
は陰極Kから陽極A方向に電流が流れるので、電
気化学的時限素子16−1はセツト工程に置かれ
る。 The current flowing through the current detection resistor 13 creates a potential difference between the anode A of the electrochemical time element 16-2 and the anode A of the electrochemical time element 16-1. Therefore, from the anode A to the cathode K of the electrochemical timer 16-2 in which the setting process has been completed,
Since the current flows in the direction, the electrochemical timing element 16
-2 is placed in the clearing process. Further, in the electrochemical timer 16-1 in which the clearing process has been completed, current flows from the cathode K to the anode A, so that the electrochemical timer 16-1 is placed in the set process.
従つて電気化学的時限素子16−2のクリア工
程が完了し、電気化学的時限素子16−1のセツ
ト工程が完了する時間だけ充電を行なつて充電端
子t1,t2を充電器から切離せば二次電池11には
完全に充電が完了することになる。この状態にお
いて二次電池11は消費量が補充充電された状態
に回復し、再度負荷12に負荷電流を供給可能と
なる。 Therefore, the charging terminals t 1 and t 2 are disconnected from the charger after charging is performed for a period of time when the clearing process of the electrochemical timer 16-2 is completed and the setting process of the electrochemical timer 16-1 is completed. Once released, the secondary battery 11 will be fully charged. In this state, the consumption of the secondary battery 11 is restored to the state where it has been supplementally charged, and it becomes possible to supply the load current to the load 12 again.
なお、第1図の実施例には示されていないが、
二次電池11の充電時において、電気化学的時限
素子16−2のクリア工程が完了し、電気化学的
時限素子16−1のセツト工程が完了したことを
検知してその工程完了を表示する手段を設けてお
くと充電に際して便利である。 Although not shown in the embodiment of FIG. 1,
Means for detecting that the clearing process of the electrochemical timer 16-2 and the setting process of the electrochemical timer 16-1 are completed when charging the secondary battery 11, and displaying the completion of the process. It is convenient when charging.
以上詳細に説明したように、この考案の電池の
消費量報知装置においては、同一極が接続された
2個の同一特性の電気化学的時限素子を使用し、
二次電池から負荷へ負荷電流が供給された状態で
はその電気化学的時限素子の1つのクリア工程を
利用して二次電池の消費量が所定値に達したこと
を検知し、二次電池の充電過程では他の1つの電
気化学的時限素子のクリア工程を利用して負荷電
流の供給時にそのクリア工程が利用される電気化
学的時限素子にセツト工程を施している。 As explained in detail above, in the battery consumption informing device of this invention, two electrochemical time elements having the same characteristics and having the same poles connected are used.
When the load current is supplied from the secondary battery to the load, one clearing process of the electrochemical timer is used to detect that the consumption amount of the secondary battery has reached a predetermined value, and In the charging process, the clearing process of another electrochemical timer is used to perform a setting process on the electrochemical timer whose clearing process is used when supplying the load current.
従つて負荷電流の供給によつて二次電池の消費
量が所定値に達したことをこの電気化学的時限素
子の電圧値の変化で正確に検出し報知できると共
に、2個の電気化学的時限素子を使用しそのセツ
ト工程及びクリア工程を二次電池の負荷電流の供
給時及び充電時に対応させているため、負荷投入
スイツチの切換えと充電器の接続だけの簡単な操
作で負荷電流の供給と二次電池の充電の過程で装
置を駆動させることができる。 Therefore, it is possible to accurately detect and notify that the consumption amount of the secondary battery has reached a predetermined value by supplying load current by a change in the voltage value of this electrochemical time element, and also Since a device is used and the setting and clearing processes correspond to supplying and charging the load current of the secondary battery, it is possible to supply and clear the load current with a simple operation of switching the load input switch and connecting the charger. The device can be driven during the process of charging the secondary battery.
このようにこの考案の電池の消費量報知装置を
使用すると、端子電圧の電圧降下が検知しにくい
電池の消費量をも正確に検知してこれを報知し、
且つ負荷電流の供給と二次電池の充電とを簡単な
操作で行なわせることができるので、負荷への電
流の供給を事故なしに効率よく行ない、且つ負荷
電流を供給する二次電池の寿命を著しく延長する
ことが可能となる。 In this way, when the battery consumption notification device of this invention is used, it is possible to accurately detect and notify the battery consumption even when the voltage drop in the terminal voltage is difficult to detect.
In addition, since supply of load current and charging of the secondary battery can be performed with simple operations, current can be supplied to the load efficiently without accidents, and the life of the secondary battery that supplies the load current can be extended. It becomes possible to extend the length significantly.
第1図はこの考案の電池の消費量報知装置の実
施例の構成を示す回路図、第2図はイーセルの構
成を示す図である。
11:二次電池、12:負荷、13:電流検出
用抵抗、16−1,16−2:電気化学的時限素
子、27:比較器、29:発光ダイオード。
FIG. 1 is a circuit diagram showing the configuration of an embodiment of the battery consumption amount reporting device of this invention, and FIG. 2 is a diagram showing the configuration of an E-cell. 11: Secondary battery, 12: Load, 13: Current detection resistor, 16-1, 16-2: Electrochemical time element, 27: Comparator, 29: Light emitting diode.
Claims (1)
流検出用抵抗が挿入され、互に同一極が接続され
て、2個の同一特性の電気化学的時限素子の直列
接続回路が前記電流検出用抵抗に並列に接続さ
れ、これら電気化学的時限素子はクリア電流の積
算量が所定値になると両端電圧が急に上昇するも
のであり、これら両素子中の前記負荷への電流供
給時にクリア電流が流れている素子の両端間電圧
が所定値に達するのを検出する検出手段が設けら
れ、この検出手段の出力により報知手段が駆動さ
れて前記二次電池の消費量が所定値に達したこと
が報知される電池の消費量報知装置。 A current detection resistor is inserted in series in the current supply circuit from the secondary battery to the load, the same poles are connected to each other, and a series connection circuit of two electrochemical time-limiting elements with the same characteristics is used for the current detection. These electrochemical time-limiting elements are connected in parallel to a resistor, and when the accumulated amount of clear current reaches a predetermined value, the voltage across both ends suddenly increases. A detection means is provided for detecting when the voltage across the flowing element reaches a predetermined value, and the output of the detection means drives a notification means to notify that the consumption amount of the secondary battery has reached the predetermined value. Battery consumption notification device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1979137873U JPS6234302Y2 (en) | 1979-10-03 | 1979-10-03 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1979137873U JPS6234302Y2 (en) | 1979-10-03 | 1979-10-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5654476U JPS5654476U (en) | 1981-05-13 |
JPS6234302Y2 true JPS6234302Y2 (en) | 1987-09-01 |
Family
ID=29369275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1979137873U Expired JPS6234302Y2 (en) | 1979-10-03 | 1979-10-03 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6234302Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61126103U (en) * | 1985-01-28 | 1986-08-08 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50155942A (en) * | 1974-06-05 | 1975-12-16 |
-
1979
- 1979-10-03 JP JP1979137873U patent/JPS6234302Y2/ja not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50155942A (en) * | 1974-06-05 | 1975-12-16 |
Also Published As
Publication number | Publication date |
---|---|
JPS5654476U (en) | 1981-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9401530B2 (en) | Storage battery recycling apparatus | |
JP2771036B2 (en) | Method and apparatus for charging, defrosting and formatting a storage battery | |
JP4121945B2 (en) | Method and apparatus for charging a rechargeable battery with a non-liquid electrolyte | |
CN102082458B (en) | Inverter intelligent charging control method | |
US20190170830A1 (en) | Lead acid battery device, control device for lead acid battery, and control method for lead acid battery | |
TW200822484A (en) | Method for battery pack protection | |
CA2376852A1 (en) | Method and device for batteries | |
EP1618643B2 (en) | Methods at a battery charger | |
KR19990028876A (en) | Control and Termination of Battery Charging Process | |
JPS6234302Y2 (en) | ||
JPH0919073A (en) | Method of boosting charge for secondary battery | |
JPH08308119A (en) | Battery charging system | |
WO1989012344A1 (en) | Microprocessor based recharger for lithium secondary system | |
JPH08182211A (en) | Charging apparatus of pack battery | |
CN102064352A (en) | Storage battery repair device | |
CN2609263Y (en) | Accumulator charger | |
JPH03580B2 (en) | ||
SU828311A1 (en) | Device for power supply of load | |
SU841073A2 (en) | Method of moulding and charging storage battery | |
JP2004064975A (en) | Uninterruptive power unit | |
JPH01268430A (en) | Charger | |
CN203352198U (en) | Frequency conversion charger | |
JPH06169533A (en) | Measurement of battery residual capacity on uninterruptible power unit | |
JP3124813B2 (en) | Charging device | |
JPH05130744A (en) | Charger |