JPS6234204Y2 - - Google Patents

Info

Publication number
JPS6234204Y2
JPS6234204Y2 JP9624879U JP9624879U JPS6234204Y2 JP S6234204 Y2 JPS6234204 Y2 JP S6234204Y2 JP 9624879 U JP9624879 U JP 9624879U JP 9624879 U JP9624879 U JP 9624879U JP S6234204 Y2 JPS6234204 Y2 JP S6234204Y2
Authority
JP
Japan
Prior art keywords
check valve
expansion valve
valve
refrigerant
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9624879U
Other languages
Japanese (ja)
Other versions
JPS5614967U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9624879U priority Critical patent/JPS6234204Y2/ja
Publication of JPS5614967U publication Critical patent/JPS5614967U/ja
Application granted granted Critical
Publication of JPS6234204Y2 publication Critical patent/JPS6234204Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は1台の室外機と複数台の室内機を組合
せたヒートポンプ式空気調和機に関する。 第1図に従来のこの種ヒートポンプ式空調機の
冷媒系統が示され、同図において、1は圧縮機、
2は四方弁、3は室外熱交換器、4は第1逆止
弁、5は第2逆止弁、6は第3逆止弁、7は受液
器、8は膨張弁、9は第4逆止弁、10,11,
12は各々第1,第2,第3電磁弁、13,1
4,15は各々第1,第2,第3室内熱交換器、
16,17,18は各々第4,第5,第6電磁
弁、19は膨張弁8の感温筒を示す。一点鎖線で
囲まれたAは室外機、B,C,Dは室内機を示
す。 室内機3台を冷房運転する場合には、圧縮機1
から吐出された高圧高温の冷媒ガスは実線矢印で
示すように、四方弁2を通り室外熱交換器3にお
いて室外の空気と熱交換することにより凝縮され
て相変化を起し液となり、第1逆止弁4を通り受
液器7に入り、膨張弁8において断熱膨張を行な
い低圧低温の液となり、第4逆止弁9を通つて電
磁弁10,11,12を通り、各々室内熱交換器
13,14,15に入り、ここで室内の空気と熱
交換することにより蒸発されて相変化をおこしガ
スとなり、電磁弁16,17,18を通り、そし
て四方弁2を介して圧縮機1に吸込まれる。暖房
運転時には、冷媒の流れ方が冷房時と逆で、冷媒
は一点鎖線の矢印で示すように、圧縮機1→四方
弁2→電磁弁16,17,18→室内熱交換器1
3,14,15→電磁弁10,11,12→第2
逆止弁5→受液器7→膨張弁8→第3逆止弁6→
室外熱交換器3→四方弁2→圧縮機1と流れる。
室内機Bのみを運転する場合は電磁弁10,18
は開、電磁弁16,17,11は12は閉状態と
する。 しかし、この種のヒートポンプ式空気調和機で
The present invention relates to a heat pump air conditioner that combines one outdoor unit and multiple indoor units. Fig. 1 shows the refrigerant system of a conventional heat pump air conditioner of this kind, in which 1 is a compressor;
2 is a four-way valve, 3 is an outdoor heat exchanger, 4 is a first check valve, 5 is a second check valve, 6 is a third check valve, 7 is a liquid receiver, 8 is an expansion valve, and 9 is a third check valve. 4 check valve, 10, 11,
12 are first, second and third solenoid valves, 13 and 1, respectively;
4 and 15 are first, second and third indoor heat exchangers, respectively;
16, 17, and 18 are fourth, fifth, and sixth electromagnetic valves, respectively, and 19 is a temperature-sensitive tube of the expansion valve 8. A surrounded by a dashed line indicates an outdoor unit, and B, C, and D indicate an indoor unit. When operating three indoor units for cooling, compressor 1
As shown by the solid line arrow, the high-pressure and high-temperature refrigerant gas discharged from the The liquid passes through the check valve 4 and enters the receiver 7, undergoes adiabatic expansion in the expansion valve 8, becomes a low-pressure and low-temperature liquid, passes through the fourth check valve 9, and passes through the solenoid valves 10, 11, and 12, respectively, and undergoes indoor heat exchange. It enters the compressor 1 through the solenoid valves 16, 17, 18, and the four-way valve 2. be sucked into. During heating operation, the flow of refrigerant is opposite to that during cooling, and the refrigerant flows from compressor 1 to four-way valve 2 to solenoid valves 16, 17, and 18 to indoor heat exchanger 1, as shown by the dashed-dotted arrow.
3, 14, 15 → Solenoid valve 10, 11, 12 → 2nd
Check valve 5 → Liquid receiver 7 → Expansion valve 8 → Third check valve 6 →
The flow is from the outdoor heat exchanger 3 to the four-way valve 2 to the compressor 1.
When operating only indoor unit B, use solenoid valves 10 and 18.
is open, and solenoid valves 16, 17, 11 and 12 are closed. However, this type of heat pump air conditioner

【表】 従来のこの種空気調和機では膨張弁8によつて
冷媒の循環量を制御しているが、通常の膨張弁で
は、その流量制御幅は定格流量を基準に40〜120
%が普通であるため、種々の運転態様における必
要循環量を全て満足するように制御することはで
きない。 即ち、冷房時の最大循環量にあわせた容量の膨
張弁(45〜130Kg/h)を選ぶと暖戻時に室内機
を1台運転する時には膨張弁への流量が多過すぎ
ていわゆるハンチング現象を起す。つまり、膨張
弁8に冷媒を多く流すと室外熱交換器3において
その冷媒を全量蒸発させることができず、液のま
まで圧縮機1に返送される。 感温筒19は冷媒が液のまま圧縮機1に戻る事
を防ぐため膨張弁8を通る冷媒流量を減ずる信号
を出すが、膨張弁8はその流量の制御幅以下に流
量を制御できないため流量は0Kg/hとなる。流
量が0になると、感温筒19は冷媒が流れていな
いことを感知して逆に膨張弁8に冷媒を流させる
信号を出すので膨張弁8の冷媒流量は45Kg/hと
なる。 このように冷凍サイクルとしては30Kg/h程度
の冷媒流量を必要としているのに膨張弁8は0
Kg/hと45Kg/hの流量を交互に流すことにな
る。 これがいわゆる膨張弁のハンチング現象であ
る。 ハンチング現象を起すと暖房能力は減少する
し、また、一時的に過大な冷媒液が圧縮機1に戻
るため液圧縮を発生し圧縮機1が損傷することも
あり、また膨張弁の耐久寿命が短くなる等の不具
合がでてくる。 逆に膨張弁の容量を暖房時の最小循環量に合わ
せて選ぶと冷房時の最大循環量に対し膨張弁はそ
の流量を流すことができない。 つまり冷凍サイクルとしては125Kg/hの冷媒
流量を必要としているのに、膨張弁8は80Kg/h
しか流せないということになる。 本考案は上記に鑑み膨張弁に並列に第1のキヤ
ピラリチユーブを設置し、膨張弁に直列に第2の
キヤピラリチユーブを設置することにより冷凍サ
イクルの必要冷媒循環量を全て満足するようにし
たものである。 以下、本考案を第2図に示す1実施例について
説明する。第2図において、第1図に示すものと
同じ部材には同じ符号が付されているが、第1図
と異なるところは膨張弁8と並列に第1のキヤピ
ラリチユーブ20が設置され、かつ、膨張弁8と
直列に第2のキヤピラリチユーブ21が設置され
ている点である。 室内機3台を冷房運転する場合には、冷媒は実
線矢印に示すように、圧縮機1→四方弁2→室外
熱交換器3→第1逆止弁4→受液器7→膨張弁8
→第4逆止弁9及び第1のキヤピラリチユーブ2
0→電磁弁10,11,12→室内熱交換器1
3,14,15→電磁弁16,17,18→四方
弁2→圧縮機1の順に流れる。 第2逆止弁5及び第3逆止弁6により他の経路
には冷媒は流れない。第1のキヤピラリチユーブ
20は膨張弁8と並列に設置されているので、冷
媒循環量が(膨張弁8の通過流量)+(第1のキヤ
ピラリチユーブ20での通過流量)の和となる如
く作用し、膨張弁8だけの流量制御幅を上限、下
限共引き上げる。 室内機3台を暖房運転する場合には、冷媒は一
点鎖線の矢印に示すように圧縮機1→四方弁2→
電磁弁16,17,18→室内熱交換器13,1
4,15→電磁弁10,11,12→第2逆止弁
5→受液器7→膨張弁8→第2のキヤピラリチユ
ーブ21→第3逆止弁6→室外熱交換器3→四方
弁2→圧縮機1の順に流れる。 第4逆止弁9及び第1逆止弁4により上記経路
以外には冷媒は流れない。 また、第1のキヤピラリチユーブ20はその入
口、出口の圧力が高圧なので、冷媒は流れない。 第2のキヤピラリチユーブ21は膨張弁8と直
列に設置されているので、膨張弁8の通過流量を
減ずることにある。 つまり膨張弁の通過流量Gは G=αF√1 1 で表わされる。ここに α ;流量係数 F ;開口面積 P1;入口流体の圧力 V1;入口流体の比体積 開口面積Fは弁のリフトにより決まる。更に弁
のリフトは膨張弁の出入口の圧力差により決ま
る。 このように流量Gは弁の出,入口の圧力差が大
きいと大きくなり、圧力差が小さいと小さくな
る。 この第2のキヤピラリチユーブ21を膨張弁8
の出口に直列に設置することにより膨張弁8の出
口圧は上昇し、出,入口の圧力差が小さくなり流
量Gは減少する。 つまり、膨張弁8だけの流量制御幅を上限,下
限共引き下げる。 ここで表1の能力4500Kcal/h程度のヒート
ポンプ式空気調和機の必要冷媒循環量 冷房時 60〜125Kg/h(1台〜3台) 暖房時 30〜 65 〃 ( 〃〜 〃) に対しては、40〜105Kg/h程度の流量範囲を
もつ膨張弁を選ぶと第1のキヤピラリチユーブ2
0のサイズとして約20Kg/h流れるように決める
と60〜125Kg/h流せるので冷房時の必要冷媒循
環量を満足させることができる。 一方、第2のキヤピラリチユーブ21のサイズ
として膨張弁8の流量が30〜80Kg/h程度に落ち
るように、サイズを決めると暖房時の必要冷媒循
環量を満足させることができる。また、膨張弁8
は冷、暖いずれの場合も、その制御範囲内で使用
されるのでハンチング現象は起らない。 以上述べたように本考案は従来使用されていた
膨張弁のみの冷媒流量制御機構に比べ単にキヤピ
ラリチユーブ2個を追加するだけで必要冷媒循環
量の冷,暖房時の差及び室内機の運転台数を変け
たときの差をなくすことが可能になつたので空気
調和機の必要冷媒循環量を常に、どのような運転
状態でも流せる事になり冷,暖房能力は従来に比
べ格段に増加する。 また、膨張弁のハンチングをなくすことができ
たので、いわゆる液圧縮による圧縮機の損傷や膨
張弁の耐久寿命が短くなる等の不具合を全て改善
しうる。
[Table] In conventional air conditioners of this type, the circulation amount of refrigerant is controlled by the expansion valve 8, but with a normal expansion valve, the flow rate control range is 40 to 120 degrees based on the rated flow rate.
%, it is not possible to control the amount of circulation so as to satisfy all the required circulation amounts in various operating modes. In other words, if you choose an expansion valve with a capacity that matches the maximum circulation rate during cooling (45 to 130 kg/h), when one indoor unit is operated during warm-up, the flow rate to the expansion valve will be too large, causing the so-called hunting phenomenon. cause. In other words, when a large amount of refrigerant flows through the expansion valve 8, the entire amount of refrigerant cannot be evaporated in the outdoor heat exchanger 3, and is returned to the compressor 1 as a liquid. The temperature sensing cylinder 19 issues a signal to reduce the flow rate of refrigerant passing through the expansion valve 8 in order to prevent the refrigerant from returning to the compressor 1 as a liquid. becomes 0Kg/h. When the flow rate becomes 0, the temperature sensing cylinder 19 senses that the refrigerant is not flowing and sends a signal to the expansion valve 8 to cause the refrigerant to flow, so the refrigerant flow rate of the expansion valve 8 becomes 45 kg/h. In this way, although the refrigeration cycle requires a refrigerant flow rate of about 30 kg/h, the expansion valve 8 is 0.
The flow rate of Kg/h and 45Kg/h will be alternately flowed. This is the so-called expansion valve hunting phenomenon. When the hunting phenomenon occurs, the heating capacity decreases, and temporarily excessive refrigerant liquid returns to the compressor 1, causing liquid compression and damage to the compressor 1. Also, the durability life of the expansion valve is shortened. Problems such as shortening may occur. Conversely, if the capacity of the expansion valve is selected according to the minimum circulation amount during heating, the expansion valve will not be able to flow the maximum circulation amount during cooling. In other words, the refrigeration cycle requires a refrigerant flow rate of 125 kg/h, but the expansion valve 8 requires a flow rate of 80 kg/h.
This means that it can only flow. In view of the above, the present invention satisfies all the necessary refrigerant circulation amount of the refrigeration cycle by installing a first capillary tube in parallel with the expansion valve and installing a second capillary tube in series with the expansion valve. This is what I did. Hereinafter, one embodiment of the present invention shown in FIG. 2 will be described. In FIG. 2, the same members as those shown in FIG. 1 are given the same reference numerals, but the difference from FIG. , a second capillary tube 21 is installed in series with the expansion valve 8. When operating three indoor units for cooling, the refrigerant is distributed as shown by the solid arrows: compressor 1 → four-way valve 2 → outdoor heat exchanger 3 → first check valve 4 → liquid receiver 7 → expansion valve 8
→Fourth check valve 9 and first capillary tube 2
0 → Solenoid valve 10, 11, 12 → Indoor heat exchanger 1
Flows in the order of 3, 14, 15 → solenoid valves 16, 17, 18 → four-way valve 2 → compressor 1. The second check valve 5 and the third check valve 6 prevent the refrigerant from flowing to other paths. Since the first capillary tube 20 is installed in parallel with the expansion valve 8, the refrigerant circulation amount is the sum of (flow rate passing through the expansion valve 8) + (flow rate passing through the first capillary tube 20). As a result, both the upper and lower limits of the flow rate control width of the expansion valve 8 are raised. When operating three indoor units for heating, the refrigerant is transferred from compressor 1 to four-way valve 2 as shown by the dashed-dotted arrow.
Solenoid valves 16, 17, 18 → indoor heat exchangers 13, 1
4, 15 → Solenoid valves 10, 11, 12 → Second check valve 5 → Liquid receiver 7 → Expansion valve 8 → Second capillary tube 21 → Third check valve 6 → Outdoor heat exchanger 3 → Four sides It flows in the order of valve 2 → compressor 1. The fourth check valve 9 and the first check valve 4 prevent the refrigerant from flowing to any route other than the above-mentioned path. Furthermore, since the pressure at the inlet and outlet of the first capillary tube 20 is high, the refrigerant does not flow therein. Since the second capillary tube 21 is installed in series with the expansion valve 8, its purpose is to reduce the flow rate passing through the expansion valve 8. In other words, the flow rate G passing through the expansion valve is expressed as G=αF√ 1 1 . where α; flow coefficient F; opening area P 1 ; pressure of inlet fluid V 1 ; specific volume of inlet fluid Opening area F is determined by the lift of the valve. Furthermore, the lift of the valve is determined by the pressure difference between the inlet and outlet of the expansion valve. In this way, the flow rate G increases when the pressure difference between the outlet and the inlet of the valve is large, and decreases when the pressure difference is small. This second capillary tube 21 is connected to the expansion valve 8
By installing the expansion valve 8 in series with the outlet of the expansion valve 8, the outlet pressure of the expansion valve 8 increases, the pressure difference between the outlet and the inlet becomes smaller, and the flow rate G decreases. In other words, both the upper and lower limits of the flow rate control width of the expansion valve 8 are lowered. Here, for the required refrigerant circulation amount of a heat pump type air conditioner with a capacity of about 4500 Kcal/h in Table 1: 60 to 125 Kg/h (1 to 3 units) during cooling and 30 to 65 〃 ( 〃 to 〃) during heating. , if you choose an expansion valve with a flow rate range of about 40 to 105 kg/h, the first capillary tube 2
If the size of the refrigerant is set to flow approximately 20 kg/h, the flow rate will be 60 to 125 kg/h, which satisfies the required refrigerant circulation amount during cooling. On the other hand, if the size of the second capillary tube 21 is determined so that the flow rate of the expansion valve 8 falls to about 30 to 80 kg/h, the necessary refrigerant circulation amount during heating can be satisfied. In addition, the expansion valve 8
is used within its control range in both cold and warm conditions, so no hunting phenomenon occurs. As mentioned above, compared to the conventional refrigerant flow rate control mechanism using only an expansion valve, the present invention can reduce the difference in the required refrigerant circulation amount during cooling and heating by simply adding two capillary tubes. Since it has become possible to eliminate the difference when changing the number of units, the required amount of refrigerant can be circulated through the air conditioner at all times, regardless of the operating condition, and the cooling and heating capacity is significantly increased compared to before. Furthermore, since hunting of the expansion valve can be eliminated, all problems such as damage to the compressor due to liquid compression and shortened durability of the expansion valve can be alleviated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の空気調和機の冷媒系統図、第2
図は本考案の1実施例を示す冷媒系統図である。 1……圧縮機、3……室外熱交換器、8……膨
張弁、A……室外機、13,14,15……室内
熱交換器、B,C,D……室内機、20……第1
のキヤピラリチユーブ、21……第2のキヤピラ
リチユーブ。
Figure 1 is a refrigerant system diagram of a conventional air conditioner;
The figure is a refrigerant system diagram showing one embodiment of the present invention. 1... Compressor, 3... Outdoor heat exchanger, 8... Expansion valve, A... Outdoor unit, 13, 14, 15... Indoor heat exchanger, B, C, D... Indoor unit, 20... …First
Capillary tube, 21...Second capillary tube.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 少くも圧縮機と室外熱交換器と膨張弁を具えた
1台の室外機と、少くも室内熱交換器を具えた複
数台の室内機からなると共に、前記膨張弁の前後
の冷媒回路中に室外熱交換器から同膨張弁を経て
室内機方向への冷媒流れを許す第1及び第4逆止
弁を、同第4逆止弁の出口側と第1逆止弁の出口
側との間に第2逆止弁を有する回路を、さらに前
記第4逆止弁の入口側と第1逆止弁の入口側との
間に第3逆止弁を有する回路をそれぞれ設け、冷
房時は室外熱交換器からの冷媒を第1逆止弁、膨
張弁、第4逆止弁を経て室内機へ流し、暖房時は
室内機からの冷媒を第2逆止弁を有する回路から
膨張弁、第3逆止弁を有する回路を経て、室外熱
交換器へ流すようにしたヒートポンプ式空気調和
機において、前記膨張弁及び第4逆止弁と並列に
冷房用第1キヤピラリチユーブを有する回路を設
けると共に、前記第3逆止弁を有する回路中に暖
房用第2キヤピラリチユーブを設けたことを特徴
とするヒートポンプ式空気調和機。
It consists of one outdoor unit equipped with at least a compressor, an outdoor heat exchanger, and an expansion valve, and a plurality of indoor units equipped with at least an indoor heat exchanger, and in the refrigerant circuit before and after the expansion valve. First and fourth check valves that allow refrigerant to flow from the outdoor heat exchanger to the indoor unit via the expansion valve are provided between the outlet side of the fourth check valve and the outlet side of the first check valve. A circuit having a second check valve is provided between the inlet side of the fourth check valve and a circuit having a third check valve between the inlet side of the fourth check valve and the inlet side of the first check valve. The refrigerant from the heat exchanger flows through the first check valve, the expansion valve, and the fourth check valve to the indoor unit, and during heating, the refrigerant from the indoor unit flows from the circuit having the second check valve to the expansion valve and the fourth check valve. In a heat pump air conditioner in which the air flows to an outdoor heat exchanger through a circuit having three check valves, a circuit having a first cooling capillary tube is provided in parallel with the expansion valve and the fourth check valve. A heat pump type air conditioner characterized in that a second capillary tube for heating is provided in the circuit having the third check valve.
JP9624879U 1979-07-13 1979-07-13 Expired JPS6234204Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9624879U JPS6234204Y2 (en) 1979-07-13 1979-07-13

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9624879U JPS6234204Y2 (en) 1979-07-13 1979-07-13

Publications (2)

Publication Number Publication Date
JPS5614967U JPS5614967U (en) 1981-02-09
JPS6234204Y2 true JPS6234204Y2 (en) 1987-09-01

Family

ID=29329077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9624879U Expired JPS6234204Y2 (en) 1979-07-13 1979-07-13

Country Status (1)

Country Link
JP (1) JPS6234204Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0537336Y2 (en) * 1986-04-19 1993-09-21

Also Published As

Publication number Publication date
JPS5614967U (en) 1981-02-09

Similar Documents

Publication Publication Date Title
KR950011986A (en) Air conditioner employing azeotropic mixture refrigerant
CN215638160U (en) Air conditioner heat exchange system and air conditioner
WO2022068950A1 (en) Room temperature adjusting device
JPS6234204Y2 (en)
JP2015124909A (en) Hot water supply air-conditioning system
JPH0544675Y2 (en)
JPS5816622Y2 (en) air conditioner
JP2015017722A (en) Heat exchanger and heating and cooling air conditioning system using the same
JPS6146347Y2 (en)
CN220981582U (en) Heat pump water heating system
JPH0332904Y2 (en)
JPS6051615B2 (en) water heater
CN221036914U (en) Microchannel heat exchanger, heat pump system and air energy water heater
CN220871097U (en) Thermal energy storage system
US20230049970A1 (en) Air conditioning apparatus
JPS6017634Y2 (en) Separate air conditioner/heater
JPS5818618Y2 (en) Heat pump air conditioner
JPS604043Y2 (en) Separate air conditioner/heater
JPS592832B2 (en) Heat recovery air conditioner
JPS604039Y2 (en) air conditioner
JPS6017642Y2 (en) air conditioner
JP2015017735A (en) Heat exchanger and heating and cooling air conditioning system using the same
JPS604042Y2 (en) Separate air conditioner/heater
JPS608619Y2 (en) Air conditioning/heating water heater
JPS604040Y2 (en) Separate air conditioner/heater