JPS621678Y2 - - Google Patents

Info

Publication number
JPS621678Y2
JPS621678Y2 JP7813781U JP7813781U JPS621678Y2 JP S621678 Y2 JPS621678 Y2 JP S621678Y2 JP 7813781 U JP7813781 U JP 7813781U JP 7813781 U JP7813781 U JP 7813781U JP S621678 Y2 JPS621678 Y2 JP S621678Y2
Authority
JP
Japan
Prior art keywords
bricks
carbon
bonding layer
magnesia
brick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7813781U
Other languages
Japanese (ja)
Other versions
JPS57188838U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7813781U priority Critical patent/JPS621678Y2/ja
Publication of JPS57188838U publication Critical patent/JPS57188838U/ja
Application granted granted Critical
Publication of JPS621678Y2 publication Critical patent/JPS621678Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

産業上の利用分野 本考案は、金属溶解炉、精練炉、溶解金属容器
などの内張りれんがとして使用されるカーボン含
有塩基性れんがに関する。 従来技術およびその問題点 従来、上記のような内張りれんがとしては、マ
グネシア・カーボン質れんが、アルミナ・カーボ
ン質れんがなどのカーボン含有れんがが、カーボ
ンに起因する耐スラグ性、耐熱スポーリング性な
どの優れた特性を有することから、好んで使用さ
れていた。しかしこれは含有カーボンのために滑
りやすくてスラグに対する濡れ性に乏しく、スラ
グが付着しにくくてスラグ浸透が進行せず、炉や
容器類の傾動時または振動によつて内張り面から
抜け落ちることがあつた。そこでこの対策とし
て、れんが相互間の結合がよくなるように、れん
がにメタルをコーテイングすることが提案された
が、この場合にはメタルが先行溶融し、目地開き
や溶鋼の差し込みをきたし、目地部の先行溶損が
進行したり、メタルとれんがとの熱膨脹の差など
によりメタルが迫り出し、残寸が少なくなつたと
きには既にメタルがなくなつていたり、れんがと
十分に固着していなかつたりして、れんがの抜け
落ちを効果的に防止することができなかつた。ま
たれんがの結合面にだぼと呼ばれる凹部または凸
部を形成し、これらを嵌合させて抜け落ちを防ぐ
試みもなされたが、この場合にはだぼの部分まで
溶損が進むと、抜け落ち防止効果は全く期待でき
なくなり、またれんがが1個抜けると他のれんが
も連鎖的に抜け落ちるおそれがあつて、実際には
十分に満足のいく効果は得られなかつた。 本考案は、上記のような実情から、れんが相互
間の結合を強固なものとして、抜へ落ちを確実に
防止することのできるカーボン含有塩基性れんが
を提供することを目的とする。 問題点の解決手段 本考案によるカーボン含有塩基性れんがは、上
記目的の達成のために、長手方向の少なくとも2
面に、マグネシア、ドロマイト、マグネシア・ド
ロマイト、スピネルおよびアルミナのうちの1種
または2種以上を主体とする熱溶着性の接合層を
設けたものである。 接合層を設ける面は、長手方向の4面のうち少
なくとも所要の2面である。たとえば、第1図に
おいては、カーボン含有塩基性れんが1の長手方
向の4面のうち左右2面1a,1bに接合層2,
2が設けられている。そしてこれら接合層2,2
が築炉時に左右の隣接れんがの接合層と接触す
る。上記左右2面1a,1bには接合層を全面に
設けても、また第2図に示すように、れんがの鉄
皮側すなわち炉外側から長さの半分以上の部分に
接合層3,3を設けてもよい。後者の場合、れん
がが溶損して残寸が長さの約半分になつても、れ
んがは抜け落ちるおそれがない。また接合層は、
上記左右2面1a,1bの代わりに、長手方向の
他の2面すなわち上下2面1c,1dに設けられ
てもよく、さらに長手方向の3面または4面全部
に設けられてもよい。 接合層の厚さは、カーボン含有塩基性れんがの
形状、大きさ、材質に応じて、3〜50mm好ましく
は5〜35mmの範囲において適宜選定される。厚さ
が3mm未満では、隣接れんが相互間の結合が十分
でなくて、抜け落ちのおそれがあり、また厚さが
50mmを越えると、カーボン含有塩基性れんがの優
れた特性が生かされなくなる上に、目地部が先行
溶損をきたすので、いずれの場合も好ましくな
い。 接合層の材料は、マグネシア、ドロマイト、マ
グネシア・ドロマイト、スピネルおよびアルミナ
のうちの1種または2種以上を主体とし、とりわ
けマグネシアおよびドロマイトが好ましい。これ
らの材料は、接合層が過度に先行溶損されてカー
ボン含有塩基性れんがの優れた特性が損われるこ
とがないように留意して、熱やスラグ浸透により
溶着性を発揮する物質のうちから同れんがの材質
や炉における張設位置などを考慮して選定された
ものである。また接合層にカーボンを3重量%以
下含有させて、同層の先行溶損を抑制するように
したり、接合層にスラグなどの低融成分を含有さ
せて、同層の熱溶着性を増大させるようにしても
よい。 接合層の形成方法は、常法によつてなされる。
たとえばカーボン含有塩基性れんがの杯土と接合
層の杯土をそれぞれ調製し、これらから接合層を
有するカーボン含有塩基性れんがを一体成型する
方法や、まず調製した杯土からカーボン含有塩基
性れんがを成型し、同れんがの所要面を脱炭処理
して接合層とする方法がよく行なわれる。 考案の作用および効果 以上のとおりで、本考案によるカーボン含有塩
基性れんがは、所要面にマグネシア、ドロマイ
ト、マグネシア・ドロマイト、スピネルおよびア
ルミナのうちの1種または2種以上を主体とする
熱溶着性の接合層を有しているので、同れんがを
用いて内張りを行なうと、カーボン含有塩基性れ
んがの優れた特性をそのまま保持して、れんが相
互間の結合を強固なものとすることができ、した
がつて、内張り面からのれんがの抜け落ちを確実
に防止することができる。この理由は、稼動時の
炉熱によつて接合層にスラグが付着し、さらに層
内部に浸入して、隣接れんがの接合層どうしが相
互に結合し、隣接れんがどうしが相互に接合され
るためと考えられる。しかも接合層の表面では滑
性が小さいため、築炉時にれんがが滑つたり、ず
り落ちたりするおそれがなく、そのため築炉作業
を安全かつ容易になし得る。 実施例 つぎに本考案の実施例を第1図に基づいて説明
する。なお実施例における%はすべて重量%であ
る。 マグネシア・クリンカ80%と天然黒鉛20%から
なるマグネシア・カーボン質れんがの杯土と、接
合層用のマグネシア単味の杯土をそれぞれ調製
し、これらから、第1図に示すように、左右2面
1a,1bに厚さ5mmの接合層2,2を有する
360×160〜180×150mmのマグネシア・カーボン質
れんがすなわちカーボン含有塩基性れんが1を一
体成型により作成した。また上記と同じ材料から
接合層の厚さが10mmおよび30mmのれんが作成し
た。またマグネシア単味の代わりにドロマイト単
味を用いて、上記と同様にして厚さの異なる接合
層を有する3種のマグネシア・カーボン質れんが
を作成した。これられんがおよび接合層の材質お
よび厚さを表1にまとめて示す。 結合力試験 上記各れんがからそれぞれ円筒体を構築し、こ
れらを2回/分の速度で回転させながら、バーナ
で加熱した。内部にスラグを投入して溶融させ、
温度1700℃にて1時間保持した後、炉を傾動して
スラグを排出し、再びスラグを投入した。この操
作を5回繰返した後、隣接れんが間の接合層相互
の溶着部分の長さを測定した。またスラグ付着に
よる接合強度の向上を調べるために、上記溶着部
分を切出して、常温曲げ強度を測定した。なお、
比較のために、接合層を有しないマグネシア・カ
ーボン質れんがについても、上記と同様に試験を
行なつた。試験結果を表1にまとめて示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to carbon-containing basic bricks used as lining bricks for metal melting furnaces, scouring furnaces, molten metal containers, etc. Conventional technology and its problems Conventionally, the above-mentioned lining bricks have been made of carbon-containing bricks such as magnesia-carbon bricks and alumina-carbon bricks, which have excellent slag resistance and heat spalling resistance due to carbon. It was often used because of its unique properties. However, because of the carbon it contains, it is slippery and has poor wettability to slag, making it difficult for slag to adhere to it, preventing slag from penetrating, and causing it to fall off the lining surface when the furnace or containers are tilted or vibrated. Ta. As a countermeasure to this problem, it was proposed to coat the bricks with metal to improve the bond between the bricks. However, in this case, the metal melts first, causing the joints to open and molten steel to enter. Due to advanced melting or the difference in thermal expansion between the metal and the brick, the metal is pushed out, and by the time there is only a small amount left, the metal is already gone, or the metal is not sufficiently bonded to the brick. It was not possible to effectively prevent bricks from falling off. Attempts have also been made to form recesses or protrusions called dowels on the connecting surfaces of the bricks, and to make them fit together to prevent them from falling off. The effect could not be expected at all, and if one brick fell out, there was a risk that other bricks would fall out in a chain reaction, so in reality, a fully satisfactory effect could not be obtained. In view of the above-mentioned circumstances, an object of the present invention is to provide carbon-containing basic bricks that can strengthen the bond between the bricks and reliably prevent them from falling out. Means for Solving Problems In order to achieve the above object, the carbon-containing basic brick according to the present invention has at least two
A heat-weldable bonding layer mainly composed of one or more of magnesia, dolomite, magnesia-dolomite, spinel, and alumina is provided on the surface. The surfaces on which the bonding layer is provided are at least two of the four surfaces in the longitudinal direction. For example, in FIG. 1, bonding layers 2,
2 is provided. And these bonding layers 2, 2
comes into contact with the bonding layer of adjacent bricks on the left and right during furnace construction. Even if the bonding layer is provided on the entire surface of the two left and right sides 1a and 1b, as shown in FIG. It may be provided. In the latter case, there is no risk of the brick falling off even if the brick melts and the remaining length becomes about half of the length. In addition, the bonding layer is
Instead of the two left and right surfaces 1a and 1b, they may be provided on the other two surfaces 1c and 1d in the longitudinal direction, or may be provided on all three or four surfaces in the longitudinal direction. The thickness of the bonding layer is appropriately selected in the range of 3 to 50 mm, preferably 5 to 35 mm, depending on the shape, size, and material of the carbon-containing basic brick. If the thickness is less than 3 mm, the bond between adjacent bricks will not be sufficient and there is a risk of them falling off.
If it exceeds 50 mm, the excellent properties of carbon-containing basic bricks will not be utilized, and the joints will suffer preliminary melting loss, which is not preferable in either case. The material of the bonding layer is mainly composed of one or more of magnesia, dolomite, magnesia-dolomite, spinel, and alumina, with magnesia and dolomite being particularly preferred. These materials are selected from among substances that exhibit welding properties by heat and slag penetration, taking care not to cause the bonding layer to be excessively melted and lose the excellent properties of carbon-containing basic bricks. The selection was made taking into account the material of the bricks and the position in which they would be placed in the furnace. In addition, carbon may be contained in the bonding layer at 3% by weight or less to suppress advance melting loss of the same layer, and low-melting components such as slag may be included in the bonding layer to increase the thermal weldability of the same layer. You can do it like this. The bonding layer is formed by a conventional method.
For example, there is a method in which a potting soil for carbon-containing basic bricks and a potting clay for a bonding layer are separately prepared, and then a carbon-containing basic brick having a bonding layer is integrally molded from these, or a method in which carbon-containing basic bricks are first made from prepared potting clay. A common method is to mold the bricks and then decarburize the required surfaces to form a bonding layer. Functions and Effects of the Invention As described above, the carbon-containing basic brick according to the invention has heat-weldable properties mainly containing one or more of magnesia, dolomite, magnesia dolomite, spinel, and alumina on the required surface. When the same brick is used for lining, the excellent properties of the carbon-containing basic brick can be maintained and the bond between the bricks can be strengthened. Therefore, falling of the bricks from the lining surface can be reliably prevented. The reason for this is that slag adheres to the bonding layer due to the furnace heat during operation and penetrates into the layer, bonding the bonding layers of adjacent bricks to each other and bonding adjacent bricks to each other. it is conceivable that. Moreover, since the surface of the bonding layer has low slipperiness, there is no risk of the bricks slipping or falling during furnace construction, and therefore the furnace construction work can be done safely and easily. Embodiment Next, an embodiment of the present invention will be described based on FIG. Note that all percentages in the examples are percentages by weight. A magnesia-carbon brick potting soil consisting of 80% magnesia clinker and 20% natural graphite, and a magnesia-only potting clay for the bonding layer were prepared respectively, and from these, as shown in Figure 1, the left and right two Surfaces 1a and 1b have bonding layers 2 and 2 with a thickness of 5 mm.
Magnesia-carbon bricks, that is, carbon-containing basic bricks 1 measuring 360 x 160 to 180 x 150 mm were made by integral molding. Bricks with bonding layer thicknesses of 10 mm and 30 mm were also made from the same material as above. In addition, three types of magnesia-carbon bricks having bonding layers of different thicknesses were created in the same manner as above using dolomite instead of magnesia. The materials and thicknesses of these bricks and the bonding layer are summarized in Table 1. Bond strength test Cylindrical bodies were constructed from each of the above bricks, and heated with a burner while rotating at a speed of 2 times/minute. Put slag inside and melt it,
After maintaining the temperature at 1700° C. for 1 hour, the furnace was tilted to discharge the slag, and then the slag was introduced again. After repeating this operation five times, the length of the welded portion of the bonding layers between adjacent bricks was measured. In order to investigate the improvement in bonding strength due to slag adhesion, the welded portion was cut out and its room temperature bending strength was measured. In addition,
For comparison, a magnesia-carbon brick without a bonding layer was also tested in the same manner as above. The test results are summarized in Table 1.

【表】 上記表1から明らかなように、接合層を有する
マグネシア・カーボン質れんがは、隣接れんが間
の接合層が相互に溶着してれんがが強固に接合せ
られ、また接合層は大きな曲げ強度を有してい
て、これによつてれんがの接合を一層強固なもの
としており、れんがの抜け落ちが確実に防止せら
れている。
[Table] As is clear from Table 1 above, in magnesia carbon bricks with a bonding layer, the bonding layers between adjacent bricks are welded to each other and the bricks are firmly bonded, and the bonding layer has a large bending strength. This makes the joint of the bricks even stronger and reliably prevents the bricks from falling off.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はいずれも本考案の実施例を示
すれんがの斜視図である。 1……カーボン含有塩基性れんが、1a,1b
……左右2面、1c,1d……上下2面、2,3
……接合層。
1 and 2 are perspective views of bricks showing an embodiment of the present invention. 1... Carbon-containing basic brick, 1a, 1b
...2 left and right sides, 1c, 1d...2 upper and lower sides, 2, 3
...Joining layer.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 長手方向の少なくとも2面に、マグネシア、ド
ロマイト、マグネシア・ドロマイト、スピネルお
よびアルミナのうちの1種または2種以上を主体
とする熱溶着性の接合層が設けられている、カー
ボン含有塩基性れんが。
A carbon-containing basic brick, which is provided on at least two sides in the longitudinal direction with a heat-weldable bonding layer mainly composed of one or more of magnesia, dolomite, magnesia-dolomite, spinel, and alumina.
JP7813781U 1981-05-27 1981-05-27 Expired JPS621678Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7813781U JPS621678Y2 (en) 1981-05-27 1981-05-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7813781U JPS621678Y2 (en) 1981-05-27 1981-05-27

Publications (2)

Publication Number Publication Date
JPS57188838U JPS57188838U (en) 1982-11-30
JPS621678Y2 true JPS621678Y2 (en) 1987-01-14

Family

ID=29873775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7813781U Expired JPS621678Y2 (en) 1981-05-27 1981-05-27

Country Status (1)

Country Link
JP (1) JPS621678Y2 (en)

Also Published As

Publication number Publication date
JPS57188838U (en) 1982-11-30

Similar Documents

Publication Publication Date Title
US5966886A (en) Method for partially building and/or repairing at high temperatures industrial facilities including a structure made of refractory materials, and prefabricated element therefor
US3800014A (en) Method of constructing a refractory wall in a float glass furnace
JP2721904B2 (en) Refractory surface treatment
GB2109099A (en) Composite refractory articles and method of manufacturing them
FR2585273A1 (en) COATING FOR PROTECTING THE INTERIOR OF A METALLURGICAL CONTAINER AND METHOD FOR MAKING THE COATING
US3616108A (en) Refractory construction units with high-temperature bonding joint fillers and method of making said units
JPS621678Y2 (en)
JPH0120943B2 (en)
JPS6234238Y2 (en)
CA1221111A (en) Mortar
US3589951A (en) Solid weld backing-up flux compositions
US3083453A (en) Method of adding a casing to a refractory article
JPS6015592B2 (en) Highly corrosion resistant and highly airtight packing material
JPS6127199A (en) Backing material for one side welding
JPH03215366A (en) Packing material for refractory
JP3701056B2 (en) Construction method of refractory for inner wall of high temperature container
US2703445A (en) Process of making refractory ware
GB1571297A (en) Glass tnak furnace
JP3783254B2 (en) Hot baking repair material
JP3501621B2 (en) Industrial furnace and method for constructing thermal insulation layer of industrial furnace
JPH068479Y2 (en) Molten metal container
JPH02149611A (en) Sleeve brick for repair
JPS6186588A (en) Kiln packing tool
JP3250619B2 (en) Backing material for Uranami welding
JPH0311679Y2 (en)