JPS6234238Y2 - - Google Patents

Info

Publication number
JPS6234238Y2
JPS6234238Y2 JP17214285U JP17214285U JPS6234238Y2 JP S6234238 Y2 JPS6234238 Y2 JP S6234238Y2 JP 17214285 U JP17214285 U JP 17214285U JP 17214285 U JP17214285 U JP 17214285U JP S6234238 Y2 JPS6234238 Y2 JP S6234238Y2
Authority
JP
Japan
Prior art keywords
bricks
carbon
bonding layer
brick
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17214285U
Other languages
Japanese (ja)
Other versions
JPS6189799U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17214285U priority Critical patent/JPS6234238Y2/ja
Publication of JPS6189799U publication Critical patent/JPS6189799U/ja
Application granted granted Critical
Publication of JPS6234238Y2 publication Critical patent/JPS6234238Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

産業上の利用分野 本考案は、金属溶解炉、精練炉、溶解金属容器
などの内張りれんがとして使用されるカーボン含
有中性れんがに関する。 従来技術およびその問題点 従来、上記のような内張りれんがとしては、マ
グネシア・カーボン質れんが、アルミナ・カーボ
ン質れんがなどのカーボン含有れんがが、カーボ
ンに起因する耐スラグ性、耐熱スポーリング性な
どの優れた特性を有することから、好んで使用さ
れていた。しかしこれは含有カーボンのために滑
りやすくてスラグに対する濡れ性に乏しく、スラ
グが付着しにくくスラグ浸透が進行せず、炉や容
器類の傾動時または振動によつて内張り面から抜
け落ちることがあつた。そこでこの対策として、
れんが相互間の結合がよくなるように、れんがに
メタルをコーテイングすることが提案されたが、
この場合にはメタルが先行溶融し、目地開きや溶
鋼の差し込みをきたし、目地部の先行溶損が進行
したり、メタルとれんがとの熱膨脹の差などによ
りメタルが迫り出し、残寸が少なくなつたときに
は既にメタルがなくなつていたり、れんがと十分
に固着していなかつたりして、れんがの抜け落ち
を効果的に防止することができなかつた。またれ
んがの結合面にだぼと呼ばれる凹部または凸部を
形成し、これらを嵌合させて抜け落ちを防ぐ試み
をなされたが、この場合にはだぼの部分まで溶損
が進むと、抜け落ち防止効果は全く期待できなく
なり、またれんがが1個抜けると他のれんがも連
鎖的に抜け落ちるおそれがあつて、実際には十分
に満足のいく効果は得られなかつた。 本考案は、上記のような実情から、れんが相互
間の結合を強固なものとして、抜け落ちを確実に
防止することのできるカーボン含有中性れんがを
提供することを目的とする。 問題点の解決手段 本考案によるカーボン含有中性れんがは、上記
目的の達成のために、長手方向の少なくとも2面
に、アルミナ、スピネルおよび粘土のうちの1種
または2種以上を主体とする熱溶着性の接合層を
設けたものである。 接合層を設ける面は、長手方向の4面のうち少
なくとも所要の2面である。たとえば、第1図に
おいては、カーボン含有中性れんが1の長手方向
の4面のうち左右2面1a,1bに接合層2,2
が設けられている。そしてこれら接合層2,2が
築炉時に左右の隣接れんがの接合層と接触する。
上記左右2面1a,1bには接合層を全面に設け
ても、また第2図に示すように、れんがの鉄皮側
すなわち炉外側から長さの半分以上の部分に接合
層3,3を設けてもよい。後者の場合、れんがが
溶損して残寸が長さの約半分になつても、れんが
は抜け落ちるおそれがない。また接合層は、上記
左右2面1a,1bの代わりに、長手方向の他の
2面すなわち上下2面1c,1dに設けられても
よく、さらに長手方向の3面または4面全部に設
けられてもよい。 接合層の厚さは、カーボン含有中性れんがの形
状、大きさ、材質に応じて、3〜50mm好ましくは
5〜35mmの範囲において適宜選定される。厚さが
3mm未満では、隣接れんが相互間の結合が十分で
なくて、抜け落ちのおそれがあり、また厚さが50
mmを越えると、カーボン含有中性れんがの優れた
特性が生かされなくなる上に、目地部が先行溶損
をきたすので、いずれの場合も好ましくない。 接合層の材料は、アルミナ、スピネルおよび粘
土のうちの1種または2種以上を主体とし、とり
わけアルミナが好ましい。これらの材料は、接合
層が過度に先行溶損されてカーボン含有中性れん
がの優れた特性が損われることがないように留意
して、熱やスラグ浸透により溶着性を発揮する物
質のうちから同れんがの材質や炉における張設位
置などを考慮して選定されたものである。また接
合層にカーボンを3重量%以下含有させて、同層
の先行溶損を抑制するようにしたり、接合層にス
ラグなどの低融成分を含有させて、同層の熱溶着
性を増大させるようにしてもよい。 接合層の形成方法は、常法によつてなされる。
たとえばカーボン含有中性れんがの坏土と接合層
の坏土をそれぞれ調製し、これらから接合層を有
するカーボン含有中性れんがを一体成型する方法
や、まず調製した坏土からカーボン含有中性れん
がを成型し、同れんがの所要面を脱炭処理して接
合層とする方法がよく行なわれる。 考案の作用および効果 以上のとおりで、本考案によるカーボン含有中
性れんがは、所要面にアルミナ、スピネルおよび
粘土のうちの1種または2種以上を主体とする熱
溶着性の接合層を有しているので、同れんがを用
いて内張りを行なうと、カーボン含有中性れんが
の優れた特性をそのまま保持して、れんが相互間
の結合を強固なものとすることができ、したがつ
て、内張り面からのれんがの抜け落ちを確実に防
止することができる。この理由は、稼動時の炉熱
によつて接合層にスラグが付着し、さらに層内部
に浸入して、隣接れんがの接合層どうしが相互に
結合し、隣接れんがどうしが相互に接合されるた
めと考えられる。しかも接合層の表面では滑性が
小さいため、築炉時にれんがが滑つたり、ずり落
ちたりするおそれがなく、そのため築炉作業を安
全かつ容易になし得る。 実施例 つぎに本考案の実施例を第1図に基づいて説明
する。なお実施例における%はすべて重量%であ
る。 アルミナ85%と天然黒鉛15%からなるアルミ
ナ・カーボン質れんがの坏土と、接合層用のアル
ミナ単味の坏土とをそれぞれ調整し、これらか
ら、第1図に示すように、左右2面1a,1bに
厚さ5mmの接合層2,2を有する360×160〜180
×150mmのアルミナ・カーボン質れんがすなわち
カーボン含有中性れんが1を一体成型により作成
した。また上記と同じ材料から接合層の厚さが10
mmおよび30mmのれんがを作成した。これられんが
および接合層の材質および厚さを表1にまとめて
示す。 結合力試験 上記各れんがからそれぞれ円筒体を構築し、こ
れらを2回/分の速度で回転させながら、バーナ
で加熱した。内部にスラグを投入して溶融させ、
温度1700℃にて1時間保持した後、炉を傾動して
スラグを排出し、再びスラグを投入した。この操
作を5回繰返した後、隣接れんが間の接合層相互
の溶着部分の長さを測定した。またスラグ付着に
よる接合強度の向上を調べるために、上記溶着部
分を切出して、常温曲げ強度を測定した。なお、
比較のために、接合層を有しないアルミナ・カー
ボン質れんがについても、上記と同様に試験を行
なつた。試験結果を表1にまとめて示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to carbon-containing neutral bricks used as lining bricks for metal melting furnaces, smelting furnaces, molten metal containers, etc. Conventional technology and its problems Conventionally, the above-mentioned lining bricks have been made of carbon-containing bricks such as magnesia-carbon bricks and alumina-carbon bricks, which have excellent slag resistance and heat spalling resistance due to carbon. It was often used because of its unique properties. However, because of the carbon it contains, it is slippery and has poor wettability to slag, making it difficult for slag to adhere to it, preventing slag from penetrating, and sometimes falling off the lining surface when the furnace or containers are tilted or vibrated. . Therefore, as a countermeasure,
It was proposed to coat the bricks with metal to improve the bond between them.
In this case, the metal pre-melts, causing the joints to open and molten steel to be inserted, leading to advance melting of the joints, and due to the difference in thermal expansion between the metal and the brick, the metal protrudes, reducing the remaining size. By the time the metal was removed, the metal was already missing, or it was not sufficiently bonded to the bricks, so it was not possible to effectively prevent the bricks from falling off. In addition, an attempt was made to form concave or convex parts called dowels on the joint surfaces of the bricks and to make them fit together to prevent them from falling off, but in this case, if the melting damage progressed to the dowels, it would prevent the bricks from falling off. The effect could not be expected at all, and if one brick fell out, there was a risk that other bricks would fall out in a chain reaction, so in reality, a fully satisfactory effect could not be obtained. In view of the above-mentioned circumstances, the present invention aims to provide carbon-containing neutral bricks that can strengthen the bond between the bricks and reliably prevent them from falling off. Means for Solving Problems In order to achieve the above object, the carbon-containing neutral brick according to the present invention has a heat-resistant material containing one or more of alumina, spinel, and clay as a main component on at least two longitudinal sides. A weldable bonding layer is provided. The surfaces on which the bonding layer is provided are at least two of the four surfaces in the longitudinal direction. For example, in FIG. 1, bonding layers 2 and 2 are formed on the left and right two surfaces 1a and 1b of the four longitudinal surfaces of the carbon-containing neutral brick 1.
is provided. These bonding layers 2, 2 come into contact with the bonding layers of adjacent bricks on the left and right during furnace construction.
Even if the bonding layer is provided on the entire surface of the two left and right sides 1a and 1b, as shown in FIG. It may be provided. In the latter case, there is no risk of the brick falling off even if the brick melts and the remaining length becomes about half of the length. Further, the bonding layer may be provided on the other two longitudinal surfaces 1c, 1d instead of the left and right surfaces 1a, 1b, or may be provided on all three or four longitudinal surfaces. You can. The thickness of the bonding layer is appropriately selected in the range of 3 to 50 mm, preferably 5 to 35 mm, depending on the shape, size, and material of the carbon-containing neutral brick. If the thickness is less than 3 mm, the bond between adjacent bricks will not be sufficient and there is a risk of them falling off.
If it exceeds mm, the excellent properties of carbon-containing neutral bricks will not be utilized, and the joints will suffer preliminary melting loss, which is not preferable in either case. The material for the bonding layer is mainly one or more of alumina, spinel, and clay, with alumina being particularly preferred. These materials are selected from among substances that exhibit welding properties by heat and slag penetration, taking care not to damage the bonding layer excessively in advance and impairing the excellent properties of carbon-containing neutral bricks. The selection was made taking into account the material of the bricks and the position in which they would be placed in the furnace. In addition, carbon may be contained in the bonding layer at 3% by weight or less to suppress advance melting loss of the same layer, and low-melting components such as slag may be included in the bonding layer to increase the thermal weldability of the same layer. You can do it like this. The bonding layer is formed by a conventional method.
For example, there is a method in which a clay for a carbon-containing neutral brick and a clay for a bonding layer are separately prepared, and a carbon-containing neutral brick having a bonding layer is integrally molded from these materials, or a carbon-containing neutral brick is first formed from the prepared clay. A commonly used method is to mold the bricks and then decarburize the required surfaces of the same bricks to form a bonding layer. Function and effect of the invention As described above, the carbon-containing neutral brick according to the invention has a heat-fusible bonding layer mainly composed of one or more of alumina, spinel, and clay on the required surface. Therefore, if the same bricks are used for lining, the excellent properties of carbon-containing neutral bricks can be maintained, and the bond between the bricks can be strengthened. It is possible to reliably prevent bricks from falling off. The reason for this is that slag adheres to the bonding layer due to the furnace heat during operation and penetrates into the layer, bonding the bonding layers of adjacent bricks to each other and bonding adjacent bricks to each other. it is conceivable that. Moreover, since the surface of the bonding layer has low slipperiness, there is no risk of the bricks slipping or falling off during furnace construction, and therefore the furnace construction work can be done safely and easily. Embodiment Next, an embodiment of the present invention will be described based on FIG. Note that all percentages in the examples are percentages by weight. An alumina-carbon brick clay consisting of 85% alumina and 15% natural graphite, and a mono-alumina clay for the bonding layer were adjusted respectively, and from these, the left and right sides were assembled as shown in Figure 1. 360×160~180 with bonding layers 2, 2 with a thickness of 5 mm on 1a and 1b
A 150 mm alumina-carbon brick, that is, a carbon-containing neutral brick 1 was produced by integral molding. Also, the thickness of the bonding layer is 10% from the same material as above.
mm and 30mm bricks were made. The materials and thicknesses of these bricks and the bonding layer are summarized in Table 1. Bond strength test Cylindrical bodies were constructed from each of the above bricks, and heated with a burner while rotating at a speed of 2 times/minute. Put slag inside and melt it,
After maintaining the temperature at 1700°C for 1 hour, the furnace was tilted to discharge the slag, and then the slag was introduced again. After repeating this operation five times, the length of the welded portion of the bonding layers between adjacent bricks was measured. In order to investigate the improvement in bonding strength due to slag adhesion, the welded portion was cut out and its room temperature bending strength was measured. In addition,
For comparison, an alumina-carbon brick without a bonding layer was also tested in the same manner as above. The test results are summarized in Table 1.

【表】 上記表1から明らかなように、接合層を有する
アルミナ・カーボン質れんがは、隣接れんが間の
接合層が相互に溶着してれんがが強固に接合せら
れ、また接合層は大きな曲げ強度を有していて、
これによつてれんがの接合を一層強固なものとし
ており、れんがの抜け落ちが確実に防止せられて
いる。
[Table] As is clear from Table 1 above, for alumina-carbon bricks with a bonding layer, the bonding layers between adjacent bricks are welded to each other and the bricks are firmly bonded, and the bonding layer has a large bending strength. has
This makes the joint of the bricks even stronger and reliably prevents the bricks from falling off.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はいずれも本考案の実施例を示
すれんがの斜視図である。 1……カーボン含有中性れんが、1a,1b…
…左右2面、1c,1d……上下2面、2,3…
…接合層。
1 and 2 are perspective views of bricks showing an embodiment of the present invention. 1... Carbon-containing neutral brick, 1a, 1b...
...2 left and right sides, 1c, 1d...2 upper and lower sides, 2, 3...
...bonding layer.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 長手方向の少なくとも2面に、アルミナ、スピ
ネルおよび粘土のうちの1種または2種以上を主
体とする熱溶着性の接合層が設けられている、カ
ーボン含有中性れんが。
A carbon-containing neutral brick, which is provided with a heat-weldable bonding layer mainly composed of one or more of alumina, spinel, and clay on at least two sides in the longitudinal direction.
JP17214285U 1985-11-07 1985-11-07 Expired JPS6234238Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17214285U JPS6234238Y2 (en) 1985-11-07 1985-11-07

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17214285U JPS6234238Y2 (en) 1985-11-07 1985-11-07

Publications (2)

Publication Number Publication Date
JPS6189799U JPS6189799U (en) 1986-06-11
JPS6234238Y2 true JPS6234238Y2 (en) 1987-09-01

Family

ID=30729818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17214285U Expired JPS6234238Y2 (en) 1985-11-07 1985-11-07

Country Status (1)

Country Link
JP (1) JPS6234238Y2 (en)

Also Published As

Publication number Publication date
JPS6189799U (en) 1986-06-11

Similar Documents

Publication Publication Date Title
US5966886A (en) Method for partially building and/or repairing at high temperatures industrial facilities including a structure made of refractory materials, and prefabricated element therefor
KR960015098B1 (en) Process of surface treatment of refractories and coating
US3616108A (en) Refractory construction units with high-temperature bonding joint fillers and method of making said units
JPS6234238Y2 (en)
JP4323962B2 (en) Joining structure of refractory sleeve for nozzle inner hole for continuous casting
EP1466694A3 (en) Method of forming a joint
JPH0120943B2 (en)
JPS621678Y2 (en)
US3589951A (en) Solid weld backing-up flux compositions
JPS6127199A (en) Backing material for one side welding
JPH03215366A (en) Packing material for refractory
JPS6015592B2 (en) Highly corrosion resistant and highly airtight packing material
JPH068479Y2 (en) Molten metal container
JP2954385B2 (en) Brick of aluminum storage tank and aluminum storage tank using the brick
JPS6245798Y2 (en)
JPH0216874Y2 (en)
JPS6156192B2 (en)
JPH081310A (en) Manufacture of trough for molten metal
JP2706160B2 (en) Construction method of ceramic liner for molten metal
JPS6010775Y2 (en) Molten metal container lining structure
JPS595074B2 (en) Stud welding ferrule
JPH0243860Y2 (en)
GB2109517A (en) Improvements in brick-formed basic refractory linings for metallurgical furnaces
JPH0311679Y2 (en)
JPS5824893Y2 (en) Cermet tip for cutting